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ABSTRACT

The Arabidopsis Information Resource (TAIR,
http://arabidopsis.org) is a genome database for
Arabidopsis thaliana, an important reference
organism for many fundamental aspects of biology
as well as basic and applied plant biology research.
TAIR serves as a central access point for
Arabidopsis data, annotates gene function and
expression patterns using controlled vocabulary
terms, and maintains and updates the A. thaliana
genome assembly and annotation. TAIR also
provides researchers with an extensive set of
visualization and analysis tools. Recent de-
velopments include several new genome
releases (TAIR8, TAIR9 and TAIR10) in which the
A. thaliana assembly was updated, pseudogenes
and transposon genes were re-annotated, and
new data from proteomics and next generation
transcriptome sequencing were incorporated
into gene models and splice variants. Other
highlights include progress on functional anno-
tation of the genome and the release of sev-
eral new tools including Textpresso for
Arabidopsis which provides the capability to carry
out full text searches on a large body of research
literature.

INTRODUCTION

TAIR (The Arabidopsis Information Resource, http://
arabidopsis.org) serves as the community database for
Arabidopsis researchers and as an essential information
source for the wider plant biology and model organism
communities (1,2). TAIR contains genetic and genomic
data for Arabidopsis thaliana, a well-studied plant that
serves as a reference species for many aspects of plant
biology (3–7). Arabidopsis thaliana has also served as a
highly productive research organism for exploring many
areas of fundamental biology including DNA repair,
photobiology, protein degradation, the circadian clock,
DNA methylation, RNA silencing and G-protein signal-
ing, many of which have direct application to human
health (8–11).

TAIR’s usage continues to increase with 45 000 unique
visitors per month in 2010 based on usage data gathered
using Google Analytics and over 1.8 million visits in the
past year, an increase of 6% over the previous year. Visits
originated from around the world with Asia accounting
for 36%, the Americas 31% and Europe 30%. Although
registration is not required to view data at TAIR, users
must register and log in to order seed and DNA stocks
from the Arabidopsis Biological Resource Center
(ABRC), enter comments on TAIR pages or submit
data to TAIR via our online data submission tool. The
number of registered TAIR users as of September 2011
has reached 22 000, with 9400 of these records added or
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modified within the past 5 years, serving as an estimate of
the most active set of users.

TAIR DATA TYPES AND SOURCES

Data available from TAIR include A. thaliana and
A. lyrata genomic sequences, gene structure and function
annotation, A. thaliana metabolic pathways, gene expres-
sion patterns, DNA and seed stock data, genome maps,
genetic and physical markers, ecotypes and natural vari-
ation data, publications, and information about the
Arabidopsis research community. These data come from
a variety of sources including manual curation of pub-
lished literature and sequence data, computational pipe-
lines for annotating gene structure and function,
integration of data from other biological databases and
resources (GenBank and ABRC/Arabidopsis Biological
Resource Center) and submissions from the research
community.

Manual literature curation by TAIR curators generates
gene function and gene expression annotations based on
experiments reported in the peer-reviewed research litera-
ture, using Gene Ontology (GO) terms for molecular
function, biological process and cellular component, and
Plant Ontology (PO) terms for plant anatomical structures
and growth and developmental stages (12,13). Additional
information extracted from research literature includes
gene symbols and full names, alleles (including allele
name, mutagen, inheritance, allele type and description)
and germplasm information (parent line, associated alleles
and phenotype).

In addition to extracting data from the research litera-
ture, TAIR uses several computational pipelines to inte-
grate additional data. Functional annotation pipelines are
used to assign GO terms to A. thaliana and A. lyrata genes
based on the presence of protein domains or signal se-
quences. Gene structure pipelines are used to update
gene features such as exons and UTRs (untranslated
regions) for A. thaliana and add new genes based on
new transcript evidence. Mapping pipelines are used to
assign a genome position to sequenced objects including
ESTs (expressed sequence tags) and cDNAs, T-DNA and
transposon insertions, markers, SNPs, etc. Data import
pipelines are used to download sequence data from
GenBank including new ESTs, cDNAs and insertion
mutant flanking sequences, and load ABRC data for
seed and DNA stocks.

Community data submissions to TAIR include gene
families, gene structures, gene function data, mutant
phenotypes, protein–protein interactions, gene expression
patterns, SNPs, markers, laboratory protocols, gene
symbols, metabolic pathway data and links to other re-
sources. A recent development in community data
submission to TAIR is the establishment of a novel
TAIR-journal collaboration program to collect gene
function information directly from authors at the time
of publication and the introduction of an online author
submission tool to facilitate data submission.

ARABIDOPSIS GENE FUNCTION ANNOTATION

Since joining the GO Consortium in 2001, gene function
curators at TAIR have worked to capture the available
experimental gene function data from the A. thaliana
research literature in the form of GO and PO controlled
vocabulary annotations. In recent years the main focus of
our in-house literature curation effort has been on the
annotation of newly characterized genes. An average of
260 research articles are added to TAIR each month based
on PubMed searches for ‘Arabidopsis’ in the title, abstract
or keywords and �150 of these are linked to gene names
or synonyms within TAIR each month using automated
methods. These computationally generated links between
articles and genes are manually reviewed and confirmed by
curators if correct. During this process, abstracts that
discuss a newly characterized gene are flagged as
high-priority articles for curation. TAIR curators read
the full text of �40 of these high-priority articles each
month and make GO and PO annotations based on the
experiments reported in the article as well as extracting
other types of data (gene names, allele information) as
described earlier.
We have also put considerable effort into encouraging

community submissions, most recently through the estab-
lishment of collaborations with 10 plant science journals
and the development of a new interface for community
submission of annotations (Berardini et al., manuscript
in preparation). Recently we have also begun to integrate
external GO annotations from the UniProt Gene
Ontology Annotation group at the European
Bioinformatics Institute and the Reference Genome
group of the GO Consortium (14). We have also
integrated annotations inferred by the GO Consortium
from links within the ontology. For example, gene
products annotated to the molecular function term
‘sodium ion transmembrane transporter activity’
(GO:0015081) are also annotated to the biological
process term ‘sodium ion transmembrane transport’
(GO:0035725) because the molecular function term is
linked to the biological process term.
Each GO annotation from the sources described earlier

consists of a gene identifier, a GO term, an evidence code
and a reference. Although in some cases two or more an-
notations may contain the same gene and GO term, as
long as the evidence code or reference differ these are
still considered unique annotations and are retained. In
other cases two separate annotations to the same gene
may provide two related GO terms differing in specificity,
for example ‘chloroplast’ versus ‘chloroplast inner
membrane’, often because the method differed between
the two experiments. In a few cases different methods or
even the same method in different hands may produce a
different result (e.g. location of a gene product in ‘chloro-
plast’ versus ‘cytoplasm’, resulting in two independent an-
notations, both of which are retained in order to provide a
complete picture of all experimental results. We encourage
all users of GO annotations to make full use of the
evidence codes, evidence descriptions and links to the
research article describing the experimental result that
are available as part of each annotation in such cases.
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To supplement the gene function information we extract
manually from research literature and incorporate from
the community and other resources, we use computational
methods to assign GO terms based on the presence of
protein domains and other conserved sequences of
known function. For each genome release, we use a com-
bination of InterProScan (15) on the proteome combined
with the latest InterPro2GO mapping file (http://www.ebi
.ac.uk/GOA/InterPro2GO.html) to create GO annota-
tions for proteins based on the presence of domains with
mapped GO terms. We also perform a TargetP analysis
(16) with plant-specific parameters to identify proteins
that are predicted to be secreted or to localize to the
chloroplast or mitochondrion and created appropriate
GO annotations based on these results. Annotations re-
sulting from these computational methods are loaded into
TAIR using the IEA (Inferred from Electronic
Annotation) evidence code only if they provide an anno-
tation to a GO aspect (molecular function, cellular com-
ponent or biological process) not yet obtained from other
annotation methods for that gene (e.g. for a gene product
with an experimental annotation to ‘chloroplast’, an IEA
annotation to ‘cytoplasm’ would not be loaded).

GO annotation for the A. thaliana genome

To date, 20% of all A. thaliana genes (excluding pseudo-
genes and genes encoded by transposable elements) have
been annotated to at least one GO term for a biological
process based on an experiment done directly on the gene
in question or its protein or RNA product, as shown in
Table 1. A slightly higher proportion (27%) have been
assigned a GO cellular component term based on direct
experiment, and only 13% have an experimentally based
annotation to a molecular function term. When other
types of evidence are included, such as sequence similarity
to a gene of known function or presence of a domain with
a well-defined function, for each GO aspect over half of
A. thaliana genes have at least one annotation (Table 1,
‘All evidence types’ column). A total of 77% of all
A. thaliana genes have at least one GO annotation to
one of the three GO aspects.

‘Unknown’ genes annotated to GO root terms

The goal of the GO consortium is to assign at least one
biological process, molecular function and cellular

component term to every gene in an organism. In cases
where there is no experimental data and no predicted
function based on domains or other computational
methods, curators assign the root term (e.g. ‘biological
process’ rather than a more specific biological process
term such as ‘transcription’ or ‘leaf development’) to
indicate that this aspect of the gene function is
unknown. The presence of an annotation to the root
term serves as a way to distinguish ‘unknown’ genes for
which a curator has examined the literature and compu-
tational outputs and found no possible GO annotation
from ‘uncurated’ genes that lack an annotation because
existing publications for that gene have not yet been
examined. ‘Unknown’ genes account for 30–34% of the
genome within different GO aspects (Table 1). However,
because our computational methods for locating all pub-
lications relevant to a gene are imperfect (in particular we
don’t currently search for gene names in supplemental
results files), it’s likely that some genes currently classified
as ‘unknown’ should be included in the ‘uncurated’
category.

To improve curation efficiency and reduce the fraction
of unannotated genes we have begun using a
semi-automated curation process to identify papers with
cellular component information and create annotations
from them. Such a process has been used successfully by
WormBase (17) to streamline and improve their curator’s
efficiency in dealing with this type of data. We have
worked closely with the WormBase Textpresso team to
adapt and improve the software that is used in this
process for use in A. thaliana. A combination of user sub-
missions, semi-automated curation, integration of annota-
tions from collaborating groups and strategic paper
selection from the most recent literature will continue to
drive the updates of functional information for
A. thaliana.

TAIR GENOME ANNOTATION

In an ongoing effort to improve the annotation of the
A. thaliana genome, the TAIR genome annotation team
has released improved versions of the A. thaliana gene set
on a yearly basis since TAIR took over this responsibility
from TIGR (The Institute for Genomic Research,
now called J. Craig Venter Institute) in 2005 (18).

Table 1. Arabidopsis thaliana Gene Ontology Annotations

GO aspect Experimental (%) All evidence (%) Unknown (%) Not annotated (%)

Biological process (BP) 5826 (20) 15 644 (54) 9764 (34) 3367 (12)
Molecular function (MF) 3816 (13) 16 504 (57) 8732 (30) 3539 (12)
Cellular component (CC) 7762 (27) 15 383 (54) 7529 (26) 5863 (20)
BP, MF or CC 10 595 (37) 22 047 (77) n/a 939 (3)a

Number of A. thaliana genes with annotations to the three GO aspects and their percentages relative to the total number of genes excluding
pseudogenes and transposable element genes, based on the TAIR10 genome release. ‘Experimental’ category includes genes annotated with evidence
codes IDA (inferred from direct assay), IMP (inferred from mutant phenotype), IGI (inferred from genetic interaction), IPI (inferred from physical
interaction) and IEP (inferred from expression profile). ‘All evidence’ includes all evidence codes except ND (no biological data available).
‘Unknown’ includes genes annotated to the GO root term within the indicated category using the ND evidence code. ‘Not annotated’ includes
genes with no annotation to date within the indicated GO category. Numbers as of 15 September 2011; n/a not applicable.
aGenes with no GO annotation of any kind.
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To maximize both efficiency and accuracy of the genome
annotation process TAIR has made use of a combination
of computational methods to identify genes requiring
updates and carry out simpler updates, and manual
curation using the Apollo gene editing tool (19) to
review and carry out more complex updates.

Figure 1 illustrates the consecutive steps that we have
taken to gradually improve the annotation of the
A. thaliana genome. After an initial effort (TAIR6)
focused on the annotation of protein-coding genes, more
extensive reannotation projects were undertaken in subse-
quent releases to improve the annotation of UTRs, short
protein-coding genes, non-coding RNAs (ncRNAs),
transposon genes, pseudogenes and splice variants. As
shown in Figure 1B, while the genome annotation tool
PASA (Program to Assemble Spliced Alignments) (20)
was the only gene prediction tool used in the first
releases, curators increasingly relied on additional gene
prediction tools to make use of newly available transcript

profiling (RNA-seq) and peptide datasets generated using
high-throughput methods.

TAIR8 genome release (April 2008)

As with the previously described TAIR6 and TAIR7
releases (21), PASA was used to incorporate all available
A. thaliana ESTs and cDNAs into transcript assemblies
and generate lists of suggested updates to existing gene
models for the TAIR8 release. These updates were
categorized by PASA into different groups depending on
the type of change required (i.e. extension of the 30-UTR,
altered protein coding sequence, etc.) All but the most
straightforward update categories, such as extension of
the 50- or 30-UTRs, were individually reviewed by
curators using a modified PASA interface and marked
for manual curation, computational update, or rejection.
In addition to making genome-wide computational

updates based on new transcript evidence, for each
TAIR release we have targeted a specific subclass of

B

A

Figure 1. Overview of TAIR genome releases. (A) Bar graph displaying the number of annotation updates made in each of the 5 TAIR releases.
Colored bars represent four different classes of updates: updated genes (light green), genes with CDS updates (orange), new genes (yellow) and new
splice variants (dark green). (B) Table comparing the TAIR genome releases by types of data and prediction tools used, areas of focus and genome
sequence updates. The red line separating TAIR8 from TAIR9 indicates that coordinates of most genes shifted in the TAIR9 release, as a conse-
quence of the integration of 341 Indels, and the normalization of previously identified sequence contaminations to a standard length of 100 bp.
A liftover tool is available at ftp://ftp.arabidopsis.org/home/tair/Software/UpdateCoord/ for updating coordinates of objects mapped to TAIR8 or
earlier releases.
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genes for review and update. For the TAIR8 release, we
integrated a large new set of transposable elements
provided by Quesneville and co-authors (22) and used
this new information to update the gene type for many
genes contained within these newly mapped transposable
elements from protein-coding or pseudogene to transpos-
able element gene (see Supplementary Data for more in-
formation). Other novel genes introduced in TAIR8
include conserved uORFs (upstream open reading
frames located within the UTR of other, larger genes)
(23), and very short protein-coding genes with substantial
supporting evidence (24). Datasets from several other
groups were also used to annotate new genes and splice
variants and make gene structure updates (25–27,
T. Tatusova, personal communication).
The TAIR8 release contained 27 235 protein coding

genes, 859 pseudogenes, 3900 transposable element genes
and 1288 ncRNAs (33 282 genes in all, 38 963 gene
models). A total of 1291 new genes and 2009 new gene
models were added. Thirteen percent (4330) of A. thaliana
genes had annotated splice variants in this release.
Updates were made to 3811 gene structures of which 625
gene models had coding sequence (CDS) updates; a total
of 4007 exons were modified and 683 new exons
incorporated. There were 33 gene splits and 41 gene
merges. Overall 23% of all existing TAIR7 genes (7380
genes) were updated, including updates to gene structure
and/or gene type.
The TAIR8 release also included changes to the genome

sequence. In 14 regions identified as contaminating se-
quences from vectors, E. coli or rice, the contaminating
sequence was replaced with a run of ‘N’ of the same length
to avoid changes to chromosome length. In addition, 1425
single nucleotide substitutions were made to the assembly
sequence based on high-confidence resequencing data
provided to TAIR (28). The sequences of 518 genes
overlapping these substitutions were also updated.
Because all assembly changes for the TAIR8 release
were substitutions rather than insertions or deletions, the
chromosome lengths and gene coordinates were un-
changed from the previous releases.

TAIR9 genome release (June 2009)

With the TAIR9 release, the set of data used as evidence
for updates to gene structures was expanded to include
cross-species alignments and peptide data from two
large-scale proteomics experiments (29,30). These
proteome datasets were used to reclassify 99 pseudogenes
as protein coding and merge nine pseudogenes with
existing protein coding genes. In addition, 158 peptides
were used to update TAIR gene structures. A set of pre-
dicted Augustus gene models based on proteome data (30)
were evaluated to identify potential exons missing from
TAIR8. Of 591 Augustus models examined, 339 were
incorporated into TAIR9 gene models, with 175 new
splice variants added, 118 modifications to existing
TAIR models and 46 new gene models.
The TAIR9 release also included a genome-wide

reannotation of pseudogenes based on output from the
PseudoPipe software package, provided by the Gerstein

lab (31). Further analysis was undertaken to identify a
subset of pseudogene models exhibiting CDS disablements
or truncations relative to the parent gene. A total of 168
novel pseudogenes were added for the TAIR9 release.

Alternative genome annotation datasets derived from
several different software packages, including Gnomon
(http://www.ncbi.nlm.nih.gov/projects/genome/guide/
gnomon.shtml), (predictions provided by Tatiana
Tatusova and Alexandre Souvorov, NCBI), EuGene
(27,32) (gene predictions provided by Sébastien
Aubourg, Unité de Recherche en Génomique Végétale)
and AceView (33), predictions provided by Jean
Thierry-Mieg, NCBI) were also used as a source of gene
structure updates for the TAIR9 release. An analysis of
these gene prediction sets was undertaken to identify a set
of exons absent from TAIR8 annotation but supported by
transcript, peptide or cross-species evidence, resulting in
the addition or modification of over a thousand exons for
TAIR9. The full set of alternative gene models submitted
to TAIR for all three software packages can be viewed in
TAIR’s genome browser as tracks within the Community
Alternative Annotation section (http://gbrowse
.arabidopsis.org/cgi-bin/gbrowse/arabidopsis).

The TAIR9 release contained 27 379 protein coding
genes, 926 pseudogenes, 3901 transposable element genes
and 1312 ncRNAs (33 518 genes in all, 39 640 gene
models). A total of 282 new genes and 739 new splice
variants were added. Fourteen percent (4626) of
A. thaliana genes had annotated splice variants in this
release. Updates were made to 1254 gene models of
which 774 had CDS updates; a total of 1144 exons were
modified and 1056 new exons incorporated. There were
13 gene splits and 46 gene merges.

Genome assembly updates made for the TAIR9 release
included 227 single nucleotide substitutions based on
re-sequencing data provided to TAIR (28,34). A set of
341 insertions or deletions were made based on
re-sequencing data (34) and EST or cDNA sequences
deposited in GenBank that supported the change. In
accordance with our reference genome policy
(http://arabidopsis.org/doc/portals/genAnnotation/gene_
structural_annotation/ ref_genome_sequence/11413) cor-
rections to the reference assembly were only made if sup-
ported by at least two independently derived sequence
libraries from the Columbia ecotype. In addition to
these changes, the 14 regions previously identified in
TAIR8 as either vector, E. coli or rice contamination
and substituted with the equivalent number of IUPAC
ambiguity code ‘N’s were standardized (via deletion) to
a set size of 100 bp for TAIR9. As a consequence of
these assembly updates, the coordinates of most genes,
as well as other mapped features such as transcripts, poly-
morphisms, T-DNAs, etc. were modified between the
TAIR8 and TAIR9 releases.

TAIR10 genome release (December 2010)

For the TAIR10 release, RNA-seq data were incorporated
as evidence for gene model updates. Data used for this
release included a total of 538 million reads obtained
from two groups (28,35). RNA-seq reads were mapped
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to the genome using TopHat (36), HashMatch (http://
mocklerlab-tools.cgrb.oregonstate.edu/HashMatch.html)
and Supersplat (37). After quality and low complexity
filtering, we mapped >200 million reads to the genome,
including about nine million spliced reads. Spliced aligned
reads can be viewed within TAIR’s genome browser, in
the ‘Spliced RNA-Seq Reads’ track within the Sequence
Similarity section (http://gbrowse.arabidopsis.org/cgi-bin/
gbrowse/arabidopsis). These spliced read alignments plus
peptide data obtained for the TAIR9 release were used as
an input for the Augustus gene prediction package
(38) and the resulting gene models were categorized
and manually reviewed (see Supplementary Figure S1).
Validated gene updates, novel genes and novel
splice variants from the Augustus output were
incorporated into the TAIR10 release. Spliced reads not
incorporated into gene models by Augustus were supplied
to TAU (http://mocklerlab-tools.cgrb.oregonstate.edu/
TAU.html), and resulting models were reviewed by
TAIR curators for the addition of novel splice variants.
Transcript assemblies were also generated independently
via Cufflinks (39), using both spliced RNA-seq reads and
a subset of unspliced reads generated by the Ecker lab.
Transcript assemblies were filtered and compared to
existing gene models, resulting in the addition of 56
novel genes.

In addition to the updates resulting from incorporation
of RNA-seq data, new proteome data provided to TAIR
(40) was used to directly update 24 gene models. Also,
gene models created using the Gnomon pipeline were
provided to TAIR by NCBI and reanalysis of these
models resulted in 11 additional novel genes, 67 additional
alternative splice variants and 164 updates to existing
genes. Finally, a set of 125 updates provided by curators
at Swiss-Prot (http://www.uniprot.org/) were reviewed
and 104 of these updates were incorporated into this
release.

The TAIR10 release is summarized in Table 2. For this
release, a total of 126 new genes and 2099 new splice
variants were added. Updates were made to 1184 gene
models of which 707 had CDS updates. There were 41
gene splits and 37 gene merges. No updates were made
to the genome assembly for the TAIR10 release.
Eighteen percent of A. thaliana genes (total of 5885)
now have annotated splice variants and 65.1% (22 982)
of protein coding gene model structures are fully
conErmed by EST or cDNA data (every exon is supported
by an A. thaliana EST or cDNA). A further 10 829 gene
models are partially supported. Thus, a total of 33 811

(95.7%) protein-coding gene models have at least partial
transcript support.
As part of the TAIR10 release two new genome browser

tracks, ‘B-List Genes’ and ‘TAIR10 Unconfirmed Exons’,
have been added to the TAIR genome browser (http://
gbrowse.arabidopsis.org/cgi-bin/gbrowse/arabidopsis/).
‘B-List Genes’ displays a set of 1737 gene models not
included in the TAIR10 release because curators were
unable to find an appropriate open reading frame that
extended through the gene model. Many of these gene
models are associated with previously annotated
protein-coding genes and may be non-coding splice
variants of these genes. Gene models were only included
on the B-List if they had sufficient experimental data (typ-
ically >50% of exons with overlapping evidence and at
least two different types of evidence such as RNA-seq,
ESTs, cDNAs or peptides) to suggest that they are ex-
pressed. A second new track, ‘Unconfirmed Exons’,
displays TAIR10 gene exons that lack confirming experi-
mental evidence for one or both splice sites that flank the
exon. The text displayed below each exon within the track
indicates whether the donor or acceptor site of the exon is
unsupported. Documentation on how we generated the
confidence score for each exon can be found on the
TAIR ftp site at: ftp://ftp.arabidopsis.org/home/tair/
Genes/ TAIR_gene_confidence_ranking/
DOCUMENTATION_TAIR_Gene_Confidence.pdf.

NEW TOOLS AT TAIR

TAIR provides access to a variety of in-house and external
tools that help the user query and analyze Arabidopsis
data. All tools are available from every TAIR page
under the Tools dropdown menu. Recently added tools
include the Textpresso literature search tool, the
N-Browse interaction viewer, the synteny viewer
GBrowse_syn, the Integrated Genome Browser (IGB)
and GBrowse viewers for nine new plant genomes.
Textpresso is an information extracting and processing

package for biological literature (41). Textpresso for
Arabidopsis allows users to search over 40 000 abstracts
and 27 000 full-text publications in TAIR. Keyword
searches can be narrowed by searching in specific
keyword categories including A. thaliana gene names,
Gene Ontology and Plant Ontology terms or combin-
ations of keywords. This tool is extremely useful in
tracking down specific information like the mutation
sites in certain alleles. Sentences that contain matching
keywords are displayed together with bibliographic

Table 2. TAIR10 genome statistics

Protein coding pre-tRNA rRNA snRNA snoRNA miRNA Other RNA Pseudo TE Total
gene gene

Nuclear 27 206 631 4 13 71 177 394 924 3903 33 323
Chloroplast 88 37 8 0 0 0 0 0 0 133
Mitochondrial 122 21 3 0 0 0 0 0 0 146
Total 27 416 689 15 13 71 177 394 924 3903 33 602

Number of genes of each category in the TAIR10 genome release.
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information so that users can quickly confirm the useful-
ness of a particular paper and link directly to the full text,
if they have the appropriate subscriptions to the journals
in question.
N-Browse is an interactive graphical browser for bio-

logical networks (42). Users can launch N-Browse using
Java Web Start with or without an initial query gene.
N-Browse contains 8626 protein–protein interactions
based on experimental data curated by TAIR or the
protein interaction databases BioGRID (http://
thebiogrid.org) (43) or IntAct (http://www.ebi.ac.uk/
intact) (44). N-Browse does not currently contain any pre-
dicted protein interaction data. Interaction data is avail-
able for download at ftp://ftp.arabidopsis.org/home/tair/
Proteins/Protein_interaction_data/.
GBrowse_syn is a GBrowse-based synteny browser

designed to display multiple genomes, with a central ref-
erence species compared to several additional species (45).
This tool uses a central ‘joining’ database that contains
information about the multiple sequence alignments as
well as additional databases for each species represented
in the alignments. GBrowse_syn was built to help re-
searchers study and analyze syntenic regions, homologous
genes and other conserved elements between sequences. It
can also be used to study genome duplication and evolu-
tion. By comparing newly sequenced or less studied
genomes to the well annotated A. thaliana genome in
Gbrowse_syn, scientists can identify novel genes and
putative regulatory elements. The first version of the
Gbrowse_syn tool at TAIR includes the genomes of
A. thaliana, A. lyrata and Populus trichocarpa.
Integrated Genome Browser (IGB) is an interactive

genome browser tool (46). IGB is different from other
genome browsers in that it lets the user open, visualize
and analyze their own large-scale data sets (i.e.
RNA-Seq, ChIP-Seq, epigenetics, tiling array, etc), dis-
playing these data alongside publicly available data sets,
including gene models and the reference sequence itself.
Using IGB’s QuickLoad system, users can also use IGB to
share data with collaborators and members of the com-
munity. IGB runs on the user’s local computer rather than
on the TAIR servers.
New plant genomes in GBrowse In addition to

GBrowse for A. thaliana, TAIR has made GBrowse
viewers available for the following plant genomes:
A. lyrata, Brachypodium distachyon, Oryza sativa ssp.
japonica, O. sativa ssp. indica, P. trichocarpa,
Physcomitrella patens, Sorghum bicolor, Vitis vinifera,
Zea mays. Gene models for each species were obtained
from Ensembl, while transcript data were retrieved from
GenBank and aligned to each genome using the GMAP
alignment tool (47). Arabidopsis thaliana gene models were
aligned to each plant genome using CAT (48), and the
alignments are displayed in a GBrowse ortholog track.

ARACYC

AraCyc contains information about A. thaliana metabolic
pathways, reactions and enzymes. This resource was ori-
ginally developed at TAIR but is now maintained and

updated by the Plant Metabolic Network (49) (http://
www.plantcyc.org). TAIR users can still directly query
the AraCyc database by using the quick search tool at
TAIR and selecting the ‘Metabolic Pathways’ option
from the drop-down menu. Searching using a simple
term such as ‘tryptophan’ returns an array of pathways,
enzymes, reactions and compounds, but more specific
searches, for example using an AGI locus code, can
bring users directly to the information they want related
to a specific enzyme. In addition, links to relevant AraCyc
pathways and reactions can be accessed in the ‘External
Link’ section of the locus page for enzymes in TAIR.

The AraCyc 8.0 release from April 2011 contains 446
pathways, 5520 enzymes, 2689 reactions, 2825 compounds
and includes information from 3346 references (http://
www.plantcyc.org/ release_notes/content_statistics.faces).
New releases are typically produced twice a year.
Annotations of enzymes to specific reactions and
pathways are made using evidence codes to enable users
to easily distinguish which enzyme-reaction pairings are
supported by experimental or computational evidence.
Specific pages give more detailed information about each
enzyme, reaction and compound, plus these different data
types are brought together on information-rich pathway
pages. AraCyc also provides access to tools that allow
users to generate complex queries, to compare metabolism
across different species, and to overlay experimental data
from large-scale transcriptomic, proteomic and/or
metabolomic studies onto a zoomable metabolic map
(http://pmn.plantcyc.org/overviewsWeb/celOv.shtml?
orgid=ARA).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Methods and Supplementary Figure S1.
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