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A B S T R A C T

In line with the goal of limiting health risk behaviors in adolescence, a growing literature investigates whether
individual differences in functional brain responses can be related to vulnerability to engage in risky decision-
making. We review this body of work, investigate when and in what way findings converge, and provide best
practice recommendations. We identified 23 studies that examined individual differences in brain responsivity
and adolescent risk taking. Findings varied widely in terms of the neural regions identified as relating to risky
behavior. This heterogeneity is likely due to the abundance of approaches used to assess risk taking, and to the
disparity of fMRI tasks. Indeed, brain-behavior correlations were typically found in regions showing a main
effect of task. However, results from a test of publication bias suggested that region of interest approaches lacked
evidential value. The findings suggest that neural factors differentiating riskier teens are not localized to a single
region. Therefore, approaches that utilize data from the entire brain, particularly in predictive analyses, may
yield more reliable and applicable results. We discuss several decision points that researchers should consider
when designing a study, and emphasize the importance of precise research questions that move beyond a general
desire to address adolescent risk taking.

A stated goal of much research on the neural bases of adolescent
decision-making has been to address the significant public health pro-
blems thought to result from adolescent risk taking, including alcohol
and drug abuse, automobile accidents, and unprotected sex (e.g., Bjork
and Pardini, 2015; Chein et al., 2011; Galvan et al., 2006; Pfiefer et al.,
2011). Two prominent theoretical papers about adolescent decision-
making open with a description of these reckless behaviors, and pro-
pose that a neurobiological framework may account for the particular
susceptibility of adolescents to risky behavior (Casey et al., 2008;
Steinberg, 2008). In 2008, Steinberg proposed the “Dual Systems
Model,” which postulates that the differing trajectories of two systems
in the brain, a “socio-emotional system” and a “cognitive control
system,” make mid-adolescence a period of heightened vulnerability.
The “Imbalance Model,” discussed in Casey et al’s 2008 paper, also
proposes that the developmental trajectories of two brain systems,
implicated in reward response and top-down control, respectively,
confer heightened vulnerability to reckless behavior in adolescence.

Work over the past nine years has led to substantiation as well as
refinement of these models (e.g. Casey et al., 2016; Shulman et al.,
2016), including a braod acknowledgment that risk taking in adoles-
cence can be, and often is, adaptive (e.g. Dahl, 2016). Nonetheless, the
concerns cited in 2008 represent ongoing public health issues. Health

risk behaviors are still leading causes of mortality, permanent injury,
and other problems among adolescents (Centers for Disease Control and
Prevention, 2015). Furthermore, some health risk behaviors, such as
texting and driving and the use of electronic cigarettes, have only re-
cently been identified as especially worrisome among adolescents
(Centers for Disease Control and Prevention, 2015). Thus, if neurobio-
logical models of decision-making can provide additional insight into
the causes underlying adolescent health risk behaviors, above and be-
yond behavior alone, an important next step would be leveraging this
knowledge of mechanisms to develop targeted preventative measures.

One potential avenue for the improvement of preventative measures
is through the identification of individual differences in vulnerability to
risk taking among adolescents. If heightened adolescent risk taking can
be explained by processes taking place within the adolescent brain in a
way that is different from adults and children, is it also the case that
adolescents with a higher predilection for risk will show exaggerated
brain differences? If individual differences in adolescent risk taking can
be predicted by brain responses, then the brain systems implicated in
reward and cognitive control would be sensible targets of investigation.
However, the leap from age differences to individual differences is not a
foregone conclusion. It may be, for example, that the variability of
brain responses within the adolescent period is not sufficient to predict
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behavioral outcomes among people this age, or that brain regions
predictive of outcomes within a single age band are distinct from those
that are correlated with age.

As noted by Pfeifer and Allen (2012), early neuroimaging work on
adolescent decision-making rarely considered individual differences in
brain responses as they relate to behavior. More recently, Bjork and
Pardini (2015) argued that the maturational imbalance proposed in
neural models of adolescent risk taking might actually be more char-
acteristic of individuals with histories of excessive behavioral disin-
hibition, and suggested that, “Future research on brain mechanisms of
significant adolescent risk taking would therefore benefit from a greater
emphasis on individual differences.”

Since the publications of these papers, developmental cognitive
neuroscientists have increasingly asked how individual differences in
neural responses are related to risk-taking behavior in the laboratory
and beyond, and have been successful in identifying significant corre-
lations between patterns of neural activity and aspects of risk-related
behavior. The goal of the present review is to provide a systematic
evaluation of this body of work and to address two overarching ques-
tions. First, do individual difference findings converge to suggest that
neural markers of individual adolescent vulnerability for risk mirror
factors that have been identified in studies of broader developmental
brain changes? And second, what do these findings teach us about best
practices moving forward?

1. Approach

1.1. Definitions and inclusion criteria

In line with our stated goal of identifying the neural markers of
vulnerability in adolescence, we restricted our review to studies that
met the following criteria: they examined individual differences in risk-
taking behaviors in adolescent samples in relation to responses during
task-based fMRI. We defined individual differences broadly, as varia-
bility in any continuous measures of risky behavior. “Risky behavior”
was defined as either lab-based risky decision-making (e.g. riskier be-
havior in a gambling game), reports of health risk behaviors such as
alcohol and drug use, or high scores on personality measures that have
been implicated in adolescent risk taking, such as sensation-seeking
(e.g. Steinberg, 2008). Our motivation for casting this wide net was
twofold: first, we hoped to assemble a critical mass of papers to perform
quantitative analyses as well as qualitative description; and second, we
wanted our review to reflect the wide range of operational definitions
that researchers have used when attempting to understand neural un-
derpinnings of risk taking and risky decision-making in adolescence. It
is important to note, however, that the term ‘risk’ is defined differently
across different literatures; economists and neuroeconomists typically
define risk in terms of the uncertainty of possible outcomes, whereas
clinicians and developmental cognitive neuroscientists often define risk
as behaviors that confer potential harm (Defoe et al., 2015; Schonberg
et al., 2011).

In this review, we use the term “individual differences” to refer to
psychological phenomena that vary continuously (e.g. Dubois and
Adolphs, 2016), and focus our review on papers that utilize correla-
tional or regression approaches, rather than group comparisons. This
approach is now fairly common in the developmental cognitive neu-
roscience literature, and reflects the assumption that the phenomenon
of risk taking varies within the population of typical adolescents. It
should be noted that a complementary and well-established clinical
literature mainly has taken an alternative, categorical, approach of
comparing structural and functional differences between youth with
versus without substance use disorders (for two recent reviews, see
Heitzeg et al., 2015 and Squeglia and Cservenka, 2017). In contrast to
that work, we wished to establish whether risk taking, conceptualized
as a continuously variable phenomenon within the general population
rather than an aberrant outcome, is related to differences in brain

responses. Further, we hoped to make specific methodological re-
commendations for correlational and regression approaches. As we
later discuss, however, the use of a correlational or categorical ap-
proach is a decision that should be based on the goals of the individual
study, hypothesized mechanisms, and one’s stance regarding the value
of work in neurotypical youth to ameliorate the public health con-
sequences of risky behavior.

Like “risk taking,” the term “adolescence” has been defined a
number of ways, not only across disciplines, but within developmental
cognitive neuroscience (Crone and Dahl, 2012). Frequently, it is defined
as beginning with pubertal onset (e.g., Graber & Brooks-Gunn, 1998)
and ending with independence from parents (e.g., Casey et al., 2010),
though these markers, of course, are not precise moments in time but
rather transitions in and of themselves. Many of the neural changes
hypothesized to underlie the rise in risky behaviors occur during the
second decade of life (Steinberg, 2008; Casey et al., 2008), but these
processes too are continuous and not restricted to the teen years (e.g.
changes in grey and white matter volume, Mills et al., 2016; changes in
reward sensitivity in the ventral striatum; Braams et al., 2015). In the
present review, we included any papers for which the mean age, as well
as the age of the majority of participants, fell within the second decade
of life. As with our definition of “risk taking,” we used an intentionally
liberal boundary for age range in order to maximize the size of the
reviewed literature.

This review does not explore the relation between neural responses
and risk taking as a function of age or developmental stage; that is, we do
not review the literature that compares adolescents to adults and/or
children in terms of risky behavior and brain development. For more
information on this topic we refer readers to two extensive recent meta-
analyses, the first on reward processing in adolescence (with a com-
parison to adulthood Silverman et al., 2015), and the second, on dif-
ferences in laboratory risk taking between children, adolescents, and
adults (Defoe et al., 2015). While dual systems and imbalance models
propose a direct relation between the development of reward circuitry
and risk-taking behavior, these two phenomena are confounded with
age and other related variables (e.g., cohort, years of experience); here,
instead, we look at brain-behavioral relations within the developmental
window of adolescence. Several studies in the literature separate their
samples into adolescents, adults, and/or children; in these cases, we
used only the adolescent sample as defined by the authors.

Finally, we restricted our review to studies employing task-based
functional MRI. This allowed us to make recommendations for best
practices within one methodological domain and to quantitatively ag-
gregate the data. As will become clear, even with this somewhat narrow
definition, the methods utilized are highly heterogeneous. Task-based
fMRI is only one of several categories of approaches that have been
used to examine individual differences in adolescent risk taking; others
include investigations of cortical volume (e.g., Medina et al., 2009; de
Bellis et al., 2005), white matter integrity (e.g., Bava et al., 2013;
McQueeny et al., 2009), and resting-state functional connectivity (e.g.,
DeWitt et al., 2014; Peters et al., 2015; Van Den Bos et al., 2015).
Furthermore, while we will briefly discuss measures of connectivity
during task-based fMRI, we focus primarily on activation rather than
connectivity. The motivation for primarily discussing activation was
that this approach dominates in the literature; however, as we will
discuss, connectivity and network approaches may yield additional
insights, and will likely deserve greater attention as the number of
studies adopting connectivity approaches grows.

1.2. Literature search

We relied on several methods to compile the relevant corpus of
studies. Initially, we conducted searches on PubMed using the combi-
nation “adolescent,” “individual difference,” “risk,” and “fMRI;” this
search yielded 32 entries. We substituted the term “risk” with “alcohol,”
(6 additional entries) “marijuana,” (1 additional entry) and “sensation-
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seeking” (no additional entries). The first author reviewed all titles and
abstracts and included papers that met the above criteria. Additional
papers were identified by reviewing the Introductions and reference
lists of the papers identified during the search, as well as through the
authors’ prior knowledge of recent literature, and through consultation
with other researchers (e.g. by soliciting papers on the Social and
Affective Neuroscience Society listserv and via discussion through so-
cial media).

In several cases, it was determined that the same sample was used in
more than one publication. In these cases, we included the study with
the largest sample size in our main table and quantitative review, and
noted (in Supplemetary Table 1) which related works were excluded.
One exception is the inclusion of both Pfeifer et al. (2011) and Sherman
et al. (2017). In this case, only five individuals (out of 38 and 58 total
participants, respectively) participated in both studies, with a 4–5 year
gap between the two studies. We elected to include both papers because
they utilized different approaches to both the fMRI task and outcome
measures, and because Sherman et al. was not included in the quanti-
tative analysis; nonetheless, these studies’ nonindependence should be
noted.

1.3. Organization and reporting of findings

Our aim was not only to review the literature but also to provide
suggestions for best practices. Initially, we were most interested in
determining if and how results might differ as a function of the fMRI
task used. Thus, we categorized findings in our table by fMRI task, and
provide below an overview of the tasks used to assess these brain-be-
havior relations, while considering advantages and limitations of each
approach. Although we initially hoped to perform quantitative analyses
comparing the outcomes associated with each fMRI task, we concluded
that the literature was too heterogenous; no single task was used in
more than four papers, and many tasks were used in only a single paper.
Even when tasks overlapped across papers, researchers did not always
choose the same BOLD contrast to correlate with behavior. Assessments
of risk-taking outcomes (both behavioral performance and self-report)
also varied widely, with no single measure used in more than two pa-
pers. Furthermore, fewer than half of the studies reviewed utilized a
whole-brain analysis; rather, most authors limited their search space
through the use of either an ROI approach or a task-activation map.

Because of the highly heterogeneous nature of both fMRI tasks and
individual outcome measures (as well as the preponderance of region of
interest approaches), we elected not to perform a quantitative meta-
analysis but rather to more qualitatively visualize the brain regions that
have been repeatedly implicated in brain-behavior correlations. We
describe findings discovered through whole-brain/bottom-up analyses
and those identified through region of interest (ROI) analyses, as well as
those identified through both approaches.

To test the evidential value of the literature (that is, to assess
whether significant findings represent real effects and are not soley the
result of selective reporting), we submitted findings to a p-curve ana-
lysis, a technique that tests for publication bias in a group of studies
(Simonsohn et al., 2014a,b). Publication bias can be difficult to assess in
the neuroimaging literature, because multiple non-independent results
are typically reported, approaches to thresholding and correction for
multiple comparisons vary widely, and often only the maximum z or p-
statistics are reported in tables (David et al., 2013). However, the fre-
quency with which ROI approaches were used in this literature allowed
us to investigate publication bias as it applied to any correlations hy-
pothesized a priori (a priori ROIs were identified in over 50% of the
papers). In the present corpus, some researchers relied on correlational
approaches to correlate BOLD responses with risk taking, while others
utilized a regression with other covariates; a p-curve analysis allowed us
to examine the results of these studies combined even though different
test statistics (R, t, z, beta, etc.) were reported across studies
(Simonsohn et al., 2014a,b).

Creating a p-curve involves plotting the distribution of p-values
across multiple studies and investigating the shape of the resulting
distribution. A p-curve for a significant effect with an unbiased dis-
tribution of p values (e.g., one that is not subject to p-hacking or other
publication bias) will be right-skewed, with the majority of p-values in
the lower range. A flat distribution suggests that publication bias may
not be of concern, but that the effect size is small or nonexistent. A left-
skewed distribution suggests that publication bias, and potentially even
p-hacking, is a concern for a group of studies (Simonsohn et al.,
2014a,b). Following the technique developed by Simonsohn and col-
leagues, we created a p-curve disclosure table and plot for all papers
that tested a brain-behavior correlation using a region of interest de-
fined a priori. We tested the shape of the distribution using a binomial
test; Simonsohn and colleagues suggest this simple method to de-
termine whether the curve is right-skewed and therefore contains evi-
dential value. Frequently, more than one p-value was reported (e.g.
when more than one ROI or contrast was tested or when a relation was
tested with and without a covariate). In these cases, we selected only
the first reported p-value to maintain independence of findings. In cases
where multiple p-values are reported, Simonsohn et al. (2014a,b) re-
commend testing different versions of the analysis. Therefore, to con-
firm the results of our p-curve analysis, we also performed a related
analysis using only the most the commonly selected ROI, the ventral
striatum. This ROI appeared in nine out of twelve studies that utilized
an ROI approach.

The nucleus accumbens of the ventral striatum is a sensible choice
for an ROI in this literature since it has been implicated in several as-
pects of risk-taking behavior. Hypersensitivity of the VS during ado-
lescence is hypothesized to contribute to the “imbalance” between af-
fective and cognitive control systems (Casey et al., 2016; Shulman
et al., 2016). A related hypothesis posits that the presence of peers
heightens VS responsivity during adolescence, thereby increasing sus-
ceptibility to health risk behavior (Albert et al., 2013; Chein et al.,
2011). These theories of adolescent risk taking, which concern trajec-
tories of normative development, are sometimes at odds with theories
of aberrant brain functioning in addiction. Both theories of addiction
and adolescent decision-making concern the neural substrates of re-
inforcement and reward, particularly the mesolimbic dopamine system.
The nucleus accumbens appears to play a crucial role in the acute re-
inforcing effects of a variety of drugs, as well as subsequent cravings
(for a review, see Koob and Volkow 2010), and some drugs, such as
cocaine, have been shown to affect dopamine receptor availability
(Volkow et al., 1993). However, hypo-functioning of reward circuitry
has been hypothesized to predispose individuals to risk for addiction,
such as in the reward deficiency hypothesis (Blum et al., 2000), al-
though support for this hypothesis has been mixed (Hommer et al.,
2011; Peters et al., 2011). Bjork and Pardini (2015) point out the co-
morbidity of substance use disorders and both disruptive behavior
disorders and anti-social disorders, both of which have been associated
with heightened reward sensitivity (e.g., Byrd et al., 2014). Thus,
competing theories might suggest that adolescents who are especially
susceptible to risky behavior may either show more reward sensitivity
than their peers, or that such adolescents may evince relatively less
reward sensitivity. Given these mulitple hypotheses, we report all sig-
nificant results (positive and negative correlations) in our results. Re-
sults of the p-curve analysis for the VS/NAcc are reported in Supple-
mentary Materials. In addition to our discussion of whole-brain and ROI
effects with respect to different measures of risk taking, we provide
several more general critiques of the literature and make suggestions
for best practices in future work.

2. Summary of findings

Table 1 summarizes the findings of the 23 studies we identified that
correlated individual differences in neural responses with risk taking
propensity among adolescents. Twenty studies investigated
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neurotypical youth, one investigated a population with experience with
substance abuse, and two included individuals in both of these cate-
gories. While some studies also directly compared low frequency and
high frequency drug or alcohol users, we focused specifically on cor-
relational findings also reported in these papers.

2.1. Is activation in certain brain regions related to individual differences in
risk taking?

Brain regions implicated in brain-behavior correlations were highly
heterogeneous and included over 25 cortical and subcortical regions
(Table 1). Fig. 1 depicts these brain regions and whether they were
found in whole-brain/bottom up approaches, targeted ROI analyses, or
both. The most commonly implicated region (combined whole-brain
and ROI analyses) was the medial prefrontal cortex (broadly defined),
which was related to risk taking in eleven studies, followed by VS/NAcc
(nine studies), and the insula and orbitofrontal cortex (each in four
studies).

Some of the same brain regions were identified through bottom up
analysis and through ROI analysis. Nonetheless, the disparity between
findings that result from these two approaches is quite striking. While
the VS was the most frequently hypothesized a priori ROI, activity in
this region was never reported to correlate with risk taking in bottom-up
approaches. In contrast, only two studies investigated the mPFC using
an ROI approach, but activation in mPFC or vMPFC was identified as
correlating with behavior in eleven out of the fourteen studies using
bottom-up analyses. Several of the most commonly identified brain
regions in bottom-up analyses, including the posterior cingulate cortex
(PCC), the precunues, and the occipital cortex broadly defined, were
never investigated a priori.

The disparity between findings discovered through bottom-up and
ROI methods hints that results do not converge across studies. Rather,
the overall pattern of findings suggests that study outcomes tend to
emerge specifically in the places where one goes looking. And while, at
first blush, the frequency of positive findings in the VS would seem to
support the notion that individual differences mirror age differences
(since the VS is also often implicated as a locus of age differences),
several of the most frequently implicated brain regions discovered in
this review (e.g., the PCC, precuneus), are not central components of
either reward circuitry or a cognitive control network, and are therefore
not generally discussed in theories of adolescent decision-making. The
general lack of convergence across studies may be explained by the
wide variety of approaches used to elicit brain-behavior correlations,
including a range of both fMRI tasks and outcomes measures used to
assess risk taking, as well as the prevalence of region-specific, rather
than whole-brain, analytic approaches.

2.2. Are findings related to the particular tasks used to investigate brain-
behavior correlations in adolescent risk taking?

In total, sixteen unique tasks were used to elicit brain responses
during fMRI (Table 1); indeed, only five tasks were used in more than a
single study: the Monetary Incentive Delay task (MID; four studies),
Wheel of Fortune (two studies), the Stoplight Task/Risky Driving Task
(two studies), the Balloon Analogue Risk Task (two studies), and Go/
No-Go (two studies). Eleven additional tasks were used just once. Eight
tasks assessed risk-taking behavior directly; all other tasks involved
stimuli that were hypothesized to relate to risky outcomes in some way,
such as reward processing, cognitive control, or viewing images of risky
behaviors.

The most commonly utilized task was the MID, a task which has
been used to characterize the neural correlates of reward response in
neurotypical and clinical populations (Knutson et al., 2000). The MID
contains no risk-taking behavioral component; participants win money
by pressing a button after seeing a prompt. Earning money (or, on
punishment trials, avoiding the loss of money) is contingent on re-
sponding within a certain window of time. However, the MID is not a
decision-making task, as players only have a single option for max-
imizing their profits and do not have to engage in a cost/benefit ana-
lysis. Similar reward tasks were also used in other studies investigating
individual differences in adolescent risk taking. Galvan et al. (2007)
used a more youth-friendly task in which participants were asked to
identify the location of a pirate cartoon by pressing a button, with
correct answers earning money pots of different sizes. This task in-
volved a choice between two options (each displayed on the left or right
side of the screen), but demanded no risk assessment or gambling.
Braams and colleagues (2015, 2016 utilized a reward task based on
chance rather than correct responses; participants played a coin toss
game for heads or tails and randomly won money based on the out-
come. While the authors call the task a “gambling game,” participants
do not choose whether to bet money; therefore no risky decision-
making was involved. These three non-risky reward tasks were de-
signed explicitly to elicit a response in the VS/NAcc and other reward-
related regions, and all studies utilizing these tasks hypothesized a
correlation between VS/NAcc response and behavior (see Table 1).

A handful of studies involved other non-risk-taking tasks designed
to elicit activation in brain regions implicated in executive functioning,
particularly response inhibition. For example, Cascio et al. (2014) uti-
lized a Go/No-Go task and hypothesized that individual differences in
risk-taking behavior (as indexed by risky driving behavior and survey
measures) would be related to activation in regions implicated in in-
hibition, including the inferior frontal gyrus and basal ganglia. The
authors used an ROI approach to investigate correlations with activa-
tion across the entire basal ganglia, a group of subcortical nuclei that

Fig. 1. Brain regions for which significant activation
during task-based fMRI was found to correlate with
risk-taking behavior. Over 25 cortical and sub-
cortical regions were implicated in brain-behavior
correlations linking task-based activation to risk-
taking behavior or related measures. The size of the
sphere reflects the frequency with which each brain
region was implicated in the literature, with larger
spheres representing brain regions that were more
commonly identified in brain-behavior correlations.
Note that this image is a qualitative depiction of
findings based on authors’ labels for brain regions
(e.g., ventral striatum, mPFC) rather than a quanti-
tative meta-analysis.
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include the VS/NAcc and are also implicated in reward. Mahmood et al.
(2013) also utilized Go/No-Go, but focused on brain data extracted
from the angular gyrus and ventromedial prefrontal cortex; activation
in these regions on No-Go trials was related to drug use and drug and
alcohol dependency symptoms, but these findings were driven by high-
frequency drug and alcohol users. Chung et al. (2015) investigated re-
sponse inhibition using an anti-saccade task, in which participants were
instructed to inhibit a prepotent eye movement. The authors added a
reward component to the task by incentivizing successful inhibition.
Like Cascio et al., Chung and colleagues investigated correlations in a
priori ROIs related to their task; these included brain regions involved in
response inhibition and reward.

Eight fMRI tasks used in this literature did require participants to
engage in some sort of risky decision-making. Six of these tasks were
gambling games, in which participants either bet money or selected
between options with different-sized rewards. Most gambling tasks in-
volved binary choices (e.g., Cservenka et al., 2015; Eshel et al., 2007;
Paulsen et al., 2012; Op de Macks et al., 2016; Van Leijenhorst et al.,
2010), although these choices varied: participants might select out-
comes with different expected values (Cservenka et al., 2015; Eshel
et al., 2007; Van Leijenhorst et al., 2010), choose an uncertain or cer-
tain outcome (Op de Macks et al., 2016) or select whether or not to play
a round entirely (Barkley-Levenson et al., 2013; Paulsen et al., 2012).
The task used by Barkley-Levenson et al. (2013) involved two gambling
options (Accept or Reject a gamble), but participants could “strongly”
or “weakly” select an outcome; these additional choices were used to
minimize participants’ tendency to default to the same choice over and
over.

Only one gambling task, “Wheel of Fortune,” was used more than
once (Cservenka et al., 2015 and Eshel et al., 2007; see also the “Cake
Gambling Task,” a similar task used in Van Leijenhorst et al., 2010). In
Wheel of Fortune, participants select one of two colors, each of which
has a different probability of being selected and a different associated
reward value. The task is divided into three phases: color selection,
anticipation of outcome, and feedback. Eshel and colleagues correlated
task performance with the BOLD contrast comparing trials in which
participants selected the riskier choice to trials in which they selected
the safe choice. Van Leijenhorst et al. (2010) focused on the BOLD
contrast comparing high risk and low risk trials and added participant
choice as a regressor in the model. Cservenka and colleagues used the
Win > No Win contrast (during feedback) in their ROI and whole-
brain investigations, and described their findings in terms of reward
processing, rather than risk taking. Thus, while the paradigms used by
Cservenka et al., Eshel et al., and Van Leijenhorst et al. were highly
similar, they are difficult to compare directly, as each relied on different
contrasts of interest for the correlational analysis. Finally, Xiao et al.
(2013) used the Iowa Gambling Task; this task differs from those de-
scribed above in the higher number of options available to the parti-
cipant (they select a card from one of four decks), and in the role of
feedback learning. In sum, even the gambling tasks utilized in this lit-
erature vary widely in terms of definition of risk, game structure, and
contrasts used in subsequent analysis.

Two other risky decision-making tasks were used in multiple papers:
the Stoplight Task/Risky Driving Task, and the Balloon Analogue Risk
Task (BART). The Stoplight Task, in which participants complete a
driving simulation and decide whether or not to run a series of yellow
lights, has been used in several fMRI and/or behavioral studies in-
vestigating age differences in risk taking (Chein et al., 2011; ; Steinberg
et al., 2008; Steinberg, 2010; Kahn et al., 2014; Voroyev et al., 2015).
However, whereas Chein and colleagues (2011) used the BOLD contrast
comparing brain activity at yellow lights to all other parts of the task,
studies from the current literature used the contrast of Stop > Go
(Kahn et al., 2014; Vorobyev et al., 2015) and/or Crash>No Crash
(Kahn et al., 2014). The BART (Lejeuz et al., 2002) is a task in which
participants are instructed to press a button to pump up a balloon. As
the balloon inflates, participants win more money or points. However,

if the balloon explodes, participants lose all of the money or points
accumulated on that balloon; thus, every additional pump confers
greater risk but also greater potential reward. Telzer et al. (2015; see
also, Telzer et al., 2013a,b; Qu et al., 2015, 2016) modeled balloon
pumps parametrically: they investigated which brain regions exhibited
greater activation as participants continued to select the risky choice.
McCormick and Telzer (2017) used the BART but instead focused on the
contrast between balloon pumps following negative feedback (i.e., the
balloon after a trial in which the balloon exploded) and pumps fol-
lowing positive feedback (i.e., the balloon after a trial in which the
participant won money).

Finally, several researchers used tasks that did not involve decision-
making, but rather presented complex, realistic stimuli such as photo-
graphs or videos (Pfeifer et al., 2011; Saxbe et al., 2015; Sherman et al.,
2017). Pfeifer and colleagues asked participants to passively observe
images of emotional faces, and Saxbe and colleagues asked participants
to view silent video clips of peers and adults and imagine what the
individuals were feeling at the moment. Sherman et al. (2017) pre-
sented photographs of risk-taking behavior or paraphernalia (e.g. teens
drinking alcohol or a marijuana pipe) in a task mimicking the social
media app Instagram, and asked participants to decide whether or not
to “Like” each image.

The reliance on analytic approaches with restricted search spaces
(e.g. ROI analyses or searches within task-activation maps) precluded
us from performing a quantitative analysis investigating patterns of
brain-behavior correlations as a function of task choice. Indeed, areas in
which correlations with behavior were found tended to be areas that
also showed a main effect of task. For example, Saxbe et al. (2015) and
Sherman et al. (2017) both presented participants with realistic social
stimuli and found that self-reported risk taking was correlated with
response in the precuneus and the PCC, brain regions showing main
effects of task and also implicated more generally in social cognition.
Similarly, all of the studies using the MID, a task designed to elicit a
reward response in the brain, reported a correlation with behavior in at
least one part of the striatum. Because papers described here limited
their search to either a priori ROIs known to be active during the fMRI
task (e.g., Braams et al., 2016; Bjork et al., 2008), or performed bottom-
up analysis constrained within a task activation map (e.g. Benningfield
et al., 2014; Sherman et al., 2017), it appears likely that the hetero-
geneity of brain regions implicated in this literature is at least in part
the result of both the fMRI paradigm and the use of targeted analysis.

2.3. How is the outcome measure of “risk taking” defined?

Even greater than the number of fMRI tasks used to elicit a brain
response was the number of measures used to index risk-taking beha-
vior or propensity: over 30 different measures were utilized (Table 1).
Many studies used more than one measure of risk taking. Broadly, the
outcome measures can be categorized as either lab-based or real-world.
Lab-based measures included any sort of risk-taking behavior assessed
during the task itself, such as behavior on the Stoplight Task, delay
discounting, various gambling tasks, and the BART. Real-world mea-
sures included surveys designed to assess one or more of the following:
actual experiences with drug and alcohol use (e.g. CARE-R; Katz et al.,
2000), problem behaviors associated with drug and alcohol use, (e.g.
the AUDIT, Babor et al., 2001) perception of the potential risks or
benefits associated with activities (e.g. Benthin Risk-Perception Scale,
Benthin et al., 1993), and experiences with non-drug related risk be-
havior and general sensation-seeking (e.g. the BSSS, Hoyle et al., 2002).

While the measures used vary widely, it is also likely that several
would be correlated within a sample. For example, Sherman et al.
(2017) reported that the sections of the CARE-R measuring perception
of risk were correlated with the section assessing frequency of risk-
taking behavior. Meta-analyses have also revealed correlations between
sensation-seeking and alcohol use (Hittner and Swickert, 2006) and
between alcohol use and risky sexual behavior under certain
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circumstances (Leigh, 2002; Tapert et al., 2004). Nonetheless, it is also
most certainly the case that the behaviors indexed by these measures
differ somewhat in their neural correlates. The opportunity that in-
dividual adolescents are afforded to engage in drug and alcohol use or
sex undoubtedly plays a role in the extent to which self-report measures
like sensation-seeking and impulsivity predict risky behavior (Shulman
et al., 2016).

2.4. Are lab-based and real-world measures of risk taking correlated?

Within the current literature, we examined whether reports of real-
world risk-taking behaviors, as assessed by survey measures, were re-
lated to performance on lab-based measures. Significant correlations
would be in line with past research in non-fMRI settings that has
documented the validity of tasks such as the IGT (Dahne et al., 2013),
Stoplight Task (Centifanti et al., 2014; Kim-Spoon et al., 2015), and the
BART (Aklin et al., 2005; Fernie et al., 2010; Hanson et al., 2014).
Eleven out of the twenty-three studies on our list reported both lab-
based risk taking and “real-world” measures of risk-taking behavior –
that is, survey measures of attitudes toward or frequency of risky be-
havior, or (when groups were also defined) categorical comparisons of
risky and non-risky youth. Surprisingly, however, these measures were
rarely correlated. Of the eleven studies reporting both kinds of mea-
sures, only two reported a significant relation between real-world and
lab-based risk taking, and two reported limited or equivocal con-
vergence between measures (see Supplementary Table 1 for more de-
tails). Seven studies failed to find any evidence of a correlation. These
findings were surprising given the successful efforts described above to
establish the external validity of the lab measures. It is possible that
many of the samples in the current literature were underpowered to
detect such correlations, a concern that is also at least as relevant, if not
more so, for the detection of brain-behavior correlations.

2.5. Does the literature show evidence of publication bias?

As considered above, the heterogeneity of findings may be due
primarily to the variety of tasks, measures, and ROIs used to investigate
brain-behavior correlations; each task and measure is certain to capture
a different aspect of “risk taking.” It also possible that the presence of
Type I and Type II errors have contributed to mixed findings. Small
sample sizes in fMRI studies can contribute to Type II errors (Dubois
and Adolphs, 2016; Button et al., 2013; Yarkoni and Braver, 2010;
Yarkoni, 2009). Yarkoni (2009) suggested that, in a correlational fMRI
study, a sample of 50 participants has only a 66% chance of detecting a
correlation of 0.5 at p < 0.001. Dubois and Adolphs (2016) re-
commend a sample size of greater than 100 for correlational studies. As
reported in Table 1, the sample sizes in the majority of the studies we
reviewed are smaller than these recommended numbers, and often
substantially so. Only seven studies included 50 or more adolescent
participants, and only two of these included a sample size greater than
100. Based on the sample sizes in the current literature, it is reasonable
to assume that the prevalence of Type II errors is of concern, and may
explain in part the limited overlap in findings. We would note, how-
ever, that many of the studies in the current corpus reported brain-
behavior correlations as a secondary analysis following an exploration
of main effects; thus, it is likely that sample sizes were determined
based on power calculations for main effects rather than correlations.

Might false positives be an issue in the literature as well? In order to
investigate a potential source for systematic false positives, we con-
ducted two p-curve analyses, the first on the first reported correlational
ROI finding in each paper utilizing ROI analyses, and the second on the
most commonly reported ROI, the ventral striatum. As both analyses
contain overlapping information, findings for the VS p-curve are re-
ported in Supplementary Materials; however, the conclusions are the
same. Thirteen papers tested the hypothesis that activation in least one
ROI was related to risk-taking behavior, either in the lab or as reportedTa
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on survey measures. Details of the statistics used to develop the p-curve
are presented in Table 2, and the p-curve chart is presented in Fig. 2.
Simonsohn et al., (2014a,b) suggest that in order for a result to show
evidential value – that is, in order for us to rule out the possibility that
selective reporting is solely responsible for the significant effects ob-
served in the literature – the p-curve should be right-skewed. Further-
more, in a literature with evidential value, a binomial test should reveal
that significantly more than half of the p values are< 0.025.

Our results do not support the conclusion of evidential value. While
a slight right skew appears to be evident in Fig. 2, seven out of thirteen
p values are> .025, and the results of both binomial tests were non-
significant (p=0.71 for the first reported ROI and p=0.96 for the VS/
NAcc). These results suggest that correlations (both generally and in the
VS) may have been subject to selective reporting, or that the actual
effect size for the correlational phenomenon under investigation is
negligible. The fact that neither p-curve was left-skewed, however, fa-
vored the interpretation that effect sizes for region-of-interest findings
are negligible (Simonsohn et al., 2014a,b).

While the results of our p-curve analysis leave open the possibility of
publication bias, we do not find indicators of the presence of any de-
liberate attempts to misrepresent findings on the part of the authors.
Indeed, the opposite is true, as many authors reported nonsignificant as
well as significant findings. For example, Braams and colleagues
(2016), in their longitudinal study relating reward response to fre-
quency of alcohol use, reported that NAcc activation explained sig-
nificant variance in the average amount of glasses of alcohol drunk per
night at Time 2, but also reported several nonsignificant relations.
These non-significant findings, which are not considered in the p-curve
analysis, provide yet further support for the conclusion that effect sizes
under consideration are small or non-existent. P-curve analyses can
only be conducted on significant findings (Simonsohn et al., 2014a,b),
so the nonsignificant findings are not represented in the test of bias.
Although authors may do their best to report all findings, significant
and otherwise, readers may recall only significant findings in a study,
and these findings can be cherry-picked to support subsequent theories
or conclusions. Unfortunately, the results of our p-curve analysis sug-
gest that there is little if any evidential value to the hypothesis that
activation in individual brain regions, particularly the VS/NAcc, is
correlated with risk-taking behavior. That is, it is not possible to rule
out that these significant findings, of which there are many, represent
anything more than selective reporting or spuriously discovered cor-
relations. Future correlation work with sufficiently-powered samples
may provide evidence to suggest otherwise, but at this time, it would be
inappropriate to conclude that the literature has revealed robust one-to-
one correlations between risk taking and activation in a brain region of
interest.

3. Discussion, future directions, and recommendations

In the years since Pfeifer and Allen (2012) and Bjork and Pardini
(2015) called for a greater focus in adolescent neuroscience on in-
dividual differences in risk taking, the size of the literature has in-
creased substantially. We were surprised to discover, however, that no
brain region has been consistently correlated with risk-taking behavior;
nor have the implicated regions comprised a single network or system.
No single brain region was implicated in more than 50% of the studies,
and a p-curve analysis revealed no evidential value for the most com-
monly reported ROI, the VS, or for ROI findings as whole. Furthermore,
the VS was never identified as correlated with behavior in whole-brain
analyses.

On the one hand, these findings may seem disappointing: with such
limited convergence, how are we to make informed decisions about
which methodological approaches are most effective or appropriate?
On the other hand, we suggest that this limited convergence actually
may indicate that neural predictors of adolescent risk taking are not
localized, but, rather, that explanatory power may be drawn from
studies of activation across the brain. Efforts to home in on individual
brain regions or even networks, while understandably motivated by
theories established in the developmental literature, may nonetheless
be discarding valuable information available about the rest of the brain.
Furthermore, we posit that the wide range of fMRI tasks and measures
of risk behavior or propensity highlight a need for further refinement of
individual research questions. Thus, we have several suggestions for the
field moving forward, as well as open questions that we hope can be
addressed in both ongoing discussion and empirical inquiry.

Best practices for identifying the neural underpinnings of risk-taking
behavior will not be one-size-fits-all, but will rather depend on the
precise definition of each of these concerns. We therefore propose that
researchers wishing to investigate brain-behavior relations on the topic
of adolescent risk taking should precisely define four aspects of the
research question and goal: (1) the relevant population(s), (2) the hy-
pothesized brain system or systems, (3) the hypothesized psychological
factor(s) relating brain responses to outcomes, and (4) desirable and
undesirable outcomes. Below, we make specific recommendations
based on the definitions in these four categories.

3.1. Defining the population

First, we must consider which population is most relevant: do we
expect that neural “risk factors” exist on a spectrum ranging from ty-
pically developing individuals to those with substance use disorders or
other psychiatric disorders (e.g. conduct disorders)? This question has
implications for the population(s) recruited for a study, and for the
decision to examine outcomes categorically or continuously. Certainly,
neural systems that have been proposed to account for heightened risk
taking in adolescence are also those hypothesized to confer risk for drug
and alcohol addiction, including circuitry implicated in reward and
reinforcement, and in executive function. It has not been established,
however, whether individuals prone to either addiction or dangerous
levels of sensation-seeking are simply on the further end of a spectrum
that is linked to adolescent risk taking in general. Correlational ap-
proaches like those considered in the present review are appropriate if
one expects the nature of neural mechanisms to be continuous.
However, if “high risk-takers” are instead a qualitatively different group
(e.g. as proposed by Bjork and Pardini, 2015), a categorical approach
would be more appropriate. Categorical comparisons have made up the
majority of studies in the clinical literature (Heitzeg et al., 2015;
Squeglia and Cservenka, 2017).

In defining a sample and considering recruitment strategies, we
recommend that researchers also attempt to differentiate between ef-
fects that risks like drug and alcohol use have on the brain and neural
factors that predispose some individuals to make risky choices. In order
to do this, a longitudinal approach that uses brain responses at one
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Fig. 2. Results of a p-curve analysis for the first reported region of interest (ROI). Thirteen
studies reported significant correlations between risk-taking behavior and activation in at
least one hypothesized ROI.
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point in time to predict future outcomes is necessary. These prospective
designs are increasingly common in the clinical literature (Dager et al.,
2014; Heitzeg et al., 2014; Norman et al., 2011; Squeglia et al., 2016;
Wetherill et al., 2013), and we are encouraged by recent efforts to take
this approach in the presently reviewed literature (e.g. Braams et al.,
2016; Chung et al., 2015; Cservenka et al., 2015), as well as in recent
NIH-funded efforts to investigate vulnerability in longitudinal samples.

3.2. Defining hypothesized brain mechanisms

If we, as developmental cognitive neuroscientists, want to cite
“preventing adolescent risk taking” as a motivation for grant proposals
that focus on neurotypical youth, we should also be able to articulate a
compelling case for how studying normative brain development will
help us to address this issue. To do so, we must be specific about the
neural mechanisms proposed to underlie risk taking. Researchers
should clearly describe which brain systems or processes are expected
to be related to risk-taking behavior, and in what way (e.g. through
activity in a single region or connectivity between regions).

3.2.1. Regional approaches to defining hypothesized brain mechanisms
Much of the extant literature has been successful in defining specific

hypothesized brain mechanisms, likely as a result of the popularity of
intuitive brain-based theories of adolescent decision-making and
addiction.The frequency of ROI analyses in this literature, for example,
highlights the hypothesis-driven nature of inquiry in the field, and also
effectively sidesteps criticisms about reverse inference as well as on-
going concerns about cluster correction for multiple comparisons
(Eklund et al., 2016). Nonetheless, our findings suggest that brain re-
gions frequently implicated in mentalizing (mPFC, precuneus, PCC)
may deserve greater targeted attention based on their frequent ap-
pearance in the whole-brain literature. Furthermore, researchers must
be cautious about using ROI approaches only, as our p-curve analysis
suggests that these approaches may lack evidential support. We re-
commend that, when researchers hypothesize that activity in a parti-
cular brain region has predictive power, they perform an ROI analysis,
but also make whole-brain results available – ideally in the form of full,
unthresholded brain maps uploaded to a public repository – for sub-
sequent meta-analyses.

3.2.2. Circuit-based approaches to defining hypothesized brain mechanisms
We must think carefully not only about where we measure re-

sponses in the brain, but the way in which we do so. The majority of the
literature has investigated level of “activation” by extracting para-
meters from individual BOLD contrasts generated through classic
parametric approaches. This strategy is sensible if one expects that the
magnitude of response in specific regions will provide the most ex-
planatory power, perhaps because this brain region is especially “sen-
sitive” or “efficient” in some individuals (though see Poldrack, 2015).
However, current theories of adolescent risk taking do not necessarily
assume that this is the case. For example, Casey et al. (2016) recently
called for a shift away from region-based or node-based approaches to
the study of brain development and instead encourage a consideration
of brain development with respect to brain circuitry, particularly when
it comes to the interaction of regions involved in affect and motivation
with those involved in cognitive control. Accordingly, a functional or
dynamic connectivity approach might be a more appropriate way to
explain individual differences. Some examples can be found in this
literature already, including studies exploring psychophysiological in-
teractions (Bjork et al., 2011; Pfeifer et al., 2011; Qu et al., 2015). Of
course, the recommendation to consider connectivity approaches does
not suggest that these approaches are free from limitations, only that
the analytic approach should reflect the hypothesized nature of the
brain mechanisms.

3.2.3. Multivariate, predictive approaches to defining hypothesized brain
mechanisms

An alternate approach that could prove fruitful in this domain might
involve abandoning the notion that the properties of individual brain
regions, or even brain networks, can provide a window into individual
differences in risk behavior, and to turn instead turn to analytic tech-
niques in which parameters from the entire brain are used to predict
outcomes. Here, we can utilize approaches that are increasingly
common in the clinical literature. For example, Squeglia et al. (2016)
utilized a random forest classification model approach that predicted
alcohol initiation status by age 18 in a longitudinal sample of adoles-
cents with 74% accuracy. The researchers included a wide range of
predictors, including neurocognitive and neuropsychiatric assessments,
sociodemographic data, and both structural and functional parameters
extracted from across the entire cortex. They found that the MRI vari-
ables contributed additional explained variance over and above the
other variables. Importantly, this analytic approach modeled both main
effects and interactions between variables, including aspects of brain
structure and function; these interactions also contributed to better
model fit.

Predictive model approaches have the potential to provide a direct
connection between research and application, especially when com-
bined with longitudinal designs, as in the case of Squeglia et al. (2016;
see also Whelan et al., 2015). For researchers specifically interested in
predicting health outcomes, this approach is sensible. However, cog-
nitive neuroscientists typically are not only interested in preventing
problematic outcomes, but also in understanding the developing neural
architecture of decision-making. Models that derive predictions from
many brain regions make interpretation of cognitive mechanisms dif-
ficult, especially given that BOLD activation reflects not only differ-
ences in brain activity but also differences in vasculature (Poldrack,
2011). The appeal of imbalance and dual systems models is that they
allow us to bridge psychological science and neuroscience by con-
necting cognitive processes to brain responses.

One further way that researchers might bridge psychological and
neural science using whole-brain models would be to test the predictive
power of different fMRI tasks in the same population. For example, does
a risk taking task allow for more accurate prediction than a task that
only tests reward responses or response inhibition? Squeglia et al.
(2016), for example, were able to successfully predict initation of heavy
alcohol use in a longitudinal sample using a working memory task. We
encourage researchers to take a similar approach using reward and risk
taking tasks. The Wheel of Fortune task may be an especially good
candidate for this approach, as it includes separable selection and
feedback phases, each of which could be entered into a predictive
model and compared with respect to their predictive power (or com-
bined, potentially providing additional explanatory power). The fact
that researchers often have differed on the contrasts of interest selected
within the same task suggests that separable phases of task performance
may provide unique insight into individual differences in decision-
making. Furthermore, the Wheel of Fortune is one of only a handful of
tasks that have been used multiple times in this literature.

Support for the utility of whole-brain multivariate analysis com-
bined with fMRI task comparison comes from a recent paper by
Rudolph et al. (2017), who used whole-brain connectivity during three
phases of a Go/No-Go task to investigate risk predilection (as assessed
by the Benthin Risk Assessment). The authors utilized functional con-
nectivity during a neutral Go/No-Go task to successfully predict age in a
novel test sample. They then compared functional connectivity during
emotional Go/No-Go tasks (involving the threat of an aversive stimulus
or the anticipation of a reward) to neutral Go/No-Go. Individuals whose
predicted age during the emotional contexts was younger than their age
during the neutral context provided riskier responses on the Benthin
than the emotionally “older” participants. Although this work did not
use whole-brain responses to predict risk outcomes, it nonetheless pre-
sents a potential avenue for identifying individuals with heightened

L. Sherman, et al. Developmental Cognitive Neuroscience 33 (2018) 27–41

38



vulnerability. The use of fMRI tasks, rather than resting state data, al-
lows researchers to interpret findings within a cognitive theoretical
framework even when making predictions using data from the entire
brain.

Of course, our consideration of the potential value of multivariate
predictive approaches is not intended as a repudiation of current cor-
relational approaches. Indeed, given that the sample sizes in the
available literature are often insufficient to detect real correlational
relationships, it may also be the case that we simply do not yet have a
body of literature capable of producing far-reaching conclusions. These
suggestions, therefore, can be considered as a way to extend current
methods, rather than an as a replacement of region-of-interest or
bottom-up approaches that focus on individual brain regions.

3.3. Defining hypothesized psychological mechanisms

When taking a cognitive neuroscience approach to understanding
adolescent risk taking, one should propose specific hypotheses not only
about the neural architecture, but also the psychological mechanisms
linking brain responses to real-world outcomes. For example, if we
expect reward functioning to predispose some adolescents to engage in
more risk taking, what do we believe explains this link? Do some teens
have heightened sensitivity to peers? Do certain aspects of personality
(e.g. sensation-seeking) have specific neural correlates in the ventral
striatum or other brain regions implicated in reward? Does neuro-
chemical functioning of this circuitry affect the way some individuals
respond to drugs and alcohol? Each of these hypotheses would suggest
the inclusion of additional measures (e.g., the Resistance to Peer
Influence Scale, the Sensation-Seeking Scale, and the Alcohol Use
Disorders Identification Test for the three questions above). We re-
commend that if researchers hypothesize that deleterious outcomes
such as drug abuse and accidents are indirectly related to neural
functioning, that they include a both a measure of psychological phe-
nomenon hypothesized to connect the two as well as a measure of ac-
tual risk taking in the participants’ daily lives. Several researchers uti-
lized both types of measures (e.g. Kahn et al., 2014; Galvan et al., 2007;
Xiao et al., 2013), but rarely are psychological outcomes modeled as
mediators between brain response and real-world behavior (alter-
natively, the brain response could be hypothesized to link the psycho-
logical phenomenon to experiences in the real-world). A notable ex-
ception is a recent paper by McCormick and Telzer (2017), which found
that behavioral sensitivity to feedback (as indexed by responses on the
BART) was indirectly related to real-world risk taking (as indexed by
the Adolescent Risk taking Scale) though mPFC response to feedback.

In the present review, we found that laboratory tasks designed to
measure psychological phenomena rarely correlated with survey and
psychometric measures of purportedly similar constructs. This finding
is somewhat at odds with the broader literature that successfully links
performance on tasks like the BART and IGT to real-world outcomes. It
is possible that low power contributes to the lack of significant findings.
Nonetheless, we suggest that, when possible, researchers include both a
behavioral measure and psychometric measure of the relevant psy-
chological phenomenon if both are of interest, rather than making as-
sumptions that one is correlated with the other just because this re-
lationship has been reported in past work. Several of the psychometric
measures we have described (BSS, RPI) consist of fewer than fifteen
questions and would not add significantly to study length, especially if
the behavioral task data is collected as a part of the fMRI scan.

3.4. Defining desirable and undesirable outcomes

If the neuroscience of adolescent risk taking is to converge on a
point of applicability, we (as a field and as individual researchers) need
to more precisely define desirable and undesirable outcomes for youth,
and to consider how these definitions are implied in our choice of
measures. This issue is of particular concern when researchers correlate

magnitude of response in a brain region with a measure of risk-taking
behavior. Some measures (e.g. the Adolescent Risk Taking Scale, CARE)
simply “add up” the frequency of different risk-taking behaviors,
whether for one kind of drug, all drug and alcohol use, or across many
domains (e.g. playing contact sports, sexual risk taking, etc.). If com-
plete abstinence from risky behavior is considered an ideal outcome,
then this approach may be sensible. However, some amount of risk
taking is normative and likely adaptive in adolescence, even when it
comes to experimentation with drugs and alcohol (Shedler and Block,
1990). Researchers may therefore wish to use measures that index not
only risk-taking behavior but also problematic outcomes associated
with these behaviors, such as addiction symptomology, poor health
outcomes, and interference with daily life (e.g. the AUDIT, Rutgers
Alcohol Problem Index, Customary Drinking and Drug Use Record).

Beyond the hypothesized “desirable” or “undesirable” outcome, the
choice of a risk taking measure may raise statistical concerns as well.
Lebreton and Palminteri (2017) describe the ways in which floor per-
formance on a behavioral measure can in effect reverse the direction of
brain-behavior correlations, due to low-performing individuals having
a smaller standard deviation (SD) than high-performing individuals on
the task-related variable. This difference in SD results in statistical de-
pendency between trait performance and the SD of the behavioral
measure. Concerns about floor effects are relevant for samples with low
levels of risky behavior (as is often the case with neurotypical adoles-
cents who are able and willing to participate in fMRI research). If few
participants in a sample engage in substance use, for instance, a mea-
sure that assesses only substance use (as opposed to a wider variety of
risk behaviors) will capture only limited variability in the sample. Al-
ternatively, researchers can select a subsample of participants on the
basis of one or more relevant characteristics; for example, Goldenberg
et al. (2013) specifically investigated brain and behavioral correlates of
sexual risk taking, and therefore included only participants who re-
ported being sexually active (participants were a subsample of those
from Telzer et al., 2015, reviewed in Table 1).

3.5. General suggestions for best practices

In the past year, several papers have been published that discuss the
efficacy of current approaches to the study of individual differences in
behavior and the brain; these papers make best practice recommenda-
tions that are applicable to cognitive neuroscientists generally (e.g.,
Calhoun et al., 2017; Dubois and Adolphs, 2016; Lebreton and
Palminteri, pre-print). We will not consider these general re-
commendations at length but do remind our readers of two concerns
that can completely undermine an otherwise well-designed study. First,
sample sizes of fewer than 50 (and likely even 100) participants may
simply be too small to reliably detect correlations between variables.
While the recommendation to increase sample sizes is simple in theory,
it is much more difficult in practice, given the difficulty of recruiting
developmental samples and the tremendous expense of fMRI work. We
are hopeful that recent efforts by the NIH to fund large multi-site stu-
dies in developmental populations (e.g. the Adolescent Brain and
Cognitive Development Study and The Developing Human Connectome
Project) will mitigate this issue in years to come. Similarly, longitudinal
work is needed to differentiate between the effects of risky behavior
(especially drug and alcohol abuse) on brain development and neural
factors that predispose individuals to engage in risky activities. We are
encouraged that several of the more recent papers discussed in this
review utilized longitudinal designs and are hopeful that we are wit-
nessing the beginning of a trend, especially given that the aforemen-
tioned NIH projects employ longitudinal designs.

Finally, we encourage researchers to “think outside the brain” and
consider the interaction of effects at the neural and environmental
level, along with genetic information. It is highly unlikely that our
coarse measures of brain activity can explain the majority of the var-
iance in risk-taking behavior, or that a single neural phenotype will
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always predict greater risky behavior. We therefore advocate for the use
of more complex models that account for brain and environmental
factors (e.g. Squeglia et al., 2016; Whelan et al., 2014). Alternatively,
researchers may consider conducting case studies of small populations
(e.g. a school or peer group) to document brain-behavior links in youth
within highly homogenous environments. This latter recommendation
may be especially suitable as an avenue for the development of targeted
preventative programs.

As we move forward, we must also be mindful of ethical con-
siderations inherent in the identification of individuals at heightened
risk for suboptimal outcomes. In particular, while prospective identi-
fication of vulnerable individuals could lead to the development of
targeted preventative measures, it could also open the door for stig-
matization, discrimination, or a false sense of security or worry. Thus,
we encourage members of the field to carefully consider not only best
methodological practices, but also to begin a dialogue regarding best
practices for conscientious and responsible application of research
findings.

4. Conclusions

The past ten years of developmental cognitive neuroscience re-
search have produced an expansive literature on adolescent decision-
making. Over these ten years, and particularly in the past three, re-
searchers have attempted to leverage our knowledge of adolescent
brain development to understand brain mechanisms that predispose
some youth to engage in more risky behavior than their peers. While
this line of inquiry could potentially lead to targeted preventative
measures and the subsequent reduction of addiction, injury, and death
in this population, there is little evidence to suggest that correlational
approaches have yielded reliable, applicable findings. Though the lit-
erature we have reviewed does not provide converging evidence that
singles out specific brain regions or systems as especially promising
targets for research on risk-taking, we nonetheless hope that this review
will serve as a snapshot of the current state of the field that will help to
shape future investigations. Furthermore, we believe that progress can
be made with the development of more precise research questions that
move beyond a general interest in adolescent risk taking, as well as
methodological approaches that move beyond one-to-one correlations
between behavioral indices and activity within individual brain re-
gions.
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