
biomedicines

Review

Fetal High-Density Lipoproteins: Current Knowledge on
Particle Metabolism, Composition and Function in
Health and Disease

Julia T. Stadler 1,* , Christian Wadsack 2 and Gunther Marsche 1,*

����������
�������

Citation: Stadler, J.T.; Wadsack, C.;

Marsche, G. Fetal High-Density

Lipoproteins: Current Knowledge on

Particle Metabolism, Composition

and Function in Health and Disease.

Biomedicines 2021, 9, 349. https://

doi.org/10.3390/biomedicines9040349

Academic Editors: Joan

Carles Escolà-Gil and Josep Julve

Received: 4 March 2021

Accepted: 25 March 2021

Published: 30 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4,
8010 Graz, Austria

2 Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14,
8036 Graz, Austria; christian.wadsack@medunigraz.at

* Correspondence: julia.stadler@medunigraz.at (J.T.S.); gunther.marsche@medunigraz.at (G.M.);
Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)

Abstract: Cholesterol and other lipids carried by lipoproteins play an indispensable role in fetal
development. Recent evidence suggests that maternally derived high-density lipoprotein (HDL)
differs from fetal HDL with respect to its proteome, size, and function. Compared to the HDL of
adults, fetal HDL is the major carrier of cholesterol and has a unique composition that implies other
physiological functions. Fetal HDL is enriched in apolipoprotein E, which binds with high affinity
to the low-density lipoprotein receptor. Thus, it appears that a primary function of fetal HDL is
the transport of cholesterol to tissues as is accomplished by low-density lipoproteins in adults. The
fetal HDL-associated bioactive sphingolipid sphingosine-1-phosphate shows strong vasoprotective
effects at the fetoplacental vasculature. Moreover, lipoprotein-associated phospholipase A2 carried
by fetal-HDL exerts anti-oxidative and athero-protective functions on the fetoplacental endothelium.
Notably, the mass and activity of HDL-associated paraoxonase 1 are about 5-fold lower in the fetus,
accompanied by an attenuation of anti-oxidative activity of fetal HDL. Cholesteryl ester transfer
protein activity is reduced in fetal circulation despite similar amounts of the enzyme in maternal
and fetal serum. This review summarizes the current knowledge on fetal HDL as a potential
vasoprotective lipoprotein during fetal development. We also provide an overview of whether and
how the protective functionalities of HDL are impaired in pregnancy-related syndromes such as
pre-eclampsia or gestational diabetes mellitus.

Keywords: HDL; fetal development; pregnancy; sphingosine-1-phosphate; LpPLA2; gestational
diabetes mellitus; preeclampsia

1. Introduction

Cholesterol is an essential constituent in fetal development [1,2]. It has long been
assumed that the fetus synthesizes most of its cholesterol requirements for growth de novo.
However, in vitro and in vivo studies have shown that maternal circulating cholesterol
can influence fetal metabolism [3,4]. Maternal dyslipidemia which is reflected either by
an excess-, or also by limited cholesterol in the fetal circulation can affect fetal growth and
health [5]. Maternally derived lipoproteins carrying cholesterol bind to their respective
receptors expressed on the syncytiotrophoblast of the placental villi [6–8]. After cholesterol
is taken up into the syncytium it is transported across the placental stroma to the fetal
side. The exact transport mechanism is still elusive. At the endothelium of the fetoplacen-
tal vasculature, cholesterol is then transported via ATP-binding cassette G1 (ABCG1) or
ATP-binding cassette A1 (ABCA1) to acceptors such as fetal HDL or lipid-poor apolipopro-
teins [4,9]. Interestingly, cholesterol is mainly carried by HDL in the fetal circulation,
whereas in adults the majority of cholesterol is carried by low-density lipoproteins (LDL).
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Fetal HDL shows a unique composition and is suggested to exert different functions as
in adults [10]. The current review focuses on the role of lipids carried by HDL in fetal
circulation and the importance of exogenous cholesterol supply by the mother. Here, we
summarize the proteomic composition of fetal HDL and highlight conspicuous changes
compared to adult HDL. Further, we discuss the relationship of fetal HDL and sphingosine-
1-phosphate (S1P) and the importance of S1P signaling at the fetoplacental vasculature in
maintaining vascular integrity. Finally, the impact of pregnancy-associated disorders, such
as preeclampsia (PE) and gestational diabetes mellitus (GDM) on HDL metabolism and
function is comprehensively discussed.

2. Changes in Maternal Lipid Metabolism during a Normal Pregnancy

During pregnancy, multiple physiological changes occur that strongly influence ma-
ternal lipid metabolism. In the first two trimesters of pregnancy, maternal lipid metabolism
is primarily anabolic and characterized by several factors that increase lipid accumulation
in maternal tissues in preparation for the exponential increase in fetal energy requirements
later in pregnancy [11,12]. These factors include maternal hyperphagia, to increase the
availability of exogenous metabolic substrates [11,13] and an increase in insulin sensitivity
which results in increased lipogenesis [14]. In the anabolic phase, hormonal and metabolic
changes occur such as cortisol and leptin stimulation, and increased progesterone levels
contribute to the accumulation of maternal fat depot [14].

During the last trimester of pregnancy, the lipid metabolism changes to the catabolic
phase with a decline of fat accumulation [15]. This phase is characterized by increased
lipolysis and mobilization of triglycerides from adipocytes. Furthermore, these changes
are accompanied by a decrease of lipoprotein lipase (LPL) activity, leading to inefficient
clearance of triglyceride-rich lipoproteins [16,17]. Maternal hyperlipidemia in late preg-
nancy coincides with changes in insulin sensitivity, which consistently decreases during
this phase [18]. This decline is mediated by several factors, including increased levels of
estrogen, placental lactogen, and progesterone [19].

During pregnancy, the lipid profile of mothers shows a 2.5-fold increase in very-
low-density lipoprotein (VLDL) triglycerides and cholesterol and a 1.6-fold increase in
LDL-cholesterol compared to non-pregnant women [20]. Plasma levels of VLDL and LDL
steadily increase during gestation, while HDL levels show the highest rise in midgestation
(45% above baseline) followed by a decline at term to about 15% [20]. HDL subclass analysis
showed that levels of the triglyceride-rich HDL2 rise, while the smaller, lipid-poor HDL3
becomes less abundant [17]. These well-described alterations in lipoproteins, which are
responsible for respective changes in maternal lipid profile during gestation are explained
by several mechanisms: The increase of insulin resistance in late pregnancy mediates the
elevated lipolytic activity in adipocytes, resulting in increased accessibility of substrates for
triglyceride production in the liver [21,22]. Together with the decreased activity of LPL [17]
and the stimulative effect of estrogen [23], these metabolic adaptions lead to an increased
hepatic production of VLDL. The increased activity of the cholesteryl-ester transfer protein
(CETP), which mediates the transfer of triglycerides on lipoproteins with higher density,
contributes to the enrichment of triglycerides in HDL and LDL [17,24]. Another factor,
contributing to the increase of triglyceride-rich HDL, is the reduced hepatic lipase activity,
which reduces the clearance of HDL2 to smaller HDL3 [25].

Maternal hyperlipidemia during pregnancy is a prerequisite for delivering sufficient
lipids of lipoproteins to the fetus. However, reduced or too high cholesterol supply to the
fetus may lead to long-term consequences to the fetus [26].

3. Importance of Cholesterol in Fetal Development

Cholesterol is an essential constituent in embryonic and fetal development. It is
a crucial component of cell membranes by defining fluidity and permeability. Further,
cholesterol is an integral part of membrane microdomains, such as lipid rafts, which are
essential for plasma-membrane-dependent signaling cascades. Cholesterol is a precursor
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of steroid hormones, including progesterone, and of its oxidative derivate oxysterol, which
plays an important role in several metabolic processes [27].

The high requirements of cholesterol for the developing fetus have been described with
1.5–2.0 g of accumulated cholesterol per kg of added tissue [28]. The endogenous choles-
terol originates from either de novo biosynthesis or hydrolysis of intracellular cholesteryl
deposits by cholesterol esterases [29]. The fetus additionally possesses the capability to
cover its demand of cholesterol from exogenous deposits. Yolk sac in early pregnancy
and later the placenta has the same property to store maternally derived cholesterol [13].
The fact that the fetus does not rely on its own endogenously cholesterol was demon-
strated in fetuses with the Smith-Lemli-Opitz syndrome, a condition with an inborn
error of cholesterol synthesis. Fetuses affected by this syndrome harbor a nonsense mu-
tation in the 7-dehydrocholesterol reductase, an enzyme that catalyzes the conversion
of 7-dehydrocholesterol to cholesterol. Fetuses with this congenital condition are capa-
ble of developing to term, thereby demonstrating that maternal cholesterol needs to be
transported across the placenta to maintain the demands of the fetus [13,30].

The human placenta is a unique organ, which is composed of several specialized cell
types and mediates many metabolic exchange mechanisms between mother and fetus.
To fulfill the demands of the fetus, nutrients and oxygen diffuse from maternal to fetal
circulation by crossing directly into different cell layers. The first physical barrier, which
limits nutrient transfer across the placenta is build up by the syncytiotrophoblast, a layer
of multinucleated trophoblasts localized by the microvillous and basal membrane faced to
the maternal and fetal side, respectively [31,32].

The first step of cholesterol transport from the mother to the fetus is the uptake on
the apical, maternal side. Human placental trophoblasts express lipoprotein receptors
such as scavenger receptor BI (SR-BI), LDL-receptor (LDL-R), and LDL receptor-related
protein 1 (LRP1) (Figure 1) [4,6–8]. These receptors mediate the uptake of cholesterol and
cholesteryl-esters from maternally derived lipoproteins [29,33]. After receptor-mediated
endocytosis, the lipoprotein-associated cholesteryl-esters are intracellularly hydrolyzed [4].
Via Niemann-Pick C1 and/or other sparsely described cholesterol transporter proteins, free
cholesterol is trafficked across the cell to membranes or metabolically active pools [4,34].
SR-BI mediates the selective uptake of cholesteryl-esters primarily from HDL, which are
hydrolyzed by cytosolic cholesterol esterases and transported by potential carrier pro-
teins to the basal membrane [4]. However, the exact pathway of transcellular cholesterol
transport is still not known, but several transporters are thought to be involved, such as
Niemann-Pick C1, Niemann-Pick C1-like protein 1, sterol carrier protein-x/2 and ABCA2.
All these receptors are expressed in the human placenta [35]. To enter the fetal circula-
tion, placental cholesterol needs to cross the endothelium at the fetoplacental vasculature.
By using endothelial cells isolated from human term placentas, a study demonstrated
efflux/secretion of exogenous cholesterol through ABCA1 and ABCG1 [9]. Acceptors of
cholesterol in the cord blood are poorly lipidated apolipoprotein (apo) A-I (the major HDL
associated apolipoprotein in adults), apoE, and HDL, with apoE-enriched HDL, was shown
to be most efficient [9,35].

Maternally supplied cholesterol appears to be of great importance for fetal growth.
Although there is no direct link between maternal and fetal lipoprotein metabolism, mater-
nal serum cholesterol levels during pregnancy are directly related to infant birth weight.
Low maternal serum cholesterol levels during pregnancy appear to increase the risk of
microencephaly, while high maternal cholesterol levels promote the early incidence of
atherogenicity [13,36]. Various further studies demonstrated a link between very high
maternal cholesterol levels with prematurity and impaired fetal growth [37–39]. Dysregu-
lated maternal cholesterol homeostasis during pregnancy has also been associated with
disorders such as pregnancy-induced hypertension and preeclampsia [37,40,41].

Concluding, cholesterol plays an essential role in human fetal development and
maternal hypocholesterolemia, as well as hypercholesterolemia, can affect fetal health
and growth.
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Figure 1. Described routes how maternal cholesterol is transported across the human placenta. First, maternally derived
lipoproteins interact with respective receptors at the microvillous membrane of the syncytium. After uptake of cholesterol in
the syncytium, it is secreted/effluxed to lipid-poor acceptor apolipoproteins of fetal HDL. How stroma transfers cholesterol
to the fetoplacental endothelium remains elusive. High-density lipoprotein; SR-BI; scavenger receptor BI; LDL, low-density
lipoprotein; VLDL, very-low-density lipoprotein; LDL-R, low-density lipoprotein receptor; LRP-1, LDL receptor-related
protein 1; ABCA1, ATP-binding cassette A1; ABCG1, ATP-binding cassette G1.

4. HDL Composition

HDLs are a group of highly heterogeneous lipoproteins, which are considered to have
a high cardiovascular protective potential [42–44]. The heterogeneity of these particles
depends on their size, shape, and compositional structure [45].

The major apolipoprotein in HDL is apoA-I, which accounts for around 70% of the
total protein amount [46]. The second major apolipoprotein is apoA-II, which represents
approximately 15–20% of total protein content [47]. The residual protein mass of HDL is
composed of minor apolipoproteins, such as apoCs and apoA-IV, having an important
enzyme regulatory function. ApoM is another crucial protein component on HDL, as it
binds hydrophobic molecules, primarily sphingosine-1-phosphate (S1P) [48,49]. ApoE,
apoD, apoF, apoJ, and apoL-I are further distinctly identified proteins on HDL whose exact
roles have partly been identified. In addition, serum amyloid A (SAA), which is predomi-
nantly produced by the liver in the acute phase after an inflammatory stimulus, is mainly
carried by HDL [50]. Furthermore, several enzymes are associated with HDL, including
paraoxonase 1 (PON1), which has anti-inflammatory and antioxidative properties [51].
Direct binding of the enzyme to apoA-I on HDL stabilizes the protein and also stimulates
PON1 lactonase activity [52]. Other HDL-associated enzymes are the lipoprotein-associated
phospholipase A2 (LpPLA2) and lecithin-cholesterol-acyltransferase (LCAT). Addition-
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ally, enzymes with lipid transfer activity are important in HDL metabolism, including
cholesterol ester transfer protein (CETP) and phospholipid transfer protein.

The most abundant lipids in HDL are phospholipids. Phospholipids and sphingolipids
make up about 40–60% of the HDL lipidome, whereas cholesteryl-ester (30–40%), free
cholesterol (5–10%), and triglycerides (5–12%) are not as prominent [53]. Like HDL-
associated proteins, lipids of HDL also fulfill important structural functions. The ability
of HDL to mediate cholesterol efflux is markedly modulated by the characteristics of its
surface lipids. Therefore, phospholipids, which compose the surface lipid monolayer of
HDL are an important determinant of its ability to accept cholesterol [53]. Moreover, both,
the phospholipid content [53,54] and lysophospholipid content of HDL [55–58] markedly
affect its anti-inflammatory properties. Sphingosine-1-phosphate (S1P) plays an important
role in maintaining vascular homeostasis, which will be discussed in more detail in 7.2.
Altogether, a total of 200 lipids and 80 proteins make up the diversity of different HDL
subclasses [59–61].

5. HDL Functionality
5.1. Cholesterol Efflux Capacity

The best-studied property of HDL, which is also considered as the most clinically
relevant atheroprotective function of HDL, is its ability to promote reverse cholesterol
transport [62]. The uptake of excessive and accumulated cholesterol from peripheral cells
is the first step of reverse cholesterol transport to the liver for catabolism. Given the
heterogeneity of HDL particles in terms of structure and lipidomic/proteomic composition,
steady-state HDL-cholesterol (HDL-C) levels suffer from the limitations inherent in their
mass-based and static measurement. As a snapshot of the steady-state cholesterol pool,
HDL-cholesterol levels do not provide direct information on the rate of cholesterol flux
from vascular macrophages to the liver, which is influenced by many factors beyond the
mass of HDL-C. Recent evidence clearly suggests that the cholesterol efflux capacity of
HDL better reflects cardiovascular disease risk than HDL-C [63,64].

The reverse cholesterol transport starts with the release of lipid poor apoA-I from the
liver and intestine, which circulates to peripheral cells to take up excess cholesterol, forming
nascent HDL. ApoA-I is preferentially lipidated via ABCA1 [65], while cholesterol efflux
to larger HDL subclasses is stimulated by ABCG1 [66,67]. Collectively, cholesterol can be
actively transferred by SR-BI, ABCA1, and ABCG1, but also via passive diffusion [68–70].
After absorption from cells, cholesterol is esterified, catalyzed by LCAT, and large and
mature HDL is formed. The HDL-associated cholesteryl-esters can be further transferred
to LDL/VLDL by CETP. Thus, the transport of cholesterol from peripheral cells to the liver
occurs via two pathways: Direct uptake by SR-BI and indirectly through HDL-LDL/VLDL
interactions [71]. Reaching the liver, cholesteryl-esters are hydrolyzed and free cholesterol
is either converted into bile acids, reused for the production of VLDL, or transferred by
ABCG5/G8 into the bile.

5.2. Anti-Inflammatory and Antioxidative Capacities

Circulating HDL cholesterol concentrations do not provide information about the anti-
inflammatory, antioxidant, antithrombotic, and endothelial function-promoting activities of
HDL. In addition to its important role in reverse cholesterol transport, HDL can inhibit the
transmigration of monocytes through endothelial and smooth muscle cell co-cultures [72].
HDL inhibits the expression of adhesion molecules, including vascular cell adhesion
molecule, intercellular cell adhesion molecule, and E-selectin [73–75]. Through modulation
of NF-κB and PPAR gamma, HDL further decreases the production of chemokines and
chemokine receptors in vivo and in vitro [76]. Because of these properties, HDL diminishes
the recruitment of monocytes, lymphocytes, and basophils to the vascular endothelium,
thus slowing downstream processes of inflammatory response.

In addition to its numerous anti-inflammatory effects, HDL also possesses antiox-
idative properties. HDL protects LDL and other lipoproteins from oxidative damage
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induced by several oxidants, thereby reducing atherogenicity. ApoA-I plays a crucial role
in the anti-oxidative capacity of HDL through the reduction of lipid hydroperoxides by
their methionine residues [77,78]. The enzyme PON1 is associated with HDL and also
contributes to the HDL-mediated antioxidative activity by reducing lipid peroxidation of
LDL and HDL through a specific cysteine residue [79]. Other HDL-associated enzymes
and apolipoprotein components, including LpPLA2, LCAT, apoA-II, apoE, and apoJ also
contribute to HDL’s antioxidant properties [80–82]. Furthermore, HDL inhibits the for-
mation of reactive oxygen species and reduces intracellular oxidative stress [83–85]. The
attenuated cellular generation of ROS may be implicated in the antioxidative effect of HDL
on endothelial cells [42,86].

5.3. Vasodilatory Activites

One of the most important functions of HDL is its vasodilatory effect, which is mainly
seen in the increase in the availability of nitric oxide (NO) in the endothelial cells [87,88] and
stimulating the generation and release of prostacyclin [89]. The initial step in the activation
of NO production involves the binding of HDL to SR-BI, which initiates signaling in
the endothelium [90]. The following intracellular events are facilitated by endothelial
protein kinase B and intracellular Ca2+ mobilization, an increase in ceramide levels, and
phosphorylation of endothelial NO synthase (eNOs) [42,87,91,92].

In addition, HDL, by its anti-oxidant activity, decreases the activity of nicotinamide
adenine dinucleotide phosphate oxidase in the endothelium and decreases the formation
of superoxide anions, which are potent inactivators of NO. Thereby, the bioavailability of
NO is increased [93]. Vasodilatory actions of HDL also comprise the ABCG1 mediated
efflux of cholesterol and 7-oxysterols, enhancing eNOs dimerization, leading to decreased
production of reactive oxygen species [94].

6. Fetal Lipoproteins Show Altered Concentrations and Unique Composition

In cord blood, the concentration and composition of plasma lipoproteins are unique,
suggesting that these particles may have an altered function in the developing fetus. While
LDL represents the major class of lipoproteins in adult serum, HDL carries more than
50% of the cholesterol in fetal circulation. Although LDL and VLDL are detectable in the
fetal circuit, but at low concentrations [95–99]. In the fetus, lipoproteins differ not only
in concentrations but also in compositions, when compared with lipoproteins in adult
plasma. In particular, the proteome of HDL has been shown to differ substantially from
that in adults [10,99]. All studies investigating differences between maternal and fetal
HDL found that only ApoE was present in higher concentrations compared to adult HDL,
while all other apolipoproteins such as ApoA-I, ApoC-II, ApoC-III, and ApoD were lower
(Figure 2) [10,95,100,101]. ApoA-I exerts a variety of important functions, such as interac-
tion with cellular receptors, activation of LCAT, and anti-atherogenic activities [101–103].
ApoA-I further contributes to the anti-oxidative capacity of HDL, therefore lower levels
in fetal HDL indicate diminished anti-oxidant function [10,95,101]. ApoE, which shows
higher abundance on fetal HDL, plays an important role in cholesterol transport function by
redistributing excess cholesterol from cells, to cells requiring it for metabolic processes such
as membrane biosynthesis for cell proliferation or repair [104,105]. Large apoE enriched
HDL particles are involved in the reverse cholesterol transport as ligands of SR-BI [9]
and ABCG1 [105]. Further, apoE facilitates HDL binding to receptors of the LDL-receptor
family [106]. In addition, apoE induces serum PON1 activity and stability comparable to
apoA-I [107] and is reported as a major physiological activator of the lecithin-cholesterol
acyltransferase (LCAT) [108]. Therefore, it appears that one function of HDL in the fetus
is the transport of cholesterol to tissues as is accomplished by LDL in the adult [10,95].
Furthermore, studies on fetal HDL reported 5-fold lower PON1 mass and activity levels
than in adults, which may be linked with a reduced anti-oxidative capacity and reduced
defense against oxidative stress [10,109–111].
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Although the proteomic differences between adult and cord blood HDL have been
well described, there is currently no literature on the sphingolipid content of fetal HDL.
The most abundant sphingolipid in HDL is sphingomyelin, which plays an important role
in HDL functionality, by regulating fluidity and cholesterol efflux from different cells [112].
Furthermore, sphingomyelin affects the activity of enzymes involved in HDL metabolism
and modulates the anti-oxidative properties of HDL [53,113]. Therefore, a highly interesting
aspect for future studies would be to analyze the sphingolipidome of cord blood HDL,
which could help to improve our understanding of the role and function of fetal HDL.
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black arrows). Cord blood-derived HDL exhibits several alterations in the apolipoprotein composition, such as decreased
levels of apoA-I, apoC-III, apoD, and apoC-II and higher levels of apoE. In the fetus, the activity of CETP is decreased,
while the mass and activity of PON1 and the antioxidative capacity are decreased. Fetal HDL is characterized by increased
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transfer protein.

HDL Metabolism in Cord Blood

Since there are strong differences in the fetal HDL composition, it is not surprising that
HDL metabolism also significantly differs in fetal circulation. Sreckovic et al. showed that
the activity of CETP was 55% lower in cord-compared to maternal serum, whereas LCAT
activity did not differ [10]. Interestingly, it has been shown that CETP inhibition enhances
the capacity of SR-BI and ABCG1 dependent efflux to the large HDL2 particles [114]. The
decreased CETP activity and enrichment of HDL particles with apoE suggest a highly
altered metabolism of HDL particles in fetal circulation [10]. Furthermore, analyses of
subclass distribution revealed a shift in HDL subclasses, with a higher content of very large
HDL particles, further supporting the hypothesis of a different physiological role of fetal
HDL than in adults [109].

Fetal HDL is unique in every way, whether in composition or metabolism. However,
there is not much literature on how these differences affect the function of HDL in the fetus
and what specific physiological roles it may trigger.

7. The Role of Cord Blood-Derived HDL in Maintaining Fetoplacental
Vascular Integrity
7.1. The Feto-Placental Endothelium

Understanding the mechanisms that underlie placental cholesterol transfer lies, at least
in part, in the fetoplacental endothelium. The fetoplacental vasculature is unique in its lack
of innervation, singular in being independent of the autonomic regulation to which other
vascular beds are subject [115]. Therefore, locally produced vasoactive mediators such
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as NO, endothelin-1, and angiotensin II regulate placental vascular resistance [115–117].
Moreover, the placental vasculature responds differently to humoral factors than vessels
in other vascular beds. For example, the placental vasculature is the only vascular bed
that has been reported to constrict rather than dilate in response to prostaglandin E2. It
also demonstrates blunted responses to other vascular mediators including acetylcholine,
bradykinin, and angiotensin II [118–120]. Interestingly it has been shown that inhibited and
impaired angiogenesis further contribute to placental vascular resistance in fetal growth-
restricted pregnancies, creating structural changes that restrict blood flow [118]. This study
underpins the importance of an adequate perfusion of the placental tissue for peri- and
postnatal health of the offspring.

The fetoplacental circulation allows the villous arteries to carry deoxygenated and
nutrient-depleted fetal blood via the cord from the fetus to the placenta. After the exchange
of oxygen and nutrients in the tissue, the villous veins carry fresh oxygenated and nutrient-
rich blood circulating back to the fetal systemic circulation [121].

Studies have shown that an imbalance in the production of these vasoactive agents in
the placenta is associated with the incidence of pregnancy disorders [122,123].

7.2. HDL-Sphingosine-1-Phosphate (S1P) as an Important Regulator of the
Feto-Placental Vasculature

S1P is a bioactive lipid and is involved in the regulation of the vasomotor tone through
induction of NO and prostacyclin synthesis [87,124]. In the circulation, this sphingolipid is
mainly produced by erythrocytes, platelets, and vascular endothelial cells [125,126]. Once
released from these cells into the bloodstream, S1P mainly binds to HDL via binding to
apoM, while a small fraction is transported by albumin or other lipoproteins [49]. It has
been shown that the half-life of HDL-associated S1P is 4-fold increased, when compared
to S1P linked to albumin, indicating the importance of the carrier protein [127]. S1P is
a ligand for five different G protein-coupled receptors, named S1P receptors 1-5 (S1PR1-
5) [128]. On endothelial cells, S1PR1-3 are expressed, with S1PR1 showing the highest
abundance. Through interaction with S1PR1, S1P can activate several signal cascades,
which play a key role in vascular homeostasis. Mice lacking the endothelial S1PR1 exhibit
a pro-inflammatory phenotype, showing the significance of S1P-S1PR1 signal transduction
on vascular protection [129]. Several studies suggest that S1P signaling is responsible for
many of the cardio-protective properties of HDL, including the enhancement of endothelial
barrier function and the induced vasodilator production [87,124,130]. Interestingly, during
disorders such as cardiovascular disease or diabetes, the functionality of HDL-S1P has
been shown to be reduced [131–133]. However, there are only a few available studies on
the influence of HDL-S1P on the fetus and the fetoplacental unit.

In a study examining S1P in cord blood-derived HDL, S1P was shown to be present
on fetal HDL and also bound to apoM, as is the case in the maternal circulation [134].
Further, S1PR1 was found as the predominant receptor expressed on the fetoplacental
vasculature [134]. Ligation of S1P with its receptors elicits cell-type-specific cytoskeletal
rearrangements [49,135,136]. Experiments on the effect of fetal HDL on cytoskeletal re-
modeling revealed that S1P-HDL isolated from cord blood triggers reorganization of actin
filaments, resulting in an enhanced placental barrier function [134]. Using human umbilical
vein endothelial cells, Wilkerson et al. also showed that HDL-associated S1P strengthens
the endothelial barrier more persistently than albumin-bound S1P [137]. Moreover, Del
Gaudio and colleagues observed that fetal HDL induces vasorelaxation of precontracted
placental chorionic arteries [134]. The same authors further investigated the role of cord
blood-derived HDL and S1P on the fetoplacental endothelium [138]. Primary fetal placental
endothelial cells were approached by and challenged with TNFα to induce inflammation.
They showed that incubation with fetal HDL-S1P complex from healthy donors diminished
the ability of TNFα to activate signaling of NF-κB and expression of pro-inflammatory
markers [138]. Angiotensin II is a stimulator of NADPH oxidase, which produces reactive
oxygen species, leading to a vascular inflammatory response [139]. After treatment of pri-
mary fetal placental endothelial cells with angiotensin II, the production of reactive oxygen
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species was blunted in the presence of fetal HDL-S1P, whereas it was preserved when
pre-incubated with an S1P receptor antagonist, suggesting that S1P signaling accounts for
some of the vasculoprotective functions of HDL at the fetoplacental endothelium [138].

7.3. Protective Functions of Lipoprotein Associated Phospholipase A2 (LpPLA2) on the
Feto-Placental Endothelium

The enzyme LpPLA2 is mainly produced by macrophages and binds to lipopro-
teins when secreted into circulation. In adults, LpPLA2 is mainly bound to LDL (80%),
while the remainder is bound to HDL [140]. The preferred substrate for hydrolysis of
LpPLA2 represents the platelet-activating factor (PAF), which is an important mediator of
inflammation [141]. Activity and mass of LpPLA2 are altered in several pathologies such
as hypercholesterolemia, diabetes, essential hypertension, and atherosclerosis and have
therefore been the target of many clinical studies [142–145].

In a study focusing on LpPLA2 in the fetal circulation, HDL was identified as the major
carrier, which is in contrast to adults [146]. In addition, this study reported that placental
macrophages express LpPLA2, whose activity was increased by insulin, pro-inflammatory
cytokines, and leptin [146]. Fetal HDL- LpPLA2 was shown to have a beneficial effect on
endothelial barrier function, which was abrogated with a specific LpPLA2 inhibitor [146].
Interestingly, LpPLA2 levels in cord blood were inversely correlated with markers of
oxidative stress [146]. These results suggest an important role of LpPLA2 on the placental
endothelium and the fetus through athero-protective and anti-oxidative actions.

8. Pregnancy-Related Diseases Affects HDL Metabolism and Function

Severe changes in HDL metabolism as well as in parameters of HDL function
have been reported in several inflammatory conditions including obesity [147–149],
diabetes [150–152], cardiovascular disease [153,154], chronic kidney disease [155–157] or
liver disease [158,159]. Impairment of HDL function may have pro-atherogenic properties
and promote the inflammatory state. Changes in HDL functionalities have also been
demonstrated in pregnancy-related diseases such as preeclampsia and gestational diabetes
mellitus, which we will briefly summarize in the following chapter.

8.1. Preeclampsia Associated Changes in HDL Composition and Function

Preeclampsia (PE) is a hypertensive pregnancy-associated disorder, which develops
usually after 20 weeks of gestation. This syndrome affects 2–8% of pregnancies worldwide
and is a leading cause of maternal and fetal mortality [160,161]. This multiorgan disorder is
defined as de novo hypertension (systolic blood pressure ≥ 140 mm Hg, diastolic blood pres-
sure ≥ 90 mm Hg) and proteinuria (≥300 mg/24 h) [162]. Risk factors for the development
of PE are pre-pregnancy body mass index, age, ethnicity (black women are at higher risk),
primiparity, multiple pregnancies, and history of certain diseases before pregnancy such
as chronic hypertension, diabetes mellitus, or renal disease [163]. In countries with low-
and middle-income, PE and its convulsive form eclampsia account for 10–15% of direct
maternal deaths [164,165]. This disorder is also associated with profound risks for the fetus
including preterm birth, growth retardation, and death [166]. Mothers, affected by PE, but
also their infants have a higher risk to develop cardiovascular disease later in life [167,168].
Nowadays, the only definitive treatment for PE is the management of clinical symptoms
and delivery of the baby, which in turn increases the rate of preterm birth [165,169]. As the
primary cause of PE, it has been suggested that impaired placentation and the subsequent
systemic activation of the endothelium results in clinical manifestations [164].

During a healthy pregnancy, the vascular function has been shown to improve with
gestational age [170], whereas obesity, a risk factor for PE, reduces endothelium-dependent
and –independent vasodilation in mothers [171]. Interestingly, a study reported flow-
induced dilatation in isolated vessels from healthy pregnant women, but not in arteries
isolated from women diagnosed with PE [172]. These results suggest that enhanced
responses to shear stress in the maternal circulation during pregnancy are important and,
when absent as in PE, may contribute to the increase in maternal blood pressure [172].
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Dyslipidemia in mothers diagnosed with PE has been reported in several studies,
characterized by higher levels of total cholesterol, non-HDL-C, and triglycerides, but lower
levels of HDL-C during the third trimester [173]. Due to the cardioprotective properties of
HDL, changes in its function may contribute to the increased risk of cardiovascular events
later in life in mothers, but also in children [174,175].

Einbinder et al. observed a decrease in PON1 lactonase activity in mothers affected
by PE, indicating a decreased anti-oxidative and anti-inflammatory activity of HDL [176]
(Figure 3). Moreover, they observed lower expression of endothelial NO synthase and
an increased expression of the adhesion molecule VCAM-1 after preincubating human
umbilical vein endothelial cells with isolated HDL from PE mothers [176]. Other studies
focusing on structures of HDL and LDL in PE reported marked oxidative modifications,
such as malondialdehyde and lipohydroperoxides in lipids and proteins of the isolated
particles [177,178]. These results indicate that the markedly altered lipoprotein profile
is due to PE-driven oxidative stress in the maternal systemic circulation. Other studies
confirmed the reduction of PON1 activity in mothers suffering from PE, possibly due to
PE-associated increased oxidative stress [177,179–181].

Of particular interest, the PE-associated oxidative modifications of lipids in HDL and
LDL were also found in fetal lipoproteins, showing that also the infants are affected by
increased oxidative stress and clear transplacental transmission of these effects in PE [182].
Similar to the results in PE mothers [177], PON1 activity was also shown to be decreased in
the cord blood of the newborns [182]. In another study, HDL isolated from cord blood of
PE pregnancies was reported to be linked with significantly reduced levels of apoM [138].
Given that levels of S1P are usually highly correlated with apoM levels, these results
suggest less endothelial protection by this bioactive lipid [138]. Additionally, HDL from
PE mothers has been shown to be depleted in apoM as well as S1P, accompanied with less
anti-oxidative capacity [183].

Interestingly, another study reported an increased total- and HDL-mediated choles-
terol efflux capacity of maternal and fetal PE sera, whereas ABCA1-mediated cholesterol
efflux was decreased. This was partially explained by the increased concentration of apoE
in maternal and fetal circulation. The authors proposed that the increased cholesterol
efflux might be a rescue mechanism to remove excess cholesterol from cells to reduce lipid
peroxidation [184].

Studies reported increased levels of LpPLA2 in maternal PE plasma and the pla-
centa [185,186] as well as in the fetus [187], which may represent a compensatory mecha-
nism to control PAF and inflammatory responses.

Alterations in HDL function and composition may contribute to the endothelial
dysfunction observed in mothers affected by PE. Whether this impairment also contributes
to the increased cardiovascular morbidity of these women and children later in life remains
to be elucidated.

8.2. HDL in Gestational Diabetes Mellitus (GDM)

GDM is a condition in which women without a history of diabetes develop hyper-
glycemia during pregnancy. GDM is the most common disorder during pregnancy, affect-
ing up to 22% of all pregnancies, with increasing prevalence worldwide [188,189]. Women
diagnosed with GDM, have an increased risk of developing diabetes, hyperlipidemia,
hypertension, and coronary heart disease later in life [190–192]. Therefore, lifelong health
monitoring of these women is meanwhile recommended. Similar to PE, risk factors for
GDM also include age, ethnicity, and obesity [193]. However, GDM not only affects the
health of the mother but also fetal growth and the long-term health of the offspring. The
most prominent adverse outcome of GDM complicated pregnancies represents macrosomia
with complications including metabolic abnormalities, impaired immune system, degraded
antioxidant status, and potential metabolic syndrome in adulthood [194].

In general, diabetes mellitus is associated with an altered lipid profile with increased
levels of triglycerides, elevated LDL, and reduced levels of HDL [150]. Diabetic dyslipi-
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demia is not only characterized by changed levels, but also by different structures, function,
and metabolism of lipoproteins. Studies reported decreased levels of HDL in type 2 dia-
betes mellitus (T2DM), with predominance of the small, protein-rich particles, which can
undergo rapid catabolism [150,195]. The changes in HDL subclass distribution result from
the increased transfer of triglycerides on HDL, mediated by CETP [196] and the increased
activity of lipolytic enzymes such as hepatic lipase [197–199]. There is increasing evidence
that low HDL levels may have a direct impact on plasma glucose and thereby contribute to
the pathophysiology of T2DM [200]. Several experimental and clinical studies have sug-
gested that HDL lowers blood glucose levels, by increased uptake of glucose from skeletal
muscle via activation of the AMP-activated kinase pathway [200–202] and further through
stimulation of pancreatic β-cell insulin secretion [201,203,204]. Other properties of HDL,
such as its pivotal role in reverse cholesterol transport, as well as its anti-inflammatory
capabilities in immune cells and metabolic tissues, may contribute to enhanced insulin
sensitivity [200].
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In women with GDM, levels of triglycerides are markedly increased during pregnancy,
while levels of HDL-C are decreased in the second and third trimesters [173]. Recent
research on HDL subclass distribution in GDM revealed that small HDL particles are asso-
ciated with GDM and provide a potential screening tool for early identification [205,206].
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Mokkala et al. showed that women developing GDM have a distinct lipid profile in early
pregnancy, with small-sized HDL particles being the strongest predictors for GDM [206].

In a study by Sreckovic et al., GDM-associated changes of HDL function and composi-
tion were examined in maternal as well as fetal HDL [207]. Shotgun proteomics of isolated
HDL revealed lower levels of apoM and increased levels of the acute-phase reactant SAA
on both, maternal and fetal GDM HDL [207] (Figure 4). Since apoM represents the main
carrier of the vasoprotective S1P, the reduction of apoM on GDM HDL might contribute to
endothelial dysfunction observed in GDM [208]. This was supported by another group
using a migration assay with human umbilical vein endothelial cells [209]. Maternal GDM
HDL showed less closure of cell migration, which was induced by TNF α, than control
HDL [209]. Levels of apoA-I as well as mass and activity of PON1 were significantly
decreased in maternal GDM HDL [207], similar to another study [209]. ApoA-I, as well
as PON1, are important anti-oxidant components of HDL, therefore these results suggest
decreased anti-oxidative protection [78,210]. On fetal GDM HDL, the abundance of PON1
was only barely detected, while activity was found to be reduced [207]. Interestingly, also
HDL remodeling is altered during GDM. Both, maternal and fetal GDM HDL showed
larger particle size than controls. Further, cholesterol efflux capacity was reduced in mater-
nal as well as fetal GDM HDL [207]. Studies on LpPLA2 in GDM revealed higher activity
on maternal as well as fetal HDL, which might be relevant to exert protective activities
against oxidative stress [146].
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Concluding, HDL proteome and size are markedly altered in GDM in both, maternal
and fetal circulation. However, how these alterations affect the protective properties of fetal
HDL and whether these alterations persist and are involved in the higher risk of becoming
vascular diseases in offspring of GDM pregnancies later in life requires further studies.

9. Conclusions

Endogenous, as well as maternally-provided cholesterol, are important for fetal devel-
opment. Although lipoprotein metabolism is separated between mother and fetus, maternal
hyper- and hypocholesterolemia affect infant health and growth. Transplacental cholesterol
transport from maternal lipoproteins to the fetal side involves receptor-mediated uptake of
cholesterol from the syncytium and transport through the stroma. Cholesterol is then se-
creted/effluxed from the fetal endothelium to acceptors such as lipid-poor apolipoproteins
and HDL.

With its unique apolipoprotein composition with high levels of apoE, fetal HDL seems
to have an important cholesterol transport function that is accomplished by LDL in adults.
Due to its distinct composition, it may also have an important role in atheroprotection.
However, research should focus on elucidating the physiological function of fetal HDL and
how this is developing with aging of the newborns.

Maintaining the vascular integrity of the fetoplacental vasculature is important for
an adequate supply of oxygen and nutrients to the fetus and therefore crucial for fetal
well-being. It has been shown that HDL-associated S1P is an important regulator of
placental vascular inflammation, but also improves endothelial barrier function and induces
vasorelaxation, thus playing an important role in maintaining vascular integrity. Further,
LpPLA2 has been suggested to act anti-inflammatory and to improve vascular barrier
function in the placental endothelium.

HDL composition and function have been shown to be altered in pregnancy disorders
such as PE and GDM. Of importance, these changes were also observed in the fetus
of complicated pregnancies, therefore suggesting placental transmission of these effects.
Disease-induced alterations of HDL composition and function might contribute to the
pathophysiology of PE and GDM. Long-term follow-up studies are needed to clarify
whether alterations in HDL composition and function (i) persist into adulthood and (ii)
whether these changes are related to the increased risk of vascular pathologies later in life.

This review summarizes the current literature on the composition and function of
fetal HDL in health and disease. Extensive future research is needed to further understand
the physiological role of HDL in the fetus.
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