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1  | FERROPTOSIS

Cell death is inevitable for all forms of life on Earth, and can be ei-
ther physiological or pathological. In the 1990s, there were only 
two major forms of cell death recognized, apoptosis and necrosis.1 
Apoptosis is regarded as an active process, with cells consuming 

their own energy for the activation of the caspase system to di-
gest all sorts of macromolecules prior to death,2 whereas necrosis 
has been viewed as a passive process, overwhelmed by any etiol-
ogy of toxic levels, including hypoxia, inflammation, physical agents 
and chemical species. Over the past few decades, researchers no-
ticed that there are various forms of regulated necrosis, including 
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Abstract
Despite significant developments and persistent efforts by scientists, cancer is one 
of the primary causes of human death worldwide. No form of life on Earth can sur-
vive without iron, although some species can live without oxygen. Iron presents a 
double-edged sword. Excess iron is a risk for carcinogenesis, while its deficiency 
causes anemia, leading to oxygen shortage. Every cell is eventually destined to 
death, either through apoptosis or necrosis. Regulated necrosis is recognized in dis-
tinct forms. Ferroptosis is defined as catalytic Fe(II)-dependent regulated necrosis 
accompanied by lipid peroxidation. The main observation was necrosis of fibrosar-
coma cells through inhibition of cystine/glutamate antiporter with erastin, which 
reduced intracellular cysteine and, thus, glutathione levels. Our current understand-
ing of ferroptosis is relative abundance of iron (catalytic Fe[II]) in comparison with 
sulfur (sulfhydryls). Thus, either excess iron or sulfur deficiency causes ferroptosis. 
Cell proliferation inevitably requires iron for DNA synthesis and energy produc-
tion. Carcinogenesis is a process toward iron addiction with ferroptosis resistance. 
Conversely, ferroptosis is associated with aging and neurodegeneration. Ferroptosis 
of immune cells during infection is advantageous for infectious agents, whereas fer-
roptosis resistance incubates carcinogenic soil as excess iron. Cancer cells are rich in 
catalytic Fe(II). Directing established cancer cells to ferroptosis is a novel strategy for 
discovering cancer therapies. Appropriate iron regulation could be a tactic to reduce 
and delay carcinogenesis.
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necroptosis and pyroptosis. At present, there are at least 12 distinct 
types of regulated cell death, one of which is ferroptosis.2 The term 
“regulated” indicates that the cell death is programmed through cer-
tain intracellular signaling and takes at least a few hours.

The term ferroptosis was first coined in 2012, when Dixon 
et al reported a non–apoptotic regulated cell death when they 
treated HT1020 fibrosarcoma cells with erastin, an inhibitor of 
xCT (cystine/glutamate antiporter; SLC7A11), through the screen-
ing of anti–cancer agents.3 The word ferroptosis, consisting of the 
two syllables, ferro (divalent ionic iron) and ptosis (falling off), is 
defined as catalytic Fe(II)-dependent regulated necrosis concomi-
tant with lipid peroxidation.4 The discovery of ferroptosis was ac-
claimed by researchers of various different fields, and this rookie 
of regulated necrosis obtained a position not only in cancer cell 
death but also in stroke,5 neurogenerative diseases,6 cardiomy-
opathy 7 and even traumatic brain injury.8 This naming was ap-
propriate in that it reflects the major pathology of this necrotic 
cell death, as described later, and that pathology in eukaryotes is, 
indeed, full of ferroptosis.

The essence of ferroptosis is associated with an increase in the 
ratio of Fe (iron) to S (sulfur) over time (Figure 1). Iron is a major 
player in oxidative stress9 and S or sulfhydryls (-SH) in peptides (eg. 
glutathione) and proteins (eg. thioredoxin) provide the major resis-
tance against oxidative stress.10 Iron, if present as catalytic Fe(II), can 
initiate Fenton reaction,11 even in vivo.12

2  | IRON METABOLISM

Space started to expand with the Big Bang 13.8 Ga and is still ex-
panding.13 Earth was born 4.6 billion years ago.14 The first life on 
Earth appeared 3.8 billion years ago.15 Although most of space con-
sists of H (73.4%) and He (24.0%) as elements, it is true that there 
is a substantial amount of iron (0.109%) as well.16 This is because 
Earth has been struck by a large number of meteors, consisting al-
most purely of iron.17

It has been established geologically that the primordial sea was 
acidic, containing a high concentration of Fe(II).18 The adult human 
body contains as much as 2.5-4 g of iron, which is by far the highest 
amount among the heavy metals.19 Independent life may be defined 
as an existence of persistent electron flow with self-replication. Iron 
has been used as a medium for electron flow in life forms on Earth 
because no life on Earth can survive without iron. The Great Oxygen 
Event started with the evolution of cyanobacteria 2 billon years 
ago.20 Fe(II) in the ocean reacted with a small amount of oxygen, 
and became ores at the bottom of the sea. This was followed by the 
sulfur era (euxinic ocean) for 1 billion of years, where iron and sulfur 
revealed an affinity to each other.18 Finally, from approximately 1 
billion years ago, the atmospheric oxygen concentration significantly 
increased and a variety of evolutional processes were started. Thus, 
the order of appearance of the elements is Fe, S and O for the living 
creatures on Earth (Figure 2).

The transferrin system was established during the 1970 and 
1980s,21 but it was in the late 1990s that iron transporters started 
to be cloned.22 In mammals, iron is absorbed through the gastroin-
testinal system, specifically by duodenal mucosal cells with DMT1 
(SLC11A2).23 Iron solubility is significantly increased by acidic mucus 
of the stomach immediately prior to the duodenum, where it is there-
after neutralized with bile and pancreatic juice at its second portion. 
At neutral pH, Fe(III) is nearly insoluble to water and Fe(II) is much 
more soluble; this is enhanced at acidic pH.9 Thus, iron is always re-
duced to Fe(II) when crossing any biomembrane via specific trans-
porters. Iron is circulated extracellularly by transferrin and stored 
in cytosolic ferritin as Fe(III), presumably because Fe(III) is safer as 
a non–catalyst to biomolecules in comparison with Fe(II). Figure 3 
summarizes the current understanding of iron metabolism, which is 

F I G U R E  1   Ferroptosis as an imbalance between catalytic 
Fe(II) and sulfhydryls (S). Ferroptosis is defined as catalytic 
Fe(II)-dependent regulated necrosis with lipid peroxidation. Blue 
filled circle, Fe(III); red filled circle, Fe(II); DMT1, divalent metal 
transporter 1; GPX4, glutathione peroxidase 4; xCT, cystine-
glutamate antiporter. Refer to the text for details

F I G U R E  2   Key elements in evolution. Refer to the text and 
Olson and Straub (2016)18 for details
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finely regulated through multilayered distinct mechanisms by tran-
scriptional (eg. HIF-1),24 posttranscriptional (eg. IRP-1/2), ubiqui-
tin-proteasomal (eg. FBXL-5)25,26 as well as hormonal (eg. hepcidin)27 
mechanisms. Of note, there is no active pathway discovered thus far 
to dump or excrete excess iron outside the body in higher organisms. 
This is probably because iron has been extremely precious for life 
during the entire evolution. Thus, the only active strategies for us 
to decrease iron are by phlebotomy or by intake of iron chelators of 
redox-inactive small molecules (eg. desferal).28 How catalytic Fe(II) is 
carried safely through cytosol via chaperone systems (eg. PCBP-1/2) 
is a current hot topic.29

3  | FERROPTOSIS IN INFEC TION

In Japan, tuberculosis, a bacterial infectious disease, had been the 
top cause of human mortality until the discovery and use of anti-
biotics in the 1950s. Intriguingly, ferroptosis is a major mechanism 
of necrosis in Mycobacterium tuberculosis infection.30 Furthermore, T 
cell lipid peroxidation induces ferroptosis and prevents immunity to 
infection.31 Bacteria require iron to proliferate. Thus, ferroptosis is 
a feast for bacterial infections. Obviously, infection is an area to be 

investigated more deeply from the standpoint of ferroptosis, consid-
ering the current pandemic of coronavirus disease 2019.32

4  | FERROPTOSIS IN AGING

Iron is an essential nutrient for humans. We believe that iron is the 
origin of life on Earth, as discussed. Iron has been extremely impor-
tant in evolution. We do not have any active pathway to remove iron 
from our body except for physiological peeling off of surface/luminal 
cells or hemorrhage. Indeed, as low as 1 mg of iron out of 4 g is lost 
per day through peeling off, and 1 mg of iron is absorbed per day 
through the duodenal mucosa, which thus maintains a semi-closed 
system for iron metabolism.33 Accordingly, iron would be in excess 
with aging. There are several reasons for this: (i) the metabolic rate 
decreases with aging,34,35 leading to lowered necessity for iron, 
namely, deficiency in molecules using iron as cofactors or working 
on iron metabolism; (ii) amounts of hemoglobin, which contains as 
much as 60% total iron, decrease with aging; and (iii) menopause 
causes relative iron overload in women.

Accordingly, stored iron is increased all over the body during 
aging. It is conceivable that the excess iron induces deleterious 

F I G U R E  3   Iron metabolism in 
vertebrates. DMT1, divalent metal 
transporter 1, also as SLC11A2; FBXL, 
F box and leucine-rich repeat; FPN1, 
ferroportin 1, also as SLC40A1; IRP, iron 
regulatory protein; PCBP2, poly(rC)-
binding protein 2; Tf, transferrin; TfR, 
transferrin receptor 1. Refer to the text 
for details
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effects on cellular functions, eventually leading to cell death. Iron 
store in humans, as evaluated by serum ferritin, is increased during 
aging,36 especially in elderly individuals with high neocortical amy-
loid-β load,37 and, as found in a recent prospective study, in those 
with increased mortality.38 Furthermore, reports suggest the associ-
ation of neurodegenerative diseases, which present numerous simi-
larities to aging, with ferroptosis.39,40 It is of note that the remaining 
cells in radiation-induced senescence reveal impaired ferritinophagy 
and inhibition of ferroptosis in in vitro experiments 41 (Figure 4).

5  | FERROPTOSIS IN C ARCINOGENESIS

Iron presents a double-edged sword in any higher species. Its defi-
ciency leads to iron-deficiency anemia, whereas iron excess is a risk 
for carcinogenesis. There are three distinct levels of data on the as-
sociation of iron excess and carcinogenesis: (i) human data on spe-
cific diseases; (ii) human general epidemiological data; and (iii) data 
from animal studies.12,42

The rationale for the association of iron excess with high can-
cer risk is that iron excess confers an environment for the selection 
of stronger cells against oxidative stress, more precisely, ferropto-
sis-resistant cells. We can easily imagine that excess iron causes a 
Fenton reaction (Fe[II] + H2O2  -> Fe[III] +

.
OH +  OH−) because H2O2 

is rather abundant both in the intracellular and extracellular mi-
lieu.43-45 Therefore, ferroptosis is an appropriate term, which should 
have been established earlier.

Ferric nitrilotriacetate (Fe-NTA)-induced renal carcinogenesis 
is an interesting model in mice and rats in that: (i) it demonstrated 
that repeated Fenton reaction, indeed, generated high-grade carci-
noma46,47; (ii) genetic alterations of the induced renal cancers are 
quite similar to those of human cancers in general (eg. homozygous 
deletion of Cdkn2a/2b and amplification of c-Met) 48-50; (iii) the acute 
phase of this model provides a reproducible timecourse, which has 
been used to identify optimal molecular markers for oxidative stress 
(eg. 8-hyderoxy-2’-deoxyguanosine and 4-hydroxy-2-nonenal) 51-53; 
and (iv) this model further opened up a novel research area, called 
oxygenomics.54-56 Indeed, acute renal tubular necrosis induced by 
Fe-NTA is ferroptosis. Although this is a kind of exaggerated direct 

model, catalytic Fe(II) overwhelms sulfur antioxidants, consistent 
with the definition of ferroptosis.57 Of note, conditional knockout of 
glutathione peroxidase 4 produces renal tubular ferroptosis.58 Thus, 
at least some of the carcinogenesis is a process toward iron addic-
tion with ferroptosis-resistance.

Recently, several lines of research revealed that cigarette smoke 
induces ferroptosis in bronchial epithelial cells.59,60 These data sug-
gest that every carcinogenesis has to be reconsidered from the 
viewpoint of iron excess (Figures 4 and 5), and iron removal may be 
a smart strategy for cancer prevention, as in the case of asbestos-in-
duced mesothelial carcinogenesis.61

6  | FERROPTOSIS IN TUMOR BIOLOGY

It has been established that neoplastic cells harbor higher levels 
of catalytic Fe(II) in comparison with their non–tumorous coun-
terparts.62-64 This is associated with the discovery of ferroptosis 
when Dixon et al used erastin on H-ras-mutated fibrosarcoma cells.3 
Indeed, Ras oncogene and iron metabolism are closely linked.65 
Recently developed fluorescent turn-on probes for catalytic Fe(II) 
are helpful for this purpose.66

Abundance of high catalytic Fe(II) indicates a high level of oxida-
tive stress. This has been recognized for a long time as “persistent 

F I G U R E  4   Alteration of the key elements during aging and 
infection. Note that this figure is conceptual. Refer to the text for 
details

F I G U R E  5   Significance of ferroptosis in carcinogenesis and 
tumor biology. GPX4, glutathione peroxidase 4. Refer to the text 
for details
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oxidative stress” in cancer.67 Indeed, many cytotoxic chemothera-
peutic cancer drugs, such as doxorubicin68 and bleomycin,69 use this 
characteristic of cancer cells for killing them by further increasing 
oxidative stress. The cancer cell death induced by these agents is 
presumed to be ferroptosis, and ferroptosis has obtained a central 
position in drug discovery,70 based on the iron dependence of cancer 
cells.

Here we introduce two unconventional methods to enhance 
oxidative stress explicitly in cancer cells: (i) pharmacological level 
of ascorbate infusion;71 and (ii) non–thermal atmospheric pressure 
plasma (NTP) or low-temperature plasma72,73 (Figure 5). L-ascorbate, 
also known as vitamin C, is an essential reductant and cofactor in 
many enzymes. However, ascorbate works as a pro–oxidant in the 
presence of abundant catalytic Fe(II) to generate hydroxyl radicals. 
Thus, clinical trials are in progress to use a pharmacological level 
(~mmol/L) of ascorbate to kill cancer cells in addition to a standard 
radio-chemotherapy in advanced stage cancer patients, including 
glioblastoma multiforme and non–small-cell lung cancer.64 For this 
strategy, maintenance of a high constant level of ascorbate is im-
portant with a continuous infusion. The safety of ascorbate is well 
established.64

Plasma is the 4th state in physics after solid, liquid and gas. 
Plasma is an ionized condition with the highest energy among the 
four states. Space is full of plasma, and thunder and aurora are the 
natural plasma on Earth. It has been thought for a long time that ex-
tremely high temperature is necessary to transform gas into plasma, 
which has been practically used for fine lithotomy of transistor 
board structure since the 1970s. With the development of electronic 

techniques to regulate the high voltage and current, generation of 
NTP became possible in the late 1990s.73,74

Thereafter, many researchers started to use NTP for medi-
cal applications, including cancer therapy. We demonstrated that 
NTP can provide oxidative stress precisely to anywhere, with the 
major responsible species being hydroxyl radicals.75 We compared 
the biological effects of NTP between malignant mesothelioma 
cells and fibroblasts, and found that malignant mesothelioma cells 
are significantly more susceptible to NTP than fibroblasts with 
dependence on intracellular catalytic Fe(II) (Figure 6), whereas 
the two cell lines were equally susceptible to cisplatin. The cell 
death caused by NTP in malignant mesothelioma cells was fer-
roptosis.63 Its biological effects may involve simultaneous deg-
radation of ferritin core and reduction of Fe(III) to Fe(II).76 The 
drawback of NTP is that it only reaches areas close to the surface 
areas, such as 1 mm in depth. Thus, treatment for cancer dissemi-
nation in somatic cavities and for killing the remaining cancer cells 
at the surgical margin may be excellent targets for the use of NTP. 
Indeed, some clinical trials are in progress. Furthermore, NTP-
exposed liquids (medium or infusion) have similar effects against 
neoplastic cells, which has also been studied intensively recently 
(Figure 6).77

7  | CONCLUSION

There are many modifiers and signaling pathways involved in fer-
roptosis, such as BAP1 and p53.70 Ferritinophagy is one of the 
important processes for ferroptosis 78 (Figures 1 and 3). miRNA is 
also associated with ferroptosis.79 We recently found that carbonic 
anhydrase 9 confers ferroptosis resistance to mesothelioma cells.80 
Ferroptosis is a fundamental process for understanding carcinogen-
esis and tumor biology because all living creatures on Earth depend 
heavily on iron to survive. Based on the awakening of the ferrous 
(Fe[II]) in ferroptosis, we now start to recognize that cancer is an 
inevitable side effect of using iron and oxygen.
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