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Abstract: Biodegradable polymers are a green alternative to apply as the base membrane mate-
rials in versatile processes. In this study, two dense membranes were made from biodegradable
PGS (poly(glycerol sebacate)) and APS (poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)),
respectively. The prepared membranes were characterized by FE-SEM, AFM, ATR-FTIR, TGA, DSC,
water contact angle, and degree of swelling, in comparison with the PDMS (polydimethylpolysilox-
ane) membrane. In the pervaporation process for five organic solvent/water systems at 37 ◦C,
both biodegradable membranes exhibited higher separation factors for ethanol/water and acetic
acid/water separations, while the PDMS membrane attained better effectiveness in the other three
systems. In particular, a positive relationship between the separation factor and the swelling ratio of
organic solvent to water (DSo/DSw) was noticed. In spite of their biodegradability, the stability of
both PGS and APS membranes was not deteriorated on ethanol/water pervaporation for one month.
Furthermore, these two biodegradable membranes were applied in the pervaporation of simulated
ABE (acetone-butanol-ethanol) fermentation solution, and the results were comparable with those
reported in the literature.

Keywords: biodegradable membrane; pervaporation; poly(glycerol sebacate); poly(1,3-diamino-2-
hydroxypropane-co-polyol sebacate)

1. Introduction

Membrane separation has been a persuasive technology utilized broadly in industrial
separation processes. Amid various membrane applications, pervaporation is a popular
membrane approach commonly employed as an alternative to conventional separation
processes, such as distillation, extraction, adsorption, etc. The principle of pervaporation,
combining permeation and evaporation, is the separation of liquid solvents by partial
vaporization through a nonporous or porous membrane, whereafter the vapor permeating
through the membrane is removed by vacuum or sweeping inert gas in the permeate
side [1–3]. Its driving force is the chemical potential difference between membrane up-
stream and downstream. Membrane pervaporation can provide profitable benefits: simple
process design, straightforward operation, easy maintenance, compact space, low energy
consumption, high product quality, and low pollution [4–7], leading to widespread appli-
cations, such as solvent dehydration, azeotropic solvent purification, removal of volatile
organic compounds (VOCs) from aqueous streams, separation of liquid hydrocarbons,
dehydration to intensify esterification reaction, and so on [1–18].

Nonporous membranes or asymmetric membranes with dense active layers are prefer-
entially utilized in pervaporation process. Molecular transport across the dense pervapora-
tion membrane is usually governed by solution-diffusion mechanism [3,7,17,19]. In general,
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pervaporation is effective and economical for removing the minor component in the feed
stream to minimize energy consumption and maximize separation efficiency. Most popular
pervaporation membranes are polymeric such as PVA (polyvinyl alcohol), PAN (polyacry-
lonitrile), PI (polyimide), CS (chitosan), sodium alginate, PDMS (polydimethyl-siloxane),
PTFPMS (poly((3,3,3-trifluoropropyl) methylsiloxane)), PTMSP (poly(1-(trimethylsilyl)-1-
propyne)), PEBA (poly(ether block amide)), prototypical polymer of intrinsic microporosity
(PIM-1), etc. [3,7,18–29]. Inorganic membranes, such as graphene, zeolite, metal organic
frameworks (MOFs), and ceramic materials (e.g., titania, alumina, zirconia, silicalite, etc.)
can also be used for pervaporation [3,8,30–34], but they are used less often due to the
high production expense. Associating with both the advantages of polymeric matrix and
inorganic filler, the so-called mixed matrix membranes (polymeric membranes incorpo-
rating inorganic fillers) have drawn an increasing attention in effectively improving the
pervaporation performance. The tested inorganic filler substances include zeolite, alumina,
silica, graphene oxide, MOF, porous 2D or 3D-shaped nanomaterials, and other ceramic
nanoparticles [3,7,35–43].

Although good polymeric pervaporation membranes have a long-term stability and
could be reused many times, the eventually exhausted membranes, if not degradable,
will become the secondary pollutants because the combustion of these solid membrane
wastes will emit plenty of gas contaminants or their disposal will produce environmentally
polluted landfills. Since lots of polymers are resistant to degradation, causing a very critical
issue in universal waste management, biodegradable polymers, thus, become the preferred
candidate for the base material of membrane. Biodegradable substances can undergo dete-
rioration and completely degrade when exposed to microorganisms in aerobic/anaerobic
processes; such a degradation process will ultimately leave environmentally friendly
byproducts. They are expected to become a strong competitor to conventional plastics. In
this study, two kinds of dense membranes made from biodegradable poly(glycerol seba-
cate) (PGS) and poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) (APS) (easy to
synthesize from glycerol and sebacic acid, inexpensive, nontoxic, and with good mechanical
properties) [44,45] were tested in the pervaporation process to investigate their effectiveness
on separating several individual organic solvents (ethanol, isopropanol, n-butanol, acetone,
and acetic acid) from water. The characteristic properties and pervaporation performance of
PGS and APS were systematically explored, and the results were compared to those of the
PDMS membrane for a clear evaluation. Moreover, the stability of these two biodegradable
polymeric membranes over a long-time period on organic solvent/water pervaporation
was inspected in order to identify their reusability. A more practical application on the
pervaporation of simulated ABE (acetone-butanol-ethanol) fermentation solution for PGS
and APS membranes was also examined in this work.

2. Materials and Methods
2.1. Materials

Commercially available PDMS (Sylgard® 184 silicone elastomer kit) was purchased
from Dow Corning (Midland, MI, USA). All the solvents used in this study, including
ethanol (99.5%), isopropanol (99.5%), n-butanol (99.5%), acetone (95%), and acetic acid
(99.8%), were supplied by ECHO Chemical (Toufen City, Miaoli County, Taiwan) and
Aencore (Box Hill, VIC, Australia). They were used as received.

2.2. Membrane Preparation

For the fabrication of dense PDMS membrane, the base reagent of PDMS kit was
mixed with the curing agent in the ratio of 10:1 without any solvent. The mixture was
stirred for 15 min, followed by ultrasonic vibration for 5 min, and then kept still for another
30 min to remove the air bubbles. The mixture was poured on a clean PET substrate
evenly using a doctor blade to form a liquid film. The liquid film with the PET substrate
was placed in an oven at 70 ◦C for 6 h to prepare a dense membrane. After curing, the
membrane was carefully peeled off from PET.
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PGS and APS were synthesized via the methods reported previously [44,45] in Dr. Jane
Wang’s Lab of National Tsing Hua University, Taiwan, and fabricated into the form of flat
sheet.

2.3. Membrane Characterization

The membrane thickness and surface morphology were observed by Field Emission-
Scanning Electron Microscopy (FE-SEM, JSM-6700F, Jeol, Akishima, Tokyo, Japan), while
the tapping-mode Atomic Force Microscope (AFM, Dimension Icon, Bruker, Billerica, MA,
USA) with ScanAsyst was employed to evaluate the surface topography over a membrane
area of 5 µm × 5 µm. The RMS (root mean square roughness) and Ra (arithmetic average
roughness) parameters were analyzed with the software (Nanoscope v6.11, Bruker Optoc
GmbH, Ettlingen, Germany). Moreover, the functional groups of the prepared membranes
were detected using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy
(ATR-FTIR, Spectrum Two, Perkin Elmer, Waltham, MA, USA).

The thermal property of membrane was studied via a Thermogravimetric Analyzer
(TGA, VersaTherm HS, Thermo Fisher Scientific, Waltham, MA, USA) under an inert atmo-
sphere from 110 ◦C to 800 ◦C at a heating rate of 10 ◦C/min. A sample of approximately
13–15 mg was used for the analysis. Moreover, to figure out the glass transition temperature
(Tg) of the polymeric membrane, the measurement with a sample of 3–5 mg was carried
out through a Differential Scanning Calorimeter (DSC 6220, Seiko, Chiba-shi, Chiba, Japan)
under the inert atmosphere from –80 ◦C to 270 ◦C at a scanning rate of 20 ◦C/min.

The water contact angle measurement was performed by using the instrument FTA-
125 (First Ten Angstroms, Portsmouth, VA, USA) to determine the surface hydrophilicity
and water wettability of membrane.

2.4. Solvent Swelling Experiment

A dry membrane sample was weighed first, and later immersed in a specific solvent
at 37 ◦C for 8 h. The membrane sample was taken out and weighed immediately after
carefully wiping the liquid remained on the surface. The degree of swelling (DS) of the
membrane in the solvent was defined by the following equation:

DS(%) =
Ws − Wd

Wd
× 100%. (1)

where Ws and Wd are the weight of the solvent-swollen membrane and that of dry mem-
brane, respectively.

2.5. Pervaporation Experiment

The schematic diagram of the pervaporation process in this study is illustrated in
Figure 1. A total of 1 L of aqueous solution in the feed tank at 37 ◦C was circulated via
a peristaltic pump at 300 mL/min across the membrane module (effective surface area:
19.63 cm2). The permeate was vacuumed (below 2 mmHg) and collected in cold traps
(immersed in liquid nitrogen). After reaching steady state, the compositions of the aqueous
solutions in the feed tank and the permeate were analyzed by GC equipped with a flame
ionization detector (FID). The oven temperature was programmed from 100 ◦C to 150 ◦C
at a rate of 20 ◦C/min. Both injector and detector temperatures were set at 225 ◦C.

The pervaporation performance is commonly examined in connection with the total
permeation flux and separation factor. In this study, the total flux J was calculated by the
following equation:

J =
W
At

, (2)

where W is the total weight of the permeate (g), A is the effective membrane area (m2), and
t is the duration time of the experiment (h). Considering that the permeation flux is usually
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affected by membrane thickness, a normalized flux JN was expressed in terms of a certain
membrane thickness LN for normalization. The equation is as follows:

JN =
JL
LN

, (3)

where L is the membrane thickness (µm) used in pervaporation process and LN = 100 µm
adopted in this study. The separation factor α was determined as:

α =
y/(1 − y)
x/(1 − x)

, (4)

where y and x represent the weight fractions of organic solvent in the permeate and the feed,
respectively. Since a trade-off phenomenon between total permeation flux and separation
factor typically occurs in pervaporation process, the overall membrane performance could,
thus, be evaluated by combining these two important factors together, as the pervaporation
separation index (PSI) [46]:

PSI = JN(α− 1). (5)
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Figure 1. Schematic diagram of the pervaporation process in this study.

3. Results and Discussion
3.1. Membrane Characterization
3.1.1. Membrane Morphology

All the prepared membranes had a thickness of ca. 200 µm (degree of error <3%). The
surface morphology and topography of each polymeric membrane were analyzed using FE-
SEM and AFM, and the images of PGS and APS membranes are presented in Figure 2. Some
patterns were revealed on the PGS membrane surface. Regarding the surface roughness
parameters, the order was PGS (RMS = 17.65 nm, Ra = 13.67 nm) > APS (RMS = 12.50 nm,
Ra = 8.71 nm) > PDMS (RMS = 7.98 nm, Ra = 4.92 nm). The PGS membrane had larger
roughness values, which is attributable to its surface patterns. In comparison with the RMS
data (60.5–370.2 nm) for several polymeric membranes (PDMS, CA (cellulose acetate), PES
(polyethersulfone), PVDF (polyvinylidene fluoride), and sodium alginate/PVP (poly(vinyl
pyrrolidone))) reported in the literature [47–49], all the three membranes prepared in this
study showed much smaller surface roughness.

3.1.2. ATR-FTIR Results

The ATR-FTIR spectra of PGS and APS membranes are plotted in Figure 3a. These
two biodegradable polyester membranes exhibited the characteristic CH and C=O peaks
around 2960 cm−1 and 1740 cm−1 [50], while the APS membrane (amino alcohol-based
poly(ester amide) [51]) displayed an additional NH peak at 1650 cm−1. Based on their
general chemical structures [50,51], the ester and amide bonds of these two elastomer
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backbones were confirmed. As for the PDMS membrane (data not shown), its characteristic
peaks were in good agreement with the literature data [27,47,52,53].
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Figure 2. FE-SEM (×20S000) and AFM images of the two biodegradable membranes prepared in
this study.
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Figure 3. (a) ATR-FTIR spectra, (b) TGA plots, and (c) DSC patterns of the two biodegradable
membranes prepared in this study.

3.1.3. Thermal Properties

Figure 3b shows the TGA plots of the two biodegradable polymeric membranes
prepared in this study. Both PGS and APS membranes presented similar thermal stability:
only a subtle weight loss from 110 ◦C to 300 ◦C, then a large weight reduction around
400–450 ◦C, and finally burned down to nil after 600 ◦C.

The DSC results of PGS and APS membranes are displayed in Figure 3c. The glass tran-
sition temperature (Tg) was estimated as –20 ◦C for PGS and 8 ◦C for APS. Both membranes
had the Tg values lower than the operation temperature of pervaporation process (37 ◦C).
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This implies that these two polymeric materials were in a rubbery state during pervapora-
tion, and the polymer chain flexibility could allow the vaporized solvent molecules to pass
through the membrane more easily. Moreover, the polymeric membrane with a lower Tg
(PGS) may have a higher chain mobility and hence a larger free volume. In comparison
with the PDMS membrane (Tg ≈−125 ◦C [29]), both biodegradable membranes had higher
Tg values.

3.1.4. Water Contact Angle Results

The water contact angle was measured for the as-prepared polymeric membranes.
The results show that APS (85◦) was more hydrophilic than PGS (94◦), which should be
attributed to the extra NH groups on the APS backbone. Moreover, the surface patterning
and a little bit higher roughness of PGS membrane may have raised its hydrophobicity.
On the other hand, these two biodegradable membranes had smaller water contact angle
values than the PDMS membrane (104◦).

3.1.5. Swelling Behaviors

The solvent swelling effects at 37 ◦C for the two biodegradable membranes, along with
the PDMS membrane, were investigated in this study. The results are shown in Table 1. All
the three membranes exhibited much higher swelling degrees for organic solvents than
for water, even in the case of APS membrane whose water contact angle (85◦) was slightly
less than 90◦. Similar phenomenon was also revealed for pure chitosan membrane with
a contact angle of 87◦ in the literature [54]. Since the solvent swelling degree could be
correlated with the solvent solubility in the polymer [27], the results in Table 1 indicate that
the PGS and APS membranes are preferable in hydrophobic pervaporation.

Table 1. Solvent swelling data (37 ◦C) of the three polymeric membranes prepared in this study.

Membrane
DS (%)

Ethanol Isopropanol N-Butanol Acetone Acetic Acid Water

PGS 85.2 103.6 91.8 98.0 199.8 4.3
APS 89.6 107.5 98.4 31.6 109.2 5.6

PDMS 4.2 22.9 20.6 20.6 4.8 0.6

Membrane
DSo/DSw

Ethanol/Water Isopropanol/Water N-Butanol/Water Acetone/Water Acetic Acid/Water

PGS 19.8 24.1 21.3 22.8 46.5
APS 16.0 19.2 17.6 5.6 19.5

PDMS 7.0 38.2 34.3 34.3 8.0

The DS values of APS for the three alcohols and water were slightly higher than those
of PGS; on the contrary, the APS data for acetone and acetic acid were evidently smaller than
the PGS results. These phenomena may be clarified in consideration of the hydrophobicity
of organic solvent. Based on the Hansen solubility parameter (δ) [55,56], the hydrophobicity
order is acetone (δ = 19.9) > acetic acid (δ = 21.4) > n-butanol (δ = 23.2) > isopropanol
(δ = 23.6) > ethanol (δ = 26.5) (δ = 47.8 for water). For the more hydrophobic solvents, such
as acetone and acetic acid, the APS membrane had far lower sorption degrees than PGS
because it was more hydrophilic (water contact angle < 90◦). However, its affinities with
the three alcohols were reversed and became slightly stronger than PGS, which may be
caused via more hydrogen bonds from the additional NH groups of APS backbone with
alcohols.

Furthermore, all the DS data of PDMS membrane were greatly lower than the two
biodegradable membranes. The low-degree swelling behaviors for water (<2%) and n-
butanol (<30%) at 40 ◦C had also been displayed in the literature [27] using PDMS mem-
branes with four different cross-linkers. Our data are consistent with their results. The
cross-linking structure of PDMS should be the possible cause for its low sorption degrees.
The high cross-linking density would restrict the polymer chain mobility and result in less
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free volume [27]. It would, thus, become more difficult for liquid solvent molecules to
penetrate the highly cross-linked PDMS structure, leading to lower swelling degrees.

Consider that, when the feed mixture is loaded and touches the frontal membrane
surface, both solvents in the mixture will compete with each other to sorb into the mem-
brane. The ratio of their swelling degrees should be a more important index accounting
for pervaporation performance than the individual values of swelling degree. Hence, the
ratio of DSorganic solvent/DSwater was evaluated, and the data are listed in Table 1. Com-
paring the two biodegradable membranes, APS revealed lower DSo/DSw ratios than PGS
in all the five organic solvent/water pairs. The APS data on acetone/water and acetic
acid/water systems were noticeably smaller owing to its less hydrophobicity and poorer
affinities with acetone and acetic acid, as mentioned previously. In addition, these two
biodegradable membranes exhibited larger DSo/DSw values than PDMS for ethanol/water
and acetic acid/water systems but lower results in the other three pairs. It may be worthy
to indicate that ethanol (4.3 Å) and acetic acid (4.4 Å) have smaller kinetic diameters than
the other three organic solvents (acetone: 4.69 Å, n-butanol: 4.63–5.04 Å, isopropanol:
4.6–4.7 Å) [33,34]. The solvent swelling ratios did not only depend on the relative hy-
drophobicity of organic solvent to water (2.65–2.96 Å [33,34]) but also on their molecular
sizes.

3.2. Pervaporation Performance
3.2.1. Organic Solvent/Water Systems

The pervaporation process of organic solvent/water mixture was conducted at 37 ◦C
using the membrane module with one piece of membrane disc. The results of the total
permeation flux J and separation factor α are listed in Table 2. Moreover, the normalized
permeation flux JN in terms of 100 µm was also presented, for the later comparison with
the literature data.

Table 2. Pervaporation performance (37 ◦C) of the three polymeric membranes (thickness of 200 µm) prepared in this study.

Feed Mixture Organic Solvent wt% in Feed Membrane J
(g/m2h)

JN
(g/m2h) α

PSI
(g/m2h)

Ethanol/water

5
PGS 65 ± 3 130 11.6 ± 1.1 1378
APS 50 ± 3 100 8.2 ± 0.4 720

PDMS 89 ± 2 178 6.5 ± 0.7 979

10
PGS 77 ± 1 154 8.7 ± 0.8 1186
APS 69 ± 3 138 6.4 ± 0.2 745

PDMS 102 ± 1 204 5.2 ± 0.2 857

Isopropanol/water

5
PGS 75 ± 1 150 6.8 ± 0.1 870
APS 22 ± 2 44 3.1 ± 0.2 92

PDMS 64 ± 1 128 10.2 ± 0.7 1178

10
PGS 82 ± 3 164 5.9 ± 0.2 804
APS 35 ± 3 70 2.7 ± 0.2 119

PDMS 69 ± 1 138 9.4 ± 0.6 1159

n-Butanol/water

1
PGS 53 ± 2 106 18.4 ± 1.0 1844
APS 49 ± 1 98 15.4 ± 0.5 1411

PDMS 66 ± 3 132 31.2 ± 0.8 3986

2
PGS 66 ± 3 132 16.7 ± 0.2 2072
APS 52 ± 2 104 14.5 ± 0.4 1404

PDMS 72 ± 4 144 30.1 ± 0.2 4190

Acetone/water 0.5
PGS 51 ± 2 102 39.0 ± 0.7 3876
APS 48 ± 2 96 27.0 ± 0.6 2496

PDMS 63 ± 4 126 48.2 ± 0.5 5947

Acetic acid/water 10
PGS 118 ± 4 236 3.6 ± 0.5 614
APS 96 ± 4 192 2.9 ± 0.3 365

PDMS 82 ± 3 164 1.5 ± 0.2 82



Membranes 2021, 11, 970 8 of 15

From the data in Table 2, the order of total permeation flux was PDMS > PGS > APS in
most systems, except that PGS > PDMS > APS for isopropanol/water and PGS > APS > PDMS
for acetic acid/water. The transport of solvent molecules across a dense membrane are
principally governed by both their solubility and diffusivity with respect to the membrane
[3,7,17,19]. Considering that PGS possessed greater hydrophobicity and higher chain mobility
(presumed from the lower Tg value) than APS, the higher permeation flux was resulted for
the PGS membrane in all the five organic solvent/water pervaporation cases. On the other
hand, the PDMS membrane exhibited worse liquid solvent sorption degrees, but showed faster
permeation in three pervaporation tests. It is more possible that the liquid solvent molecules
were vaporized very soon after they dissolved into the upstream membrane surface. Thus,
the vaporized solvent molecules would be able to pass through the cross-linked PDMS matrix
more easily.

In Figure 4, the average value of separation factor in Table 2 was plotted versus the
DSo/DSw ratio in Table 1 to inspect their relationship and further understand the separation
mechanism. A positive relation was attained: the greater the DSo/DSw, the higher the
separation factor. The DSo/DSw value may be interpreted as the ratio of organic solvent
affinity with the polymeric membrane to water affinity with the polymeric membrane. An
increase in DSo/DSw corresponds to a higher membrane solubility for organic solvent in
comparison with water, and henceforth, helps raising the concentration of organic solvent
in the permeate. The separation factor is consequently improved. For all the five organic
solvent/water systems, the PGS membrane presented better separation factor results than
APS since it had higher DSo/DSw ratios, which resulted from its larger hydrophobicity
and good affinities with organic solvents. In all the cases, the PGS membrane exhibited
the superior performance on both permeation flux and separation factor than APS. On the
other hand, in comparison with the PDMS membrane, these two biodegradable membranes
showed higher effectiveness for the separation of ethanol or acetic acid from water, both of
which were the organic solvents with smaller kinetic diameters.
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Furthermore, in the three alcohol/water systems, with the increasing feed alcohol
wt%, the total permeation flux was enhanced, but the separation factor was decreased
for all the membranes. The increase in total permeation flux could be explained by the
much larger quantity of sorbed alcohol in membrane at a higher feed concentration and
the promoted diffusion, as well as the less significant change in water flux [27,48]. This
consequence led to a higher alcohol weight fraction in the permeate (y). However, when
the alcohol weight fraction in the feed (x) was raised from 0.05 to 0.1 or 0.01 to 0.02, the
enhancement in y/(1 − y) for the numerator of α (Equation (4)) was still smaller than
the increase in x/(1 − x) for the denominator, resulting in a reduced separation factor
(percentage decrease ≤ 25%).

As an overall index of separation efficiency, the PSI value of each membrane was calcu-
lated by combining the normalized total flux and separation factor together (Equation (5)).
The PSI data are also displayed in Table 2. The order of PSI was almost identical to that
of separation factor, except that the order became PGS > PDMS > APS for ethanol/water
system. The separation factor is dominant in the whole separation effectiveness.

Table 3 summarizes the data of polymeric membranes applied to organic solvent/water
pervaporations in the literature [27,47,57–73] for a comparison with the as-prepared poly-
meric membranes in this study. In most cases, our three membranes demonstrated excellent
pervaporation efficiencies, especially superior to the literature results in the normalized flux
and PSI value. For acetone/water and acetic acid/water systems, the separation factors of
our membranes are even higher than those of the reported membranes. Only in the case of
isopropanol/water pervaporation, the performances of our polymeric membranes are not
as good as those of the PDMS-based membranes fabricated in the literature studies [60,64].

Table 3. Literature review of the pervaporation performance of polymeric membranes.

Mixture Membrane Thickness
(µm)

T
(◦C)

Organic Solvent
wt% in Feed

J
(g/m2h)

JN
(g/m2h) α

PSI
(g/m2h) Ref.

Ethanol/
water

PDMS 100 30 8 25 25 10.8 245 [57]
PDMS 34 30 10 179 61 1.8 49 [58]
PDMS 9 37 6 ~700 63 ~8.3 460 [47]

PSI (PD 5000, 94%
PDMS) 10 60 10 560 56 10.6 538 [59]

PDMS-b-PPO - 60 5 3816 - 8.5 - [60]
PTMSP-2 14 30 6 500 70 16.5 1085 [61]
PTMSP-4 25 30 6 340 85 19.9 1607 [61]

Pebax 2533 30 23 5 117.5 35 2.5 53 [62]
PEO/CS
(8 wt%) 20 20 8 900 180 4.4 612 [63]

Isopropanol/
water

PDMS - 30 4 306 - 13 - [64]
PDMS-b-PPO - 60 5 3650 - 13.5 - [60]

n-Butanol/
water

PDMS/PVDF 10 30 1 160 16 43.1 674 [65]
PPhS/PDMS/PVDF 10 30 1 261 26 46.8 1191 [65]

PDMS-
PhTMS/PVDF 12 40 1 704 84 41.5 3402 [27]

PDMS/PAN/silicatite-
1 7 37 1 708 50 30 1450 [66]

Pebax 2533 100 23 5 65 65 8.2 468 [62]
Pebax 2533 - 35 2.5 ~300 - ~25 - [67]

Thin-film silicone 50 30 1 52.8 26.4 42 1082 [68]
PolyHFANB-base

a-BCP81 1.7 60 1 ~3500 60 ~22 1260 [69]

HTPB-based PUU 140 35 1 ~10.5 14.7 ~9 118 [70]
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Table 3. Cont.

Mixture Membrane Thickness
(µm)

T
(◦C)

Organic Solvent
wt% in Feed

J
(g/m2h)

JN
(g/m2h) α

PSI
(g/m2h) Ref.

Acetone/
water

Pebax 2533 30 23 5 140 42 3.3 97 [62]
HTPB-based PUU 140 35 0.5 ~6 8.4 ~12.5 97 [70]

PVC/PS-F2.0 40 30 5 42 17 11 170 [71]

Acetic acid/
water

PDMS 95 35 10 ~57 54 ~1.35 19 [72]
PDMS-AMEO/PES - 40 10 90 - 2.1 - [73]

PSI: polydimethylsiloxane-imide; PPO: polyphenylene oxide; PEO: poly(ethylene oxide); PPhS: polyphenylsiloxane; PhTMS:
phenyltrimethoxylsilane; a-BCP81: PolyHFANB-PolyBuNB = 300-130 (HFANB: hydroxyhexafluoroisopropyl; BuNB: butyl norbornene);
HTPB: hydroxyterminated polybutadiene; PUU: polyurethaneurea; PVC/PS-F2.0: 9:1 weight ratio of PVC (polyvinyl chloride) and PS
(polystyrene) with 2 wt% organo clay fillers; AMEO: aminopropyltrimethoxy; PES: polyethersulfone.

From the above analyses, the biodegradable PGS and APS membranes are very
promising materials for achieving beneficial pervaporation performance, especially in the
separation of ethanol/water and acetic acid/water mixtures. Although biodegradability
is an attractive feature of these two membrane materials, it might cause a short lifetime
and worsen the membrane reusability, eventually limiting their feasibility for practical
applications. The PGS and APS membranes, synthesized mainly from glycerol and sebacic
acid, have been known to degrade via hydrolysis and enzymatic degradation [74,75].
Their degradation rates via hydrolysis were reported to have a mass loss of ca. 17% after
60 days for PGS and around 13% after 20 weeks for APS [74]. To assess the long-term
stability of these two biodegradable membranes on pervaporation process, their ethanol
(5 wt%)/water pervaporation performance was monitored at 37 ◦C for 30 days. Both PGS
and APS membranes reflected excellent stability during one month, as revealed by the
nearly-unchanged flux and separation factor in Figure 5. The variations in data were less
than 10%. Moreover, no impurities were detected on GC analysis, and none of the apparent
membrane weight loss was found. Conclusively, these two biodegradable membranes
could provide very good reusability for stable pervaporation performance, which are
comparable to the literature results for PDMS-based membranes [27,47]. An additional
benefit for these biodegradable membranes is that the membrane degradation would be
easy to examine by either measuring the mass loss of dry membrane or detecting the
presence of any degraded product in the permeate.

3.2.2. Acetone–Butanol–Ethanol (ABE) System

To further explore the practical usage of PGS and APS membranes, a popular process
of solvent recovery by pervaporation under the ABE fermentation [66] was simulated. The
experiment was conducted at 37 ◦C in a working volume of 1 L with the aqueous feed
solution containing acetone (0.7 g/L = 0.07 wt%), ethanol (0.4 g/L = 0.04 wt%), n-butanol
(2.5 g/L = 0.25 wt%), and acetic acid (0.5 g/L = 0.05 wt%). The results are presented in
Table 4, along with the data using PDMS/PAN/silicatite-1 mixed matrix membrane [66]
and HTPB-based PUU membrane [70] for comparison. After normalization, both PGS and
APS membranes exhibited higher total permeation flux JN than both PDMS/PAN/silicatite-
1 and HTPB-based PUU membranes. The selectivities towards ethanol and acetic acid for
these two biodegradable membranes were better than those of the PDMS/PAN/silicatite-
1 membrane, while their separation factors for acetone and n-butanol were superior to
the HTPB-based PUU membrane. These phenomena were in good agreement with the
previous results in Tables 2 and 3: both PGS and APS membranes overwhelmed the
PDMS membrane on ethanol/water and acetic acid/water selectivities; they also exhibited
better separation achievements on acetone/water and n-butanol/water systems than the
HTPB-based PUU membrane. The above optimistic results have further demonstrated the
practicability of PGS and APS membranes on pervaporation applications.
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Table 4. Pervaporation results of simulated ABE system using PGS and APS membranes in comparison with the litera-
ture data.

Membrane Thickness
(µm)

T
(◦C) Organic Solvent wt% in Feed J

(g/m2h)
JN

(g/m2h) α
PSI

(g/m2h) Ref.

PGS 200 37

Acetone 0.07
Ethanol 0.04

n-Butanol 0.25
Acetic acid 0.05

29 ± 2 58

37.1 ± 0.5
13.7 ± 0.5
16.6 ± 0.6
2.5 ± 0.2

2094
737
905
87

This study

APS 200 37

Acetone 0.07
Ethanol 0.04

n-Butanol 0.25
Acetic acid 0.05

22 ± 3 44

33.5 ± 0.3
9.9 ± 1.0

14.5 ± 0.7
1.2 ± 0.6

1430
392
594
8.8

This study

PDMS/PAN/
silicatite-1 7 37

Acetone 0.067
Ethanol 0.043

n-Butanol 0.196
Acetic acid 0.026

491 34

41.4
9.8

31.6
-

1374
299

1040
-

[66]

HTPB-based
PUU 140 40

Acetone 0.5
Ethanol 0.1

n-Butanol 1.1
9.7 13.6

15.3
-

13.7

194
-

173
[70]

4. Conclusions

In this study, two biodegradable polymeric membranes PGS and APS were success-
fully applied in the pervaporation of five organic solvent/water systems. In all the cases,
the PGS membrane exhibited higher permeation flux and larger separation factor than
APS. In comparison with the popular PDMS membrane, the two biodegradable mem-
branes showed more impressive effectiveness for ethanol/water and acetic acid/water
separations. Moreover, a positive relation between the DSo/DSw ratio and separation
factor was observed, which may be used as an indicator for the assessment of pervapo-
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ration performance. Although biodegradability is an attractive feature for both PGS and
APS membranes, their reusability was not deteriorated via a long-term stability test on
ethanol/water pervaporation for a period of one month. Furthermore, the pervapora-
tion for the simulated ABE fermentation solution using the two biodegradable polymeric
membranes resulted in greater normalized flux and comparable solvent recoveries with
the PDMS-based mixed matrix membrane and the HTPB-based PUU membrane in the
literature. These positive results expand the feasibility of PGS and APS membranes for
practical pervaporation applications.
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