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Altered EEG variability on different 
time scales in participants 
with autism spectrum disorder: 
an exploratory study
Lukas Hecker1,2,3,4,5*, Mareike Wilson1,2,3,4, Ludger Tebartz van Elst1,2 & 
Jürgen Kornmeier1,2,3,4

One of the great challenges in psychiatry is finding reliable biomarkers that may allow for more 
accurate diagnosis and treatment of patients. Neural variability received increasing attention in recent 
years as a potential biomarker. In the present explorative study we investigated temporal variability 
in visually evoked EEG activity in a cohort of 16 adult participants with Asperger Syndrome (AS) and 
19 neurotypical (NT) controls. Participants performed a visual oddball task using fine and coarse 
checkerboard stimuli. We investigated various measures of neural variability and found effects on 
multiple time scales. (1) As opposed to the previous studies, we found reduced inter-trial variability 
in the AS group compared to NT. (2) This effect builds up over the entire course of a 5-min experiment 
and (3) seems to be based on smaller variability of neural background activity in AS compared to NTs. 
The here reported variability effects come with considerably large effect sizes, making them promising 
candidates for potentially reliable biomarkers in psychiatric diagnostics. The observed pattern of 
universality across different time scales and stimulation conditions indicates trait-like effects. Further 
research with a new and larger set of participants are thus needed to verify or falsify our findings.

Autism spectrum disorder (“ASD”). The autism spectrum disorder (ASD) describes a developmental 
condition characterized by abnormal function in reciprocal social interaction, communication and restricted, 
stereotyped, repetitive  behavior1.

Clinical diagnostic is so far mainly based on behavioral variables and developmental  histories2. As a conse-
quence, the diagnostic work strongly depends on the professional experience of the examiners. Moreover, the 
pattern of behavioral symptoms can change over lifetime (e.g.,2). More objective physiological markers are yet 
missing but urgently necessary. Studies on physiological markers exist, but the reported findings are controversial 
(e.g.,2,3).

Altered visual processing in ASD. Altered lower-level sensory processing has only recently been shown 
to provide potentially interesting markers in ASD (e.g.,2,4) and has now been integrated in the DSM-V5. Indi-
viduals with ASD are often oversensitive to loud noises or bright colors. Others, in contrast, are attracted to light 
and fascinated by reflections and bright-colored objects (e.g.,6).

Perceptual interpretations of individuals with ASD are often dominated by small sensory details, whereas 
they have difficulties to integrate spatial  context7 and prior perceptual experiences (e.g.,8–12). Further, many ASD 
observers are less susceptible to visual illusions (e.g.,2,13,14). Basic retinal visual functions in ASD have been shown 
to be  normal15 pointing to higher levels of visual pathophysiology in ASD.

EEG studies on low-level visual perception found that visually evoked potentials (VEPs) in ASD are less 
modulated by varying spatial frequencies of stimuli (e.g., in gabor patches or checkerboards) in ASD participants 
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compared to neurotypical controls (“NTs”)16–19. An extensive review by Simmons et al.2, however, indicates that 
several EEG studies did not find reliable effects.

Neural variability. Neurophysiological and imaging studies (e.g., EEG, fMRI) about sensory processing 
have to deal with low signal-to-noise ratios. One typical way to circumvent this problem is to present the sensory 
stimuli repeatedly and to average the related sensory signals over repetitions. EEG studies on visual perception, 
for example, calculate event-related potentials (“ERPs”) or more specifically visually evoked potentials (VEPs, 
e.g.,20,21).

The underlying assumption, is that with each repetition the stimulus is processed in the same way, with the 
same timing and thus evoke the same physiological signals. Typically, the ERP amplitudes or the average power 
in certain frequency bands are then analyzed and the variability of the EEG response across repetitions is ignored 
(analogous approaches are used for fMRI analysis). However, a closer look indicates that neural variability is not 
necessarily an irrelevant or even distracting by-product of sensory processing. Neural variability can have rather 
important functional roles for the brain, as has already been discussed 50 years  ago22,23. Studies on stochastic 
resonance indicate that the right amount of noise in the neural processing chain can elevate signals evoked by 
a sub-threshold stimulus, thereby increasing the probability to elicit enough spikes to make them consciously 
 detectable24,25. This in turn can adapt detection thresholds in the system, thus increasing perceptual sensitivity 
under certain circumstances  (see26 for a review). Furthermore, neuronal networks that learn under noisy condi-
tions have shown to be more robust to disruption, which benefits learning and  adaptation27.

Altered neural variability in ASD? Important for the present study are findings of larger neural vari-
ability in ASD participants compared to  NTs19,28–32. The authors postulated that ASD participants show larger 
fluctuations in the neural response to repeated sensory (visual, auditory or somatosensory) stimulation. Butler 
et al.33 labeled this approach as the “neural unreliability thesis of autism” and tested it in an EEG study with ASD 
children and matched controls. No evidence for this neural unreliability thesis was found.

Notably, the analytical protocols used in the aforementioned studies on neural variability in ASD differed 
significantly.  Milne28 calculated coefficients of variation (CV) by normalizing the variability of the P1 ERP 
component by its median amplitude. The rationale behind this is that EEG variability scales with mere EEG 
amplitudes and therefore needs to be corrected in order to reduce inter-individual variability. Weinger et al.31 
followed a different approach, both in terms of the experimental paradigm and the analytical protocol. They 
induced a steady-state EEG response by presenting a stimulus with a high temporal frequency. Signal-to-noise 
ratio (SNR) was then calculated by dividing the EEG’s frequency band power at stimulation frequency (regarded 
as the signal) by the surrounding frequency bins (regarded as an estimate of noise), which yields a measure of 
how precisely the stimulation frequency is mapped to the EEG. While this measure may be related to neural 
variability similarly as described by  Milne28, conceptually it captures a different aspect of variability. Butler et al.33 
used the inter-trial phase coherence (ITPC) to measure neural variability. This is again a different view on vari-
ability since it isolates variability in the phase of signals from variability in amplitudes.

It is so far unclear, whether the neural unreliability in ASD, as reported in the above cited studies, is always 
present or whether it only affects neural responses to sensory events, whether it is present in the entire brain or 
restricted to local areas and/or certain processing steps, whether it increases (or decreases) over the course of an 
experiment (e.g. due to fatigue effects) or whether there is a constant feature over time. The pattern of mixed and 
partially contradictory findings in the literature concerning neural variability in ASD may thus be explained by 
different experimental contexts and/or by different measurement points in space and/or time.

The present study is based on a recent EEG experiment executed in our  lab18, where checkerboard stimuli 
were presented to a group of AS participants and a group of matched NT participants. We have already published 
the results from a classical ERP analysis of these data, where we found smaller amplitudes of an early visual ERP 
 signature18 in AS compared to NTs. During the ERP analysis we noticed an interesting tendency for smaller 
variability of this ERP signature in the AS group than in the NT group (see Fig. 4  in18), which is opposite to the 
findings supporting the neural unreliability thesis, as introduced above.

Inspired by the neural unreliability thesis, we focused in the present study on this previously ignored variabil-
ity pattern in the data from Kornmeier et al.18 and tried a more extensive analytical look on variability features. 
We defined a number of variability measures and tested for their differences between AS participants and NTs 
at different time scales.

In our study from  201418 we focused Asperger Syndrome (AS), which is a subtype of ASD according to the 
10th edition of the International Statistical Classification of Diseases and Related Health Problems (ICD-10,1, 1992) 
definition, incorporating “restricted, stereotyped, repetitive repertoire of interests and activities”, in addition to 
the ASD-typical behaviors. Importantly, AS is not marked by deficiencies in cognitive and language develop-
ment. The fifth Diagnostic and Statistical Manual of Mental Disorders (DSM-5,5, 2013 and ICD-11 (34,2019) have 
abandoned the distinction between the three subtypes of autism in ICD-10 (early childhood autism, atypical 
autism, Asperger’s syndrome). However, Asperger’s syndrome according to ICD-10 is still part of ASD according 
to ICD-11 and DSM-5. Therefore, studying Asperger’s syndrome according to ICD-10 definition renders a study 
group most likely more homogenous than studying ASD according to ICD-11.

The topic of variability effects in neural processing in psychiatric patients is a relatively recent one. Studies 
in general and particularly EEG studies are thus rare so far. This conversely means that we currently have little 
knowledge about potentially interesting spatial and temporal regions of brain processing. Due to the high dimen-
sionality of the EEG data we are confronted with a large search space. In the current study we thus adopted an 
exploratory analysis approach including heavy multiple testing. As a consequence of this strategy, any attempt 
to deal with the resulting problem of alpha error inflation, e.g., by the application of a Bonferroni correction, 
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would require extremely small p-values. We decided to dispense any type of multiple testing correction, instead 
for all statistical tests applied an alpha of 0.05 and report the calculated p-values together with effect sizes. The 
reason for this decision was that we regard it at the current stage of this novel research area as more important 
to collect possibly meaningful patterns than to prove their reliability. Ultimately, reliability issues of statistical 
results will anyway only be answered by accumulating evidence from follow-up replication studies, in the best 
case from multiple labs.

In summary, we aim to clarify whether an objective measure of altered neural variability in ASD can be docu-
mented in EEG visually evoked potential data. Precisely, we hypothesize altered neural variability at occipital 
electrodes in the ASD group compared to NTs.

Results
We compared the number of available trials per condition and group to rule out possibly confounding effects of 
sample sizes. The number of available trials per participant and stimulus was, however, not significantly differ-
ent between groups ( F(1, 68) = 0.03, p = 0.872, η2 = 3.85 · 10−4 ). Bayes factor revealed that there is evidence 
towards H0 (no difference in trials, BF10 = 0.249).

Questionnaire scores. AS participants scored AQs between 34 and 50 ( median = 44 ) and EQs between 18 
and 41 ( median = 30 ). Controls scored substantially lower AQs between 8 and 28 ( median = 13.5 ) and higher 
EQs between 36 and 73 ( median = 57).

Inter-trial variability (ITV). The inter-trial variability (ITV) was calculated for the frequent checkerboards 
(FC) and gray blanks (GB) time-resolved (i.e. for each time point within the checkerboard and gray screen 
presentation time windows) for the spatial ROI (the occipital electrodes, see Fig. 1, red and blue traces). In an 
additional exploratory step we calculated ITV separately for each electrode but averaged the ITV values over 
time. The interpolated results of this analysis are reflected in the topographic plot (Fig. 1).

We found lower ITV for the ASD group for both the checkerboard stimuli and the gray blanks. 
Statistical evaluation of the ITV effect was carried out using a two-factor ANOVA on ITVs aver-
aged across the time dimension. This revealed a highly significant difference of ITV between groups 
( F(1, 206) = 82.35, p = 4.38 · 10−12, η2 = 0.21 ). No significant difference was found for the factor stimulus 
( F(1, 206) = 0.11, p = 0.745, η2 = 0.0004 ) and no significant interactions were indicated. In summary, the ITV 
differs strongly between groups, but this difference seems to be independent of the specific visual stimulation, 
i.e. whether the checkerboards or the gray screen without any checkerboards were presented. Our additional 
spatial analysis further indicated very similar spatial distributions of the ITV across checkerboard stimuli and 
gray screen stimulation (see Fig. 1). The ITV difference between groups showed a broad distribution from central 
to occipital electrodes, perhaps indicating that the reduced ITV in ASD compared to controls was not restricted 
to lower-level visual processing areas.

Evolving inter-trial variability (ETV). The evolving inter-trial variability (ETV) is a sliding window cal-
culation of ITV spanning over a predefined, ordered subset of trials. It maps fluctuations in ITV over the 5 min 
of the checkerboard experiment. With this analysis we tested whether the observed ITV difference between 
groups is present during the whole experiment or whether it is present only during a certain time window within 
the 5 min duration of an experimental condition, e.g., only during the first or second half of it (see Fig. 2). The 
lower variability in the ASD group compared to controls was extended over the whole 5 min. In an additional 

Figure 1.  Inter-trial variability between groups. Blue traces show mean ITV of the control group, red shows 
the mean ITV of the ASD group averaged across the ROI electrodes (O1, Oz, O2; yellow rectangles in the 
topographic plots). Error shadings indicate group SEM. Left: Frequent checkers. Right: gray blanks. Topographic 
plots show the channel-wise ITV averaged over the time dimension and contrasted between the groups (NT 
group—ASD group). Highlighted (white) electrodes indicate a significant difference at criterion p < 0.05 
between groups using an independent two-sided t-test. Note, that ITV is lower in the ASD group regardless of 
stimulus category (checkerboard or gray screen).
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analysis step we focused on the dynamics of the identified ETV effect. For this, we normalized the individual 
ETV values by dividing them by the respective mean (across time) and calculated several parameters that char-
acterize the ETV dynamics: Slope, ETV variability and detrended ETV-variability.

ETV slope. The ETV slope indicates whether ITV tends to increase, decrease or remain stable over the course 
of the 5-min experiment. The slope of the ETV was calculated for each participant and condition. A two fac-
tor ANOVA was calculated to test the differences between groups and stimuli. The ANOVA indicated a sig-
nificant difference between groups ( F(1, 132) = 7.74, p = 0.006, η2 = 0.055 ) but no significant differences 
between stimuli ( F(1, 132) = 0.76, p = 0.517, η2 = 0.017 ). The ETV slope was significantly larger than 0 for 
the control group as revealed in a one-sample T-test ( T(75) = 5.03, p = 4.00 · 10−6, d = 0.63,BF10 = 3929.75 ), 
indicating increasing EEG variability over time. The ETV slopes in ASD were not significantly larger than 0 
( T(75) = 0.37, p = 0.72, d = 0.04,BF10 = 0.14 ) and Bayes factor indicates that there no evidence for a non-
zero slope in the ASD group.

ETV variability. Closer inspection of Fig. 2 indicated much more dynamics over time in the ETV trace of the 
control group compared to the ASD group. We calculated the standard deviation (over time) of the ETV as an 
index of ITV-stability over time. A one-way ANOVA revealed a significant difference in the ETV-variability 
between the ASD and control group of medium effect size ( F(1, 132) = 5.44, p = 2.12 · 10−2, η2 = 0.04).

Detrended ETV‑variability. One possible source of the observed ETV variability effect could be driven by the 
drift of the ITV as reflected in the above reported ETV slope difference. We thus detrended the ETV prior to 
calculating the standard deviation, leaving only variability that is not related to a global offset in variability 
or drifts over the experiment. One-way ANOVA revealed even slightly stronger differences between groups 
( F(1, 132) = 6.16, p = 1.43 · 10−2, η2 = 0.04 ) after detrending, which confirms that ITV is not only smaller but 
also more stable in the ASD group compared to controls.

In summary, the ETV analysis has revealed that ITV trajectories over the 5-minute-course of our experiment 
are permanently smaller in our AS group compared to the NT group. Moreover, we found that the ITV increases 
over the course of the experiment in NT, which is not the case in ASD. Furthermore, the detrended fluctuations 
of the ETV are larger in the control group and these fluctuations increased with the progression of the experi-
ment while they remained small and stable in the ASD group.

Mechanisms of variability. In an effort to better understand the mechanism of these variability dif-
ferences we calculated time-frequency analysis for the ERP (“evoked activity”) and on the single trial level 
(“induced activity”). We found no significant group differences for evoked activity, indicating that the central 
tendency of evoked neural responses is same in ASD and controls (see Fig. 3A). We found significant and tem-
porally extended differences between groups in the induced activity (Fig.  3B) in the lower frequency range 
( ≈ 3− 15Hz ). This variability between single trials is also depicted in the inter-trial power variability (“ITPV”, 
Fig.  3C), which was significantly increased in the control group compared to ASD over the whole stimulus 

Figure 2.  Evolving inter-trial variability. Blue traces show mean ETV of the control group, red traces show the 
mean ETV of the ASD group. Error shadings indicate group SEM. The ordinate shows the ordered trial number 
in the experiment. ETV is shown for small frequent and larger frequent checkers, as well as for the gray screens 
shown in the respective conditions. The bottom left graph depicts the ETV during the gray screen presentations 
in the small frequent/ large rare checkerboard condition. The bottom right graph shows the ETV during the 
gray screens in the large frequent/small rare checkerboard condition.
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presentation time window. Analysis of inter-trial phase coherence (“ITPC”) revealed no systematic difference 
between groups.

Classification using variability metrics. In order to estimate the predictive power of the variability-
related metrics we applied an SVM to classify subjects based on their variability measures (Table 1). ITV was the 
best predictor of group as indicated by a cross-validated accuracy of 74.4% , whereas the lowest predictive power 
was yielded by the ETV-variability metric. The combination of all metrics allows for a cross-validated accuracy 
of 68.6% , which was considerably lower than classifying based on ITV alone. This discrepancy may be due to 
the small number of participants per group, which poses a major limitation of the power of classifiers in general.

Correlations of the variability measures with AQ and EQ. 
If the calculated variability metrics are associated with ASD they should be correlated with severity of symp-
toms. We used the AQ and EQ scores to calculate correlations between symptom severity and various variability 
metrics (Table 2). Furthermore, we estimated the 95% confidence interval (CI) with the bootstrap method. We 
found that only ITV was significantly correlated with AQ ( r = −0.33, 95%CI[−0.40,−0.31] ) and EQ scores 
( r = 0.47, 95%CI[0.42, 0.54]).

Taking the absolute values of these correlation coefficients (taking into account the expectation of opposing 
signs of the correlation coefficients for AQ and EQ) the CI of the two correlations do not overlap. Therefore, we 
conclude that the correlation between ITV and EQ is significantly larger. Other metrics or a combination thereof 
did not significantly correlate with AQ or EQ scores.

Discussion
In this study we addressed the research question of a putative altered variability in basic visual information pro-
cessing in ASD, using novel analyses of electrophysiological (EEG) data. As a first step, we analyzed the inter-trial 
variability (ITV) of visually evoked EEG responses across the time course of the trial and found lower variability 
in ASD throughout the time window.

In a second analysis step we investigated how the ITV effect varies on a larger timescale, across the 5 min 
duration of the checkerboard experiment. The effect was present for the whole 5 min but increased in the second 

Figure 3.  Sources of EEG variability. Column show results for the different stimulus categories checkerboards 
and gray blanks. Rows show different aspects of time-frequency power and variability. Evoked Power: Time-
frequency analysis of ERPs. Induced Power: Time-frequency analysis of induced (i.e., single-trial based) 
responses. Induced Power Variability: The standard deviation of power values across trials from single-trial 
time-frequency analyses. Inter-trial phase coherence: An index of phase coherence between trials. Each panel 
depicts the group difference control group—ASD group. Opaque colors indicate a significant difference at the 
given time-frequency bin using a Wilcoxon test with an alpha criterion of 0.05. We find that the most consistent 
differences between groups are reflected in induced responses and their variability, but not in evoked responses 
or in phase coherence.
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half of the experiment. The observed variability effects could be restricted to an induced power together with 
induced power variability in the lower EEG frequency band (3–15 Hz). Interestingly, we found significant cor-
relations between our measures of neural variability and symptom severity as measured with AQ and EQ scores.

The raw EEG we recorded reflects a mixture of neural processes related to stimulus processing and back-
ground activity which is unrelated to stimulus processing. The stimulus-specific EEG signatures can be further 
subdivided into EEG signatures that are precisely time-locked to stimulus onset. The evoked EEG power reflects 
those processes. Some stimulus-related neural processes, on the other hand, may vary in latency to some degree 
with respect to stimulus onset. The induced EEG power reflects the sum the time-locked and the non-time-locked 
or less-time-locked processes.

Our two measures ETV and ITV do not differ between these types of EEG components. The EEG frequency 
domain, however, is more informative in this respect.

Postulating that EEG variability scales with EEG amplitudes, one would expect that less EEG variability 
comes with smaller EEG amplitudes. If the observed smaller amplitude variability in ASD reflects differences 
in perceptual processes time-locked to stimulus onset, this should be reflected in smaller evoked power. Our 
analyses reveal no difference in the evoked EEG power (see Fig. 3A).

However, even if the evoked power is of comparable magnitude between groups, it may still be possible that 
single trial EEG amplitudes are in one group larger than in the other group, but a concurrently larger temporal 
jitter in processing steps underlying checkerboard perception across EEG trials covers this in the time-locked 
analysis. In this case we would expect significantly smaller induced power (which includes also the power of the 
not time-locked oscillatory activity) together with smaller ITPC, as a measure of temporal jitter, in the ASD group 
compared to the control group. Although we found smaller induced power in the ASD group compared to the 
controls across the whole 500-ms time window for both checkerboard stimuli and gray screen trials (Fig. 3B), 
no corresponding difference in the ITPC could be observed (Fig. 3D). This is in concordance with 13, who also 
did not find any difference in ITPC in their cohort, whereas 42 did report an ITPC effect. These findings indicate 
that the variability effects, we found, may not be related to the processing of the visual stimulus.

In contrast to the repetitive neural activity related to the repetitive stimulus, the background activity can be 
regarded as non-repetitive over the course of the EEG measurement. As a consequence, the phases of the con-
tributing oscillations can be expected to have broad distributions over trials. The ITPC measure includes both 
the stimulus-related processing and the unrelated neural background activity. The absence of an ITPC difference 
between groups indicates the absence of phase differences in this background oscillatory activity. However, group 
differences in the power of this background activity may explain the observed differences in both the induced 
power and in the induced power variability. We thus conclude that the smaller ITV and ETV in the ASD group 
compared to the control group reflects a generally reduced neural background activity.

This interpretation is further supported by three additional observations. First, the variability effect extends 
across the whole stimulus presentation time window (the smaller time scale) and also across the whole 5 min 
duration of the checkerboard experiment (the larger time scale). It can thus not be narrowed down to specific 
processing steps taking place at specific time instants during stimulus processing. Second, the variability effect 
is also present in the gray screen interval between checkerboard presentations. Third, in the  Appendix A (see 
Supplementary Material) we present a separate analysis of the amplitude variability of the visual P100 ERP com-
ponent evoked by the checkerboard stimuli. Following the analysis steps from  Milne28 we took the coefficient 
of variance as dependent variable, which represents a variability measure normalized by the P100 amplitude. 
We found no difference between participant groups, further indicating that the stimulus related processing is 
unaffected by the observed effects.

It might be the case that the altered background activity is related to alterations of overall different long-
distance and local-network brain  connectivity35 or the altered excitation-inhibition-equilibrium in  ASD36. To 

Table 1.  Classification accuracy. The cross-validated classification accuracy indicating how well the ASD 
group can be separated from the control group using each individual variable and all variables combined. The 
best accuracy was achieved using ITV, reaching a cross-validated accuracy of 74.3%.

Metric ITV ETV-slope ETV-variability ETV-variability (detrended) Combined

Accuracy 74.3% 54.2% 51.4% 54.3% 68.6%

Table 2.  Correlation of scores and metrics. The Pearson correlation coefficients between variability-related 
metrics and the AQ & EQ questionnaire scores. The correlation between questionnaire scores and all variables 
combined were calculated using the hyperplane distance of the SVM (see “Methods” section for explanation). 
Statistically significant correlations are shown in bold. *p < 0.05 ; **p < 0.01.

Score ITV ETV-slope ETV-variability ETV-variability (detrended) Combined

AQ − 0.33* − 0.22 − 0.13 − 0.14 0.30

EQ 0.47** − 0.13 0.28 0.28 − 0.25
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test this, future research should combine such functional investigations for example with MRI- or source-based 
measurements of neuronal-network  connectivity35,37–39  or cerebral  neurochemistry40.

The ITV and ETV effects in the present study encompass the whole 500-ms time window of checkerboard 
stimulation and are even present if only a gray screen is presented. The identified spatial pattern of the effects 
(scalp maps in Fig. 1) is universal across processing of the checkerboards and processing of the gray screen. This 
generality across time and stimulus categories may be interpreted as evidence for trait effects of the AS par-
ticipants. However, if this was the case one should expect confirmatory findings in the literature. Trial-by-trial 
variability in neuronal signals in ASD has already been investigated and discussed in a few studies in the past, 
however with heterogeneous  results19,28–30,32,33,41–44.

As already discussed in “Introduction” section, the analysis of the data differed strongly between studies. 
 Milne28, e.g., decided to normalize variability by amplitude using the coefficient of variation (CV). This type 
of analysis is not suitable in the present case, because our temporally extended analysis time windows include 
zero-crossings. Further, on the background of the present analysis, amplitude normalization would not only 
reduce the potentially distracting effects of inter-individual variability. It would also affect the effect as such, as 
discussed in more detail in “Normalizing brain activity” section.

There are several important factors that need to be taken into account for the interpretation of certain pat-
terns as state effects or trait effects. One is of course the type of data under consideration. Some studies used 
EEG, others used fMRI, and it is controversially discussed to what degree variability in fMRI reflects variability 
in neural processing (e.g.,33). Further, it is so far unclear to what degree neural variability in response to visual 
processing in ASD is different between various ASD endophenotypes and how much it changes over the ontoge-
netic development. The latter is particularly relevant because most of the above cited studies measured children 
(e.g.,28,29,33,45) whereas the present study investigated adults.

In summary, based on the available studies it is yet not possible to explain the overall controversy between 
study results. Important factors for the present study may be the choice of the visual stimuli, e.g., the specific sizes 
of the checkerboards that may provide enough details to attract the perceptual system of ASD observers. The 
easy structure of our checkerboard oddball experiment (only two conditions, only two stimulus sizes and a gray 
screen, fixed block length, etc.) may have made the “nature” of upcoming stimulus sequences highly predictable 
and may have induced a specific experimental state in our AS participants with overall lower neural background 
activity for the 5-min-period of this specific experiment. The present pattern of results may be not replicable 
in children with ASD, with longer or shorter experiments or experiments with other—potentially less detailed 
or less predictable—visual stimuli or with stimuli from other modalities. More studies on EEG variability with 
varying stimuli need to be executed in order to get a clearer picture and to resolve existing discrepancies. Pos-
sibly, this may lead to the discovery of variability-related subgroups.

One explanation for the inconsistent findings of altered neural variability in ASD could be that there is no 
underlying effect. Positive findings in either direction could be considered sampling errors that arise due to low 
sample sizes. The observation that our variability effects are not restricted to a single time point but instead show 
a consistent and stable extension over time makes an alpha error relatively improbable. However, we are aware 
that further confirmatory studies are required, preferably with high sample sizes.

The present finding of lower EEG variability in ASD participants compared to matched controls is only 
informative if it covaries with typical ASD symptoms. We thus calculated correlations between our measures of 
variability and the AQ and EQ scores and found correlations in the range of 0.4 < r < 0.5 (absolute values) with 
maximal correlation between AQ/EQ and ITV. Particularly, we found stronger correlations of the EEG variability 
with the EQ than with the AQ scores. As Baron-Cohen and  Wheelwright46 pointed out in their article on the 
EQ, empathy can be best defined from a cognitive and an affective perspective. From the cognitive approach, 
empathy requires analytical thinking, understanding the other’s feelings (“theory of mind”, e.g.,47). The fact, that 
the correlation between EQ and ITV is stronger than that of AQ points to a specific link between the neuronal 
mechanisms underlying ITV and empathy generation. This relationship has to be clarified in future research.

We also found maximal predictive power of 74.3% with ITV. Of course, this is only a rough estimate, given the 
relatively small sample size of the present study (see e.g.,48 for a discussion of sample size and classifier accuracy). 
Future studies including larger sample sizes may refine this measure.

Two caveats of the present results are, that they are based on heavy multiple testing and without correction 
and that sample sizes are relatively low. Any interpretation of the current results thus needs to be regarded under 
this constraint.

In the present study we found robust and extended (over time, stimulus type and electrode locations) differ-
ences in neural variability between AS participants and controls. Particularly, our findings indicate that smaller 
neural variability in AS participants is linked to neural background activity during the processing of repetitive 
sensory information. While the present study is clearly explorative in nature and needs replication, the robust 
pattern of results is a strong indication that the so far widely neglected topic of neural variability needs more 
investigation, particularly in ASD research.

Methods
Participants. EEG data of 21 AS participants and 17 NTs from a study described in Kornmeier et al.18 was 
re-analyzed. NT participants were selected to match the AS participants in age (± 3 years) and gender. All par-
ticipants had German school education comparable to junior high school or high school. Due to technical rea-
sons only 19 AS participants (age range: 24–59, age mean ± SD: 41.3 ± 10.7; 6 females) and 16 NTs (age range: 
22–57, age mean ± SD: 38.8 ± 11.5, 6 females) were used for the analysis. Two participants were excluded due to 
missing trigger signals and one participant was excluded due to numerous artifacts. The same participants had 
been excluded in the first publication of the  data18.
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All participants completed the Autism-Spectrum Quotient Test “AQ”49 and the Empathy Quotient “EQ”46. 
They had a normal visual acuity as measured with the Freiburg Visual Acuity Test (FrACT,50). All participants 
gave their informed written consent. The study was performed in accordance with the ethical standards laid 
down in the Declaration of  Helsinki51 and was approved by the ethics board of the Albert-Ludwigs-Universität 
Freiburg, Germany. For a detailed description of clinical diagnostics please refer to the earlier  publication18 on 
the same cohort.

Visual stimuli. The stimuli consisted of fine and coarse checkerboards with check sizes of 0.6◦ and 1.2◦ visual 
angle (corresponding to 1.67 and 0.8 cycles per degree; cpd) and a gray screen following each checkerboard 
presentation. Checkerboards and gray screen extended over a field of 13.25◦ (width) ×14.25◦ (height) visual 
angle. Luminance of the white and black checks was 220cd/m2 and 1.55cd/m2 . Luminance of the gray screen 
was 110cd/m2.

Experimental procedure. In a balanced experimental paradigm checkerboards with fine/coarse checks 
were presented as frequent/rare stimuli in the one experimental condition and vice versa in the other condition 
(coarse checkerboards frequent, see Fig. 4). Each checkerboard stimulus was presented for 500 ms and followed 
by a gray screen. The rare checkerboards appeared with a probability of p = 0.2 in a pseudo-random order. 
Participants were instructed to fixate a centrally presented gray cross and to count the occurrence of rare stimuli.

In summary the current experiment differs between

• two types of stimuli: checkerboards with (1) fine checks and (2) coarse checks
• two experimental conditions: (1) fine checks frequent & coarse checks rare and (2) coarse checks frequent 

& fine checks rare

We focused our analysis on two different data sets: (1) EEG data to frequent checkerboards (FC data sets), (2) 
EEG data to the gray screens (GB data sets).

EEG data acquisition. EEG was recorded with a Brain Vision ActiCHamp amplifier and 32 electrodes of 
the 10–20 system. Data was sampled at a frequency of 500 Hz using an online high-pass at 0.01 Hz and low-pass 
at 120 Hz.

EEG data pre-processing. All data processing was accomplished using Python 3.7.4 and the MNE pack-
age (v 20,52). The EEG was re-referenced to averaged mastoid electrodes (TP9, TP10) after the recording. An 
offline band-pass filter was applied between 1 and 30 Hz pass-band edge. Independent component analysis 
(ICA,53) was calculated per subject and components that captured eye artifacts were automatically selected and 
removed from the data using standard MNE procedures. On average, 1.05 eye components were identified and 
subsequently removed.

The cleaned data was then cut into trials based on stimulus onset and categorized into stimulus identity 
(coarse vs. fine frequent checkerboards). Additionally, the gray screens in between the checkerboard presenta-
tions were extracted.

Subsequently, bad channels were identified using Random Sample Consensus (RANSAC,54) implemented 
in the Python package autoreject55. In short, the RANSAC method labels those channels as bad that have low 
correlation (r< 0.75) with their neighbors over extended time periods ( ≈ 40% of the recording). The RANSAC 
method found on average 1.7 bad channels per participant.

In the current study we focused our analysis on EEG variability across stimulus repetitions at different time 
scales. For this we did not apply a baseline correction as is a recommended procedure when inter-trial variability 
is of interest (see e.g.,56). Trials with amplitudes exceeding 100 µV  were marked as missing values and thus did 
not enter the variability calculations.

EEG data analysis. The present EEG data had already been used for a classical ERP analysis by Kornmeier 
et al.18. They found larger ERP checksize effects in AS participants than in NTs over occipital electrodes. We 

Figure 4.  Checkerboard oddball paradigm. Rare checkerboards with coarse check sizes are randomly 
interspersed with frequent checkerboards with fine check sizes (top row, condition FF) and vice versa (bottom-
row, condition CF). Participants were instructed to count the occurrences of the rare checkerboards within an 
experimental block. Each checkerboard (coarse or fine) was presented for 500 ms and alternated with a gray 
screen interval, which was also present for 500 ms.
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therefore defined a region of interest of the electrodes O1, Oz and O2 in order to capture visual responses from 
the primary visual cortices.

Inter‑trial variability (“ITV”). For a given participant and condition (FC or GB), the ITV was computed on 
the EEG data M ∈ R

trials×channels×time for each electrode j from the spatial ROI and time point k as the standard 
deviation across P trials:

where M̄ is the EEG averaged over trials (i.e. ERP). This value corresponds to the point- and electrode-wise 
standard deviation over stimulus repetitions (trials). A visual explanation is given in Fig. 5.

Evolving inter‑trial variability (“ETV”). Additionally, we were interested whether the neural variability changes 
(or stays stable) over a larger timescale across the whole experiment. We thus focused on the evolution of the 
ITV over the 5 min duration of the checkerboard experiment (see Fig. 6 for a visual explanation). We calculated 

(1)ITV(j,k) =

√

√

√

√

1

P

P
∑

p=1

(Mp,j,k − M̄j,k)
2

Figure 5.  ITV calculation. The inter-trial variability (ITV) corresponds to the EEG standard deviation at a 
certain time point during stimulus presentation across repeated stimulus presentations. ITV is calculated for 
each time point during the stimulus (checkerboard or gray screen) presentation time window of 500 ms, as 
indicated by the red rectangle.

Figure 6.  ETV calculation. The black fluctuating trace represents the raw EEG trace from the occipital 
electrode of one example participant observing repeated checkerboards and gray screens over a time course 
of 5 min. The evolving inter-trial variability (ETV) corresponds to calculation of the average of the ITVs over 
time within a sliding (indicated by the red dashed arrows) time window encompassing ten successive EEG trials 
(indicated by the red rectangle). This calculation results in the evolution of the average ITV over the whole 
experiment (i.e., 5 min or 300 EEG trials), thus reflecting EEG variability at a coarser timescale, compared to 
ITV.
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the evolving ITV (“ETV”) in a sliding-window-procedure over the chronologically ordered trials. The window 
width to calculate the ITV extended over 10 trials, i.e., the standard deviation was calculated for the first 10 trials 
per channel and time point. In a second step the calculated standard deviation values were averaged across the 
500 trial data points, resulting in one ITV value. Then the window slides one trial further and the second ITV 
value was calculated for the 2nd to the 11th trial and so forth. This calculation was performed separately for each 
of the ROI electrodes and for each participant and stimulus.

ITPC and ITPV. In addition to the ITV analyzes, we distinguish two theoretically independent mechanisms 
that could drive ITV: (1) Differences in inter-trial phase coherence (ITPC) and inter-trial power variability 
(ITPV). The basic idea of these measures is the following: The EEG raw traces can be regarded as a superposi-
tion of oscillatory activity of a number of neural generators. Oscillatory activity in different frequencies can be 
calculated by frequency analysis tools providing power values and respective phase values. Phase and power per 
frequency can then be compared across EEG trials. Phase consistency, measured by ITPC, evaluates the similar-
ity of phase angles across trials per frequency band and time frame and yields a phase coherence index between 
0 (not aligned) and 1 (exactly aligned). ITPV measures the variability of power responses in the respective fre-
quencies over trials. ITPC is thus a measure of timing accuracy, whereas ITPV reflects how the amplitudes vary 
across trials; thereby neglecting phase angles. ITPV can be viewed as a more elaborate ITV measure that allows 
for frequency-specific resolution and incorporates both evoked and ongoing neural oscillations.

Normalizing brain activity. The EEG is highly variable between participants. While some of this vari-
ability can be explained by differences in functional organization of the individual brains, some of it can be 
explained anatomically by differences in skull thickness, tissue conductivity, gray matter density, etc. These fac-
tors have a multiplicative effect on the amplitudes recorded by the EEG, which can be corrected by normaliza-
tion. The separation of the impacts of these different sources is difficult.

In the work by  Milne28, variability was normalized to account for these factors, as is common practice. In the 
present work we were explicitly interested in within-participant variability across repetitive visual stimulation 
at different time scales (trial-by-trial variability). Normalization could potentially remove a significant portion 
of the trial-by-trial variability and thus reduce potential between group effects. Instead, we additionally ana-
lyzed induced and evoked responses, which is a more sensible approach without loss of information. In order to 
provide a link between our analyses and those by  Milne28 we have added an analysis of normalized variability 
in Appendix Fig. 1

Classification analysis. In order to show the discriminatory power of the variability metrics introduced above 
we trained a Support Vector Machine (SVM)  classifier57 using all variability scores. The hyperparameters of the 
SVM were tuned using Bayesian  optimization58 and the accuracy scores were cross-validated using Leave‑one‑
out cross‑validation. The relative distance from the data sample to the hyperplane, as well as what side of the 
hyperplane the sample was located, was computed for each participant. This relative distance is comparable to 
a confidence score. The distances were correlated with behavioral scores of the AQ and the EQ. The rationale 
behind this approach is to investigate the discriminatory power of all variability scores and combination of vari-
ability scores and to efficiently determine their relation to the AQ and EQ scores.

Statistical analysis. Statistical analysis was performed using analysis of variance (ANOVA) and independ-
ent, two-sided t-tests. As a measure of effect size we calculated Cohen’s d (d,59). Where parametric tests revealed 
no significant differences a “Bayesian t-test” was calculated, using the approach described by Rouder et al.60, to 
decide whether there was evidence for the null hypothesis. The Jeffrey–Zellner–Siow prior was used, which is 
the Cauchy distribution on effect size. A Bayes factor ( BF10 ) larger 3 is considered evidence for H1 ., whereas a 
Bayes factor smaller 0.3 is considered evidence for the null hypothesis ( H0 ). The Pingouin package for  Python61 
was used for all statistical tests.

Ethics approval. All participants gave their informed written consent. The study was performed in accord-
ance with the ethical standards laid down in the Declaration of  Helsinki51 and was approved by the ethics board 
of the Albert-Ludwigs-Universität Freiburg, Germany.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author upon reasonable request.

Code availability
All code that was used to analyze and visualize the data and to calculate the statistics is available here: https:// 
github. com/ LukeTh eHec ker/ asd- varia bility.
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