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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused a global pandemic since late
2019 that resulted in more than 360 million population infection. Among them, less than 7% of infected individuals
develop severe or critical illness. Mass vaccination has been carried out, but reinfection and vaccine breakthrough
cases still occur. Besides supportive and antiviral medications, much attention has been paid in immunotherapies
that aim at reducing pathological changes in the lungs. Mesenchymal stem cells (MSCs) is used as an option
because of their immunomodulatory, anti-inflammatory, and regenerative properties. As of January 16, 2022, when
ClinicalTrials.gov was searched for “Mesenchymal stem cells and COVID-19,” over 80 clinical trials were registered.
MSC therapy was found to be safe and some effective in preclinical and clinical studies. Here, we summarize the
major pathological characteristics of COVID-19 and provide scientific and rational evidence for the safety and possi-
ble effectiveness of MSCs in COVID-19 treatment.

Copyright � 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction
Coronavirus disease 2019 (COVID-19), caused by the
novel severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), has developed into a global pandemic
that began in late 2019. As of January 16, 2022, a total
of 5,551,970 deaths have occurred out of a total of
328,675,785 COVID-19 cases.1 Owing to the emergence
of novel viral variants, including omicron, the risks of
new infections, reinfections, and vaccine breakthrough
infections has increased considerably worldwide, lead-
ing to a situation where the current epidemic is not yet
well controlled. Similar to SARS-CoV-1 and MERS-CoV,
SARS-CoV-2 belongs to the beta coronavirus family.2

Individuals infected by the virus are frequently classi-
fied based on the clinical severity of their cases and des-
ignated as asymptomatic, mild, moderate, severe, or
critical.3 Severe and critical patients, particularly older
adults and those with co-existing illnesses, have a high
risk of mortality4 and characterizied by over-activated
immune disorders. These include inflammatory hyper-
responses and cytokine storms, which contribute to pul-
monary tissue damage, air exchange dysfunction, acute
respiratory distress syndrome (ARDS), multiple organ
failure, and even death. To resolve the immune
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dysfunction arising from COVID-19, besides symptom-
atic treatment and supplemental oxygen therapy, certain
immunotherapy-related clinical trials have been con-
ducted, including treatments based on the use of gluco-
corticoids,5 interleukin (IL)-1 family blockers,6,7 anti-IL-
6 antibodies,8 convalescent plasma,9 and antiviral spe-
cific neutralizing antibodies.10 Published data have
demonstrated that immune-modulation regimens are
well tolerated and show some effectiveness in clinical
trial; however, further investigation is needed to con-
firm their efficacy in large-cohort randomized, con-
trolled studies.

Mesenchymal stem cells (MSCs) possess immuno-
modulatory, anti-inflammatory, and regenerative prop-
erties.11 The safety and some effectiveness of MSCs
have been investigated in various clinical trials for the
treatment of several disorders, including graft-versus-
host disease, inflammatory bowel disease, osteoarthritis,
rheumatoid arthritis, and multiple sclerosis.12 The ther-
apeutic roles of MSCs in preclinical models and clinical
trials of acute lung injury, ARDS, and lung fibrosis sug-
gest the feasibility of MSC treatment for COVID-19. For
these reasons, MSC therapy can be considered as an
optional interventional method for improving clinical
outcomes in severe and critical patients. By January 16,
2022, when ClinicalTrials.gov was searched using the
terms “Mesenchymal stem cells and COVID-19,” there
were over 80 clinical trials registered (Figure 1). This
review summarizes the pathological features of COVID-
19 patients, along with the current progress and
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Figure 1. A summary of clinical trials registered in ClinicalTrials.gov by searching “Mesenchymal stem cells and COVID-19”. (a) A map
for all registered clinical trials. (b) The chart for the recruitment status of clinical trials.
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challenges of using MSCs to treat COVID-19, and also
establishes the rationality of using MSCs in the treat-
ment of the disease.
Pathological features of COVID-19
During acute infection with SARS-CoV-2, viral replica-
tion and attack may directly result in injury to the respi-
ratory tract and pulmonary tissues, which can trigger a
series of over-active immune responses that not only
play an antiviral role but also induce tissue inflamma-
tion and damage. Autopsies of dead patients with criti-
cal illness showed that the histological characteristics of
lesions in the lungs were virus-induced and led to dif-
fuse alveolar epithelial damage and inflammatory cell
infiltration. This resulted in alveolar destruction with
alveolar lining cell necrosis, protein-rich exudates, hya-
line membrane formation, and endothelial cell mem-
brane destruction. All of these eventually led to an
increase in alveolar-capillary membrane permeability
and loss of aerated lung tissue. Moreover, certain
patients had fibrous deposition, mural fibrosis, and
microcystic honeycombing in the lungs.13�16 In contrast
to other types of pneumonia, SARS-CoV-2 appears
more likely to cause severe thrombotic disorders and
widespread thrombosis with microangiopathy.14,17,18 In
mild and moderate cases, innate and adaptive immune
responses are well coordinated, which contributes to
viral symptom resolution and convalesence.19 However,
in severe cases, over-activation and massive infiltration
of immunocytes such as macrophages, natural killer
cells, and CD4+ and CD8+ T cells into the lungs result
in high levels of cytokine and chemokine production.20

Uncontrolled pro-inflammatory feedback triggers a cyto-
kine storm and accelerates local tissue damage and sys-
temic injuries.21 Severe patients showed a significant
increase in plasma levels of cytokines, including IL-2,
IL-6, IL-7, IL-10, granulocyte-colony stimulating
factor, interferon-inducible protein 10, monocyte
chemoattractant protein-1, macrophage inflammatory
protein (MIP)-1a, and tumor necrosis factor (TNF)-
a.22�25 The antiviral immune-related interferon (IFN)
type I response was also highly impaired in the majority
of patients with severe symptoms. Furthermore, the
total numbers of peripheral CD4+ T cells and CD8+ T
cells were significantly lower in severe and critical
cases,26,27 particularly in patients with lymphocytope-
nia, impaired type I IFN production, and excessive acti-
vation of Th1 and inflammatory monocytes.28 A high
viral load may further aggravate the ongoing inflamma-
tory cascades.29

Generally, pulmonary inflammatory lesions were
primarily resolved in the convalescence stage, while >

80% of severe/critical patients and 60% of mild/moder-
ate patients still exhibited residual computed tomogra-
phy (CT) abnormalities three months after discharge.
These predominantly included ground-glass opacity fol-
lowed by strip-like fibrosis.30 A recent result of a one-
year follow-up study showed that 25% of individuals dis-
charged from hospitalization still had chest CT abnor-
malities, including residual linear opacities and
multifocal reticular/cystic lesions, and older patients
with severe pneumonia, ARDS, and lymphopenia were
more likely to develop CT abnormalities for over a
year.31 Pulmonary fibrosis is seen as an important factor
affecting long-term clinical outcomes.32,33 In an
extended study of SARS-CoV-1-infected patients, lung
fibrosis persisted for over seven years, suggesting that
lung fibrosis could be a persistent sequela of pulmonary
inflammatory injury.34 The increased expression of
angiotensin-converting enzyme 2, transforming growth
factor beta, connective tissue growth factor, and fibro-
nectin35 and endothelial/epithelial-to-mesenchymal
transition have all been believed to account for pulmo-
nary fibrosis and vascular destruction post-COVID-19.36

Extrapulmonary manifestations, including throm-
botic complications, myocardial dysfunction and
arrhythmia, acute coronary syndromes, hepatocellular
www.thelancet.com Vol 77 Month March, 2022
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injury, gastrointestinal symptoms, acute kidney injury,
and hyperglycemia, may further complicate the natural
course of COVID-19 in severe and critical cases.37�39 A
broad distribution of SARS-CoV-2 in the respiratory,
cardiovascular, genitourinary, digestive, and immune
systems and in endo/exocrine glands and the skin was
identified in autopsy specimens.38,40 Renal autopsy
revealed coronavirus-like particles in the cytoplasm of
the renal proximal tubular epithelium, accompanied by
prominent acute renal tubular injury.41 Human islet
autopsy showed selective SARS-CoV-2 infection in b

cells, followed by attenuated pancreatic insulin secretion
and increased b cell apoptosis.42 In the heart, both com-
positional and gene expression changes were recorded
during acute SARS-CoV-2 infection.43
Rationality of MSC treatment for COVID-19
MSCs may exert immunomodulation via autocrine,
paracrine, and endocrine pathways (Figure 2).44�46

MSCs can modulate host innate and adaptive immune
responses, thus reducing proinflammatory cytokine
production.45,46 Given the previously described
Figure 2. A schematic overview of the pathological characteristics a
phase, SARS-CoV-2 infection induces an inflammatory hyper-respon
fibrosis of lung tissues. (2) Immunomodulatory effects of MSCs cont
of alveolar epithelial cells and vascular endothelial cells and redu
deposition and inhibiting epithelial�mesenchymal transformation.
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pathological characteristics of COVID-19,47,48 MSCs are
considered an optional candidate for the treatment of
COVID-19. In preclinical models of acute lung injury,
the benefit of MSCs was associated with the alleviation
of local and systemic inflammation,49 the amelioration
of immune cell activation,50 and mitigated lung
injury.45 MSCs have been shown to reduce the infiltra-
tion of macrophages, neutrophils, and DCs into the
lungs and to decrease the levels of MIP-2, TNF-a, IL-6,
IL-1b, and IL-12p70 in bronchoalveolar lavage
fluid.45,46,49,51,52 Stanniocalcin-2 was found to mediate
the effect of MSCs through modulating macrophage
polarization from the M1 to M2 phenotype.53 In addi-
tion, MSCs induce mature DCs to become tolerogenic
DCs, maintain immune tolerance, and negatively regu-
late the immune response.54 Furthermore, MSCs can
attenuate pulmonary inflammation by regulating differ-
ent T cell subsets; for example, MSCs can inhibit the
activation and proliferation of T cells and induce the
polarization of CCR2+CD4+ T cell subsets enriched
with forkhead box P3 and IL-10.55 They can also inhibit
the production of proinflammatory IL-17 and IFN-g in T
cells49 and alleviate the infiltration of proinflammatory
nd potential of MSCs for treating COVID-19. (1) During the acute
se and pulmonary tissue damage, which may lead to the partial
ribute to reducing inflammation. (3) MSCs promote proliferation
ce their apoptosis. (4) MSCs contribute to decreasing collagen
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CD8+ T cells56 and B cells expressing chemokines for
neutrophil recruitment and immunoglobulin produc-
tion.57 Additionally, MSC-derived extracellular vesicles
could also participate in immunoregulation by decreas-
ing the absolute count of neutrophils and TNF-a levels
in an ex vivo lung injury model58 and by transferring
functional mitochondria to macrophages to reduce
proinflammatory cytokine production and increase their
phagocytic capacity.59

MSCs possess regenerative and differentiation prop-
erties that contribute to the repair of injured tissues.
MSCs have been shown to improve alveolar fluid clear-
ance and lung function by secreting paracrine factors
that regulate membrane transport, restore the alveolar
epithelial and pulmonary microvascular endothelial lin-
ing, reduce pulmonary edema, and ultimately promote
the restoration of lung structure. Different cytokines are
released through paracrine pathways, including kerati-
nocyte growth factor (KGF), angiopoietin (Ang)-1, hepa-
tocyte growth factor (HGF), and vascular endothelial
growth factor (VEGF).60�62 KGF produced by MSCs
may rapidly and specifically contribute to the prolifera-
tion and differentiation of alveolar epithelial type II
cells.60 KGF is also related to surfactant production,61

alveolar epithelial cell apoptosis relief,63 and sodium-
dependent alveolar fluid transport recovery.64 Further-
more, HGF and VEGF may have synergistic effects on
the restoration of endothelial intercellular junctions,
reduction of caveolin-1 protein expression, and endothe-
lial apoptosis.65 Additionally, Ang-1 produced by MSCs
has the capacity to increase endothelial cell proliferation
during vascular remodeling, promote vascular stabiliza-
tion during inflammation, and improve human alveolar
epithelial type II cell permeability through directly
affecting cytoskeletal remodeling.62,66,67

MSCs have the capacity to reshape the lung cell
microenvironment by reducing the levels of profibro-
genic factors. MSC infusion contributes to lung struc-
ture recovery by restoring lung epithelial cell
proliferation and decreasing collagen deposition in a
bleomycin-induced idiopathic pulmonary fibrosis
model.68,69 The efficacy of MSCs is also associated with
the correction of inappropriate epithelial�mesenchymal
transformation.70
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Clinical trials of MSCs for COVID-19 treatment
The safety of MSC treatment for patients with ARDS
has been demonstrated in the studies listed in
Table 1.71�76 In addition, MSCs simultaneously pro-
mote the restoration of pathological lung tissues.77

Therefore, MSC therapy is considered an alternative
option for patients with severe COVID-19.

To date, several clinical trials have utilized different
sources of MSCs (Table 2).78 Compared with conven-
tional treatment, MSC add-on therapy may improve
clinical symptoms, which are characterized by the relief
www.thelancet.com Vol 77 Month March, 2022



Numbers Trial ID Source of MSCs Phase Numbers
of patients

Doses and administration routes Primary outcomes Refs.

1 NCT04252118 UC-MSCs 1 18 Three doses of 3 £107 cells; IV Safe and well tolerated. 79

2 ChiCTR2000029990 MSC 1 10 A single dose of 1 £106 cells/ kg; IV No adverse effects. Pulmonary function and symp-

toms significantly improved.

80

3 Not reported MB-MSCs Case report 2 Three doses of 1 £106 cells/ kg; IV Values of immune indicators increased, and levels of

inflammation indicators decreased. Lung exudate

lesions were absorbed.

81

4 ChiCTR2000029606 MB-MSCs 1 44 Three doses of 3 £107 cells; IV Safe and well tolerated. SpO2 was significantly

improved, and chest imaging results were

improved.

82

5 ChiCTR2000031494 UC-MSCs 1 41 A single dose of 2 £106 cells/ kg; IV Clinical symptoms were relieved and alleviated in a

shorter time. Levels of inflammatory factors rapidly

decreased, and lymphocyte count returned to nor-

mal levels in less time.

83

6 Not reported UC-MSCs 1 31 1£ 106 cells/ kg were suspended in

100 ml normal saline. The volume

of infused UC-MSCs was

100�300 mL; IV

No adverse events were observed. Laboratory param-

eters tended to improve.

84

7 Not reported Convalescent plasma com-

bination with UC-MSCs

Case report 1 Three doses of 1 £ 106 cells/kg; IV Absolute lymphocyte count increased, bilateral infil-

trates were absorbed, and pulmonary function was

significantly improved.

85

8 Not reported UC-MSCs or PL-MSCs Case series 11 Three doses of 2 £ 108 cells; IV No serious adverse events. Levels of inflammatory

biomarkers significantly decreased.

86

9 Not reported hESC-IMRCs 1 27 One to three doses of 3£ 106 cells/

kg; IV

No adverse events or abnormal responses related to

cell therapy occurred. The area of lung fibrosis

lesions decreased.

87

10 NCT04269525 UC-MSCs A pilot study 16 Four doses of 1£ 108 cells; IV No infusion-related or allergic reactions. Oxygenation

index was improved, and CT scan improved. Resto-

ration of lymphocyte count and subsets.

88

11 NCT04416139 UC-MSCs 1 5 A single dose of 1£ 106 cells /kg; IV PaO2/FiO2 was improved. 89

12 Not reported hESC-IMRCs Case report 1 Two doses of 3 £ 10 6 cells/ kg; IV Levels of proinflammatory cytokines were decreased.

SpO2 improved.

90

13 NCT04288102 UC-MSCs 2 100 Three doses of 4 £ 107 cells; IV Safe and potentially effective. Lung lesion volume,

especially solid component lesion volume, was

reduced. The 6-minute walk test result improved.

91

14 NCT04457609 UC-MSCs 1 40 A single dose of 1 £ 106 cells/ kg; IV Safe and well tolerated. Survival rate increased. 92

Table 2 (Continued)
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Numbers Trial ID Source of MSCs Phase Numbers
of patients

Doses and administration routes Primary outcomes Refs.

15 NCT04392778 WJ-MSCs 1 30 Three doses of 3£ 106 cells/kg; IV All the indicators of anti-inflammation, anti-fibrosis

signs in the lungs, and levels of immunodulatory

markers were dramatically improved.

93

16 NCT04355728 UC-MSCs 1/2a 24 Two doses of 100§ 20£ 106 cells; IV No serious adverse events were observed. Mortality

and time to recovery decreased significantly.

94

17 Not reported MSCs 1 23 Two or three doses of 1 £ 106 cells/

kg; IV

Safe and well tolerated. Pulmonary function and over-

all outcomes were improved.

95

18 Not reported UC-MSCs 1 210 A single dose of 1-2£ 106 cells/kg;IV No adverse effects. SaO2 improved. 96

19 Not reported AD-MSCs 1 13 One to three doses of 0.98 £ 106

cells/kg; IV

No adverse events. Clinical symptoms and values of

inflammatory parameters improved.

97

20 NCT04339660 UC-MSCs 2 58 A single dose of 1£ 106 cells /kg; IV MSC-treated patients had fewer adverse events. Clini-

cal symptoms, values of inflammatory parameters,

and CT scan improved. MSCs promoted the pro-

duction of SARS-CoV-2-specific antibodies.

98

21 IRCT20190717044241N2 WJ-MSCs 1 5 Three doses of 150 £ 106 cells; IV Safe and well tolerated. Levels of inflammatory bio-

markers improved.

99

22 Not reported UC-MSCs Case

report

1 Three doses of 5£ 107 cells/ kg; IV No obvious side effects. Values of clinical indices and

clinical symptoms were improved.

100

23 Not reported UC-MSCs Case

report

1 Five doses of 1.5 £ 106 cells/ kg; IV The number of lymphocytes was increased.

Respiratory and renal functions were improved.

101

24 Not reported WJ-MSCs Case

report

1 A single dose of 1£ 106 cells /kg; IV The percentage and counts of T cells were increased.

CT scan was improved.

102

25 Not reported MSCs A retrospective

study

25 One to three doses of 1 £ 106 cells/

kg; IV

Three cases experienced treatment-related side

effects including liver dysfunction, heart failure,

and allergic rash.

103

26 Not reported ExoFlo 1 27 15 ml of ExoFlo was added to 100 mL

of normal saline; IV

No adverse events. Clinical status, oxygenation, and

laboratory values improved, levels of acute phase

reactants declined.

105

Table 2: Completed clinical studies of MSCs in the treatment of patients with COVID-19.
MSCs, mesenchymal stem cells; MB-MSCs, menstrual blood-derived MSCs; PL-MSCs, placenta-derived MSCs; hESC-IMRCs, human embryonic stem cell�derived immunity� and matrix�regulatory cells; WJ-MSCs, Wharton’s

jelly-derived MSCs; ExoFlo, exosomes derived from allogeneic bone marrow MSCs; SaO2, arterial oxygen saturation; SpO2, oxygen saturation; CT, computed tomography.
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of dyspnea and a shorter recovery time.79�90 CT images
of the lungs also showed notable improvements in pul-
monary lesions,81�83,86,91 including a decrease in patho-
logical lobes, ground-glass opacity, and
consolidations.83 Other studies have shown that MSC
add-on therapy enhanced the survival of severe/critical
patients82,92 and even those who developed
ARDS.86,93�95 The choice of a time window for MSC-
based therapies was considered crucial; MSC transfu-
sion for severe patients prior to intubation could reduce
the risk of disease progression and 28-day
mortality.83,96 Furthermore, early initiation of MSC
treatment might contribute to a higher extubation rate
in patients who received mechanical ventilation.97

The underlying mechanisms of MSC-based reme-
dies for the maintenance of homeostasis, immune
reconstitution, and tissue repair have been investigated
in detail, and the effect of MSCs on hematopoiesis was
found to correlate with the activation of a novel subpop-
ulation of VNN2+ hematopoietic stem/progenitor like
(HSPC-like) cells, which were mobilized following MSC
infusion.98 Notably, the changes in inflammatory indi-
ces following MSC treatment were inconsistent. Partial
data from clinical trials showed that MSCs exerted anti-
inflammatory and immunoregulatory effects through
reducing the levels of inflammatory biomarkers (C-reac-
tive protein, IL-6, IL-2, IL-12, IL-8, TNF-a, and IFN-g)
and increasing the level of anti-inflammatory IL-10 and
T cell counts.80,81,83,84,94,95,98�102 In other trials, signifi-
cant changes in inflammatory factor levels were not
observed.82,91,103 Therefore, the effect of MSC treatment
on inflammation should be further studied in large-
cohort randomized controlled trials.

In our double-blind, placebo-controlled phase 2 trial,
MSC administration significantly reduced solid compo-
nent lesion volume within 28 days in patients with
severe COVID-19.91 During the subsequent one-year
follow-up period, the patients who received MSC treat-
ment showed reduced solid component lesion volume
and improved pulmonary function, indicating that MSC
therapy might have long-term benefits.104 Bone marrow
MSC-derived exosomes have also been reported to be
safe and effective in reducing acute phase reactant and
neutrophil counts, increasing T cell counts, and improv-
ing oxygenation in severe cases.105 These data support
the therapeutic potential of MSCs for severe cases with
progressive lung damage.

Although most clinical trials showed that MSC treat-
ment is generally safe and well tolerated, some MSC-
related adverse events have still been recorded. The
major clinical symptoms included facial flushing,
fever,79 shivering,86 headache,99 liver dysfunction,
heart failure, and allergic rash.95 However, adverse
events were recorded in both MSC-treated patients and
controls, indicating that the side effects might be infu-
sion-related.94 Furthermore, the speed of transfusion
and the baseline status of patients with co-existing
www.thelancet.com Vol 77 Month March, 2022
illnesses may be associated with the occurrence of
adverse events.
Challenges and perspective
Large-scale vaccination has provided essential protec-
tion by establishing herd immunity, which will further
contribute to the control of the SARS-CoV-2 pandemic.
However, there are still re-infection and post-vaccina-
tion breakthrough cases in COVID-19. Many infected
individuals are asymptomatic or show mild/moderate
symptoms; however, it is difficult to ensure the full
recovery of severe and critical patients using current
medications, including symptomatic treatment, antivi-
ral therapy, and respiratory support treatment. MSCs
may serve as an alternative immunotherapeutic option
for severely affected individuals and contribute to the
improvement of COVID-19 outcomes. Notably, clinical
application protocols for MSCs are diverse, and opti-
mized standard protocols will be required to maximize
their therapeutic effect. Moreover, the choice of a time
window for treatment, the identification of COVID-19
patients at suitable phases, and the regimen (including
dosage, interval time, and round) all need to be compre-
hensively optimized.

Most importantly, adverse reactions related to MSC
treatment and infusion also require caution. Low-grade
fever, facial flushing, headache, and allergic rash after
MSC infusion were reported, although these side effects
were transient and generally disappeared within 24 h
without any treatment. However, treatment of these
symptoms may be required in severe cases. In addition,
the risks of thromboembolic events associated with
intravenous infusions of high doses of MSCs should
also be noted. To improve safety, it is best to monitor
the electrocardiogram and percutaneous oxygen satura-
tion during MSC infusion, and to test for laboratory
parameters, including liver and kidney function, blood
routine, CRP, inflammatory cytokines, coagulation, pro-
calcitonin, blood gases, and heart function, before MSC
infusion.106

Follow-up studies extending over a year in length
have reported that severe COVID-19 patients still experi-
enced symptoms and persistent physiological and radio-
graphic abnormalities.31 These data indicate that some
severe COVID-19 patients will still require suitable
interventions to improve their long-term prognoses.
MSCs have been suggested for post-COVID-19 treat-
ment for their antifibrotic and regeneration/differentia-
tion properties. To determine the fate of the infused
cells and to interpret the interactions between the colo-
nized MSCs and immunocytes, MSC tracking in vivo is
required. Furthermore, specific airspace and plasma
biomarkers are required to predict and verify the effi-
cacy of MSCs against COVID-19.

Both fresh and frozen MSCs with proven efficacy in
clinical applications are readily available, and it is
7
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noteworthy that dead or apoptotic MSCs found in MSC
preparations exert the same immunomodulatory proper-
ties as the "living MSCs" by releasing phosphatidylser-
ine.107 In addition, MSCs derived from different donors
and tissues lead to individual heterogeneity, which compli-
cates the progress of consistent and standardized stem cell
production.108,109 Therefore, it is necessary to screen quali-
fied MSCs to avoid uncertain effects.

In summary, MSC therapy appear to serve as an
alternative candidate for ameliorating inflammation,
repairing lung tissue injury, and preventing long-term
pulmonary disability in patients with COVID-19. How-
ever, the different groups of enrolled patients, therapeu-
tic regimen and the time window for treatment of
MSCs may lead to the disparities of data in the previous
clinical trials. Prospective, multicenter, randomized and
controlled trials with large sample size are still neces-
sary to further confirm therapeutic efficacy of MSCs for
the patients with severe and critical COVID-19.
Outstanding questions
Although available data from preliminary clinical trials
have proved the safety and some efficiency of MSC treat-
ment for COVID-19 patients, there are certain dispar-
ities caused by the inconsistency of inclusion and
exclusion criteria. Therefore, determining the character-
istics of patients who may gain more clinical benefits
from MSC treatment will require more multicenter,
randomized, controlled trials and long-term follow-up
studies. Moreover, concomitant treatments may exert a
synergistic or antagonistic role with MSCs, and treat-
ment regimens need to be optimized. Further mecha-
nistic studies are also needed to verify the efficacy of
MSCs in COVID-19 treatment.
Search strategy and selection criteria
Data for this review were identified by searches of PubMed
and Google Scholar and references from relevant articles
using the search terms “SARS-CoV-2,” “COVID-19,”
“immunotherapy,” “Mesenchymal stem cells,” “ARDS,”
“Clinical trial,” “Lung injury,” “pulmonary fibrosis,”
“Cytokine storm,” “immune response,” “clinical features,”
“follow-up,” and related terms. Only articles published in
English between 1994 and 2021 were included in the
study. Articles were selected based on their relevance and
the authors’ best judgments.
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