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Introduction

Myeloid sarcoma (MS) is a subgroup of acute myeloid
leukemia (AML) where myeloid blasts form a tumoral
mass in extramedullary tissues [1]. MS may occur at any
point during the disease course and almost every site of
the body can be affected. Although MS is often diag-
nosed as an isolated event without concomitant bone
marrow involvement, virtually all of these patients will
develop overt hematologic disease if left untreated [2,3],
which further highlights the systemic nature of this dis-
ease. Beside isolated MS, extramedullary manifestations
might also occur simultaneously with leukemic bone mar-
row (BM) infiltration. The incidence rate of this situation
in newly diagnosed AML patients is estimated to be
around 9%, however, some authors report incidence rates
of up to 20–40% [2,4]. MS is usually treated with standard
AML induction regimens, even if it occurs as isolated
event. However, little is known about optimal consolida-
tion strategies after achievement of complete remission
[5,6]. This is particularly true for cases with isolated MS,
which is due to the fact that material from MS biopsies
is often sparse and usually Formalin-Fixed-Paraffin-
Embedded (FFPE), thereby often precluding comprehen-
sive AML risk stratification. In this study analyzing 18
cases of MS, we developed a next-generation sequencing
(NGS) based approach, which enables the detection of
both mutations and translocations with prognostic rele-
vance from FFPE tissues of MS. Additionally, we analyzed
the effects of this MS tissue based NGS profiling on AML
risk stratification in cases where MS coincides with sys-
temic AML and where cytogenetic/molecular analyses
have already been performed from leukemic BM.

All patient specimens of MS and corresponding BM
biopsies were collected at the Division of Hematology,
Medical University of Graz (MUG), between June 2003
and December 2016 and stored as FFPE samples. Patient

characteristics are presented in Table 1. Briefly, MS coin-
cided with systemic AML in 11 patients, whereas isolated
MS was present in seven cases. The study was approved
by the MUG-ethical committee (vote number 24-036 ex
11/12) and performed in accordance with the Declaration
of Helsinki.

In a first step, we focused on the detection of translo-
cations with relevance for AML risk stratification [5]. This
is of relevance, as complete cytogenetic analysis from MS
specimens is usually not possible, which is due to the fre-
quent unavailability of fresh material. Additionally,
although fluorescence in situ hybridization (FISH) was
successfully applied to MS specimens previously [7], this
approach is limited by the fact that the amount of MS
material is often sparse and that every abnormality tested
requires at least one FFPE-section slide. Significant pro-
gress in this area came from Mirza et al., who recently
analyzed six cases of MS by chromosomal microarray ana-
lysis (CMA) [8]. Without the need to target their analyses
to selected abnormalities, they successfully detected
unbalanced chromosomal aberrations and complex karyo-
types. However, a limitation of this approach was the fact
that prognostically relevant balanced chromosomal rear-
rangements could not be detected. To circumvent this
limitation, we now performed NGS-based translocation
analysis using only 100 ng of RNA extracted from
FFPE-MS specimens discovering CBFB-MYH11, DEK/CAN-
NUP214, DEK-NUP214, MLL-MLLT3, PML-RARA, RBM15-
MKL1, RPN1-MECOM, and RUNX1-RUNX1T1 (for details
see also the Supplementary information). By studying
18MS specimens, we were able to unambiguously detect
the presence of CBFB-MYH11 in three of them (Figure 1).
In two of these cases, MS presented as an isolated event
without any evidence of systemic disease. While the
follow up of these patients was too short to allow any
conclusions about a prognostic relevance of this lesion in
MS, previous reports suggested a potential correlation of
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CBFB-MYH11 with a favorable clinical course in isolated
MS [9]. It will, however, be necessary to corroborate these
data in larger, preferably prospective clinical cohorts.
In the third case, MS coincided with systemic disease.
Importantly, CBFB-MYH11 could also be confirmed in leu-
kemic BM of this patient by conventional karyotyping
and FISH, which further supports the validity of our tech-
nique. Another advantage of this technique is that all
translocations can be tested in one experimental reaction
from the same batch of RNA, which makes it more time
and cost effective as FISH and which makes it feasible
to increase the number of aberrations analyzed without
increasing the amount of MS-specimen needed. One
might hypothesize, that a potential combination with
CMA might enable clinicians to get a complete chromo-
somal picture of MS in the future, even if the limitations
in available material are taken into account. By this
means, it will also be possible to further corroborate a
potential relevance of classical favorable cytogenetic
markers in AML for risk stratification in isolated MS, as
their analysis in larger, preferably prospective clinical
cohorts will be enabled.

In a next step, we focused on the mutational land-
scape and therefore subjected all FFPE-MS samples to
NGS analysis covering a set of 39 genes recurrently
mutated in myeloid neoplasias as detailed in the
Supplementary information and reported previously [10].
Briefly, we analyzed genes involved in the following cate-
gories: (a) RAS pathway (NRAS, KRAS, PTPN11, CBL, NF1,
and BRAF); (b) activated signaling (FLT3, CSF3R, JAK2,

MPL, KIT, SFRP1, and ETNK1); (c) DNA methylation
(DNMT3A, TET2, IDH1, and IDH2); (d) Cohesins (STAG2);
(e) splicing (SRSF2, DDX41, SF3B1, SF3B2, ZRSR2, and U2AF1);
(f) transcription factors (WT1, GATA2, RUNX1, CEBPA,
ETV6, PHF6, BCOR, and STAT3); (g) chromatin modification
(ASXL1, EZH2); and (h) others (TP53, NPM1, SETBP1, CALR,
and SRP72). Additionally, we analyzed for FLT3 internal
tandem duplication (FLT3-ITD) including its allelic ratio
using PCR fragment length analysis as previously
described [5,11]. As recommended in a recent update of
the European LeukemiaNet guidelines of AML [5], only
high ratios (>0.5) were considered positive. In accordance
with two previous studies, we thereby show that NGS
from FFPE-MS tissues is feasible [12,13]; however, as our
study exceeded previous analyses in genes and cases
analyzed, we were furthermore able to extend the insight
into the spectrum of mutations occurring in this AML
subform (Figure 1). In more detail, our mutational profil-
ing revealed a median of two mutations per sample
(range 1–5) with NPM1, NRAS, and DNMT3A being
affected most frequently. Mutations in NPM1 were pre-
sent in five out of 18 (28%) cases, which further confirms
their frequent occurrence in extramedullary AML reported
previously [2,12,14]. This is also in agreement with previ-
ous in vitro data, where ectopic overexpression of
mutated NPM1 increased the adhesive, migratory and
invasive potential of AML cells [14]. Mechanistically, these
effects were mediated by activation of the RAS-MAPK/ERK
pathway and consecutive upregulation of matrix metallo-
proteases. This essential role of RAS signaling in MS
development is also in line with the high rate of NRAS
mutations observed within our study, which was 28%
(five of 18 cases affected) as well. Importantly, in case
mutations that directly affect the RAS pathway in general
were considered, this rate was even higher with ten out
of 18 patients (56%) being affected. Finally, also muta-
tions in DNMT3A occurred with a high frequency (5/18,
28%). Although this observation is novel, a link between
mutated DNMT3A and extramedullary manifestation
of AML has been shown previously [15]. Xu et al. used
in vitro and in vivo approaches to study the role of
mutated DNMT3A in the development of MS. They could
further show that this was mediated via upregulation of
TWIST1, a critical inducer of epithelial-mesenchymal tran-
sition. Sequencing of larger MS cohorts will be needed to
further validate these findings and to clearly establish a
genomic landscape of MS.

In a final approach, we focused on the eleven patients
with simultaneous manifestation of systemic AML and
MS, respectively, and aimed to delineate whether molecu-
lar profiling of MS specimens might affect the BM-derived
risk stratification. Interestingly, the molecular makeup of
leukemic AML-BM did not differ from simultaneously
obtained MS specimens in these analyses, suggesting
that the risk profile obtained from leukemic BM might be
sufficient and not altered by additional analysis of MS
specimens. This is in line with a recent article by Ganzel

Table 1. Clinical characteristics of 18 patients with MS.
Age at diagnosis (years) 54 (21–77)
AML subtype

De novo, n¼ 10/18 (55%)
Secondary, n¼ 5/18 (28%)
Therapy-related, n¼ 3/18 (17%)

Sex
Male, n¼ 13/18 (72%)
Female, n¼ 5/18 (28%)

WBC at diagnosis (109/L) 9.49 (2.77–64.98)
LDH (U/L) 276 (119–3023)

MS onset
Isolated, n¼ 7/18 (39%)
Concomitant with systemic AML, n¼ 11/18 (61%)

MS sites
Lymphatic system, n¼ 7/18 (38%)
Cutaneous, n¼ 3/18 (16%)
Gastrointestinal tract, n¼ 1/18 (6%)
Bone, n¼ 2/18 (11%)
Soft tissue, n¼ 2/18 (11%)
Salivary glands, n¼ 1/18 (6%)
Liver, n¼ 1/18 (6%)
Spleen, n¼ 1/18 (6%)

Therapy
High-Dose incl. HSCT, n¼ 9/18 (50%)
High-Dose, n¼ 4/18 (22%)
Low-Dose, n¼ 4/18 (22%)
BSC, n¼ 1/18 (6%)

WBC: white blood cell count; LDH: lactate dehydrogenase; HSCT: hemato-
poietic stem cell transplantation; BSC: best supportive care.
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et al., who failed to observe a prognostic effect of extra-
medullary manifestation(s) in AML patients treated with
standard chemotherapy, thereby concluding that add-
itional biopsy of suspected MS sites might be dispensable
in case AML was already diagnosed via the BM [4].
However, these data are in contrast to a previous study
by Pastoret et al., who analyzed five paired leukemic BM/
MS samples and detected a geographic clonal heterogen-
eity at the stage of relapse in one case, with a TP53
mutation detectable in MS specimens only [13]. Analysis
of larger cohorts specifically addressing this issue will
therefore be needed to clarify this issue.

In conclusion, we demonstrate that comprehensive
AML risk stratification is possible in FFPE specimens of

MS, even if only limited material is available. We therefore
suggest that it should ideally be performed in every
patient with isolated MS to help clinicians in selecting
optimal therapeutic postremission strategies. Analysis of
larger cohorts will be needed to unambiguously clarify
whether additional risk stratification is necessary in MS
biopsies of cases, where MS coincides with systemic
AML and where risk stratification is already available from
leukemic BM.

Potential conflict of interest: Disclosure forms provided
by the authors are available with the full text of this
article online at https://doi.org/10.1080/10428194.2017.
1339879.

Figure 1. Risk stratification in MS. (A) Frequency of mutations/translocations in 39 genes with recurrent mutations in myeloid neo-
plasias. Eighteen patients with MS have been analyzed, comprising seven cases of isolated MS (gray) and 11 cases of MS simultan-
eously arising with AML-BM infiltration (black). (B) Heatmap showing the distribution of mutations/translocations in these patients.
Again, aberrations in cases with isolated MS are depicted in gray, whereas aberrations in cases with MS simultaneously arising
with AML-BM infiltration are displayed in black.
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