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Active regulator of SIRT1 is
required for cancer cell survival
but not for SIRT1 activity
John R. P. Knight†, Simon J. Allison‡ and Jo Milner

Department of Biology, University of York, York YO10 5DD, UK
1. Summary
The NADþ-dependent deacetylase SIRT1 is involved in diverse cellular pro-

cesses, and has also been linked with multiple disease states. Among these,

SIRT1 expression negatively correlates with cancer survival in both laboratory

and clinical studies. Active regulator of SIRT1 (AROS) was the first reported

post-transcriptional regulator of SIRT1 activity, enhancing SIRT1-mediated

deacetylation and downregulation of the SIRT1 target p53. However, little is

known regarding the role of AROS in regulation of SIRT1 during disease.

Here, we report the cellular and molecular effects of RNAi-mediated AROS

suppression, comparing this with the role of SIRT1 in a panel of human cell

lines of both cancerous and non-cancerous origins. Unexpectedly, AROS is

found to vary in its modulation of p53 acetylation according to cell context.

AROS suppresses p53 acetylation only following the application of cell dama-

ging stress, whereas SIRT1 suppresses p53 under all conditions analysed.

This supplements the original characterization of AROS but indicates that

SIRT1 activity can persist following suppression of AROS. We also demonstrate

that knockdown of AROS induces apoptosis in three cancer cell lines, indepen-

dent of p53 activation. Importantly, AROS is not required for the viability of

three non-cancer cell lines indicating a putative role for AROS in specifically

promoting cancer cell survival.
2. Background
SIRT1 is the human homologue of the Sir2 deacetylase and has been studied

widely as a factor in human disease. Functionally, SIRT1 is able to regulate cel-

lular metabolism, epigenetic gene expression and multiple target proteins

important to the cellular response to stress [1]. Misregulation of SIRT1 is impli-

cated biochemically and genetically in diabetes and has been proposed as a

therapeutic target in neurodegeneration, osteoarthritis and cardiovascular dis-

ease [2–8]. SIRT1 also has a role in tumour suppression in non-transformed

cells via maintenance of genomic stability [9–11]. However, cellular and mol-

ecular studies have revealed a pleiotropic role for SIRT1 in cancer, as it acts

as a tumour promoter post-cancer formation [12,13].

Cellular analyses have implicated SIRT1 in tumour cell growth, and poor

prognosis in hepatocellular carcinoma [14–16]. Others have reported SIRT1 over-

expression in primary and murine studies of prostate cancer [17,18] and found a

requirement for SIRT1 for pro-survival signalling in oestrogen positive breast

cancer, where expression also correlates with poor prognosis [19,20]. SIRT1 is

also over-expressed and required for cell survival in pancreatic cancers [21,22],

has been implicated in the non-solid tumour chronic myelogenous leukaemia

[23,24] and suggested as an anti-cancer target for medulloblastoma [25,26].

At the molecular level, SIRT1 promotes tumour cell survival via inactivation

of key tumour suppressor proteins such as the transcription factors p53 [27,28]
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and the FOXOs [29,30], the transcriptional repressor pRb [31]

and the signalling phosphatase PTEN [32]. Acetylation of p53

at a number of residues, including the SIRT1 target site lysine

382 (lysine 379 in the mouse), is essential for transactivation

of genes required for cell cycle arrest and the induction of apop-

tosis [33]. Activation of these genes forms the p53-mediated

stress response and plays an important part in the role of p53

as a tumour suppressor. As such, reduction of p53 acetylation

by SIRT1 will contribute to reduced tumour suppression via

p53. Additionally, SIRT1 promotes the tumorigenic functions

of the proto-oncogenes c-Myc and N-Myc by modulating tran-

scriptional co-activation, phosphorylation and protein stability

[34–37]. Furthermore, SIRT1 has been linked to modulation of

cancer epigenetics via regulation of histone acetylation [38], and

may be enhanced by the altered metabolic status of many

cancer cells via its dependence upon NADþ as a coenzyme [39].

The regulation of SIRT1 also supports a role in tumour

growth and survival [40]. For example, N-Myc and c-Myc

complete positive feedback loops that promote SIRT1

expression and activity [35,36], and the negative regulator

of SIRT1 hypermethylated in cancer 1 (HIC1) is commonly

epigenetically repressed in cancer, allowing for an increase

in SIRT1 activity [41].

This study focuses on protein-level regulation of SIRT1 by

active regulator of SIRT1 (AROS; also known as RPS19BP1)

[42]. Despite being the first reported post-translational regu-

lator of SIRT1, little is known regarding the role of AROS

in the context of SIRT1-related disease. AROS directly binds

at a site (amino acids 114–217) distal to the SIRT1 catalytic

domain (amino acids 245–495), and via this interaction pro-

motes SIRT1 deacetylation activity [42,43]. AROS function

has been correlated with SIRT1 in regulation of the heat

shock transcription factor 1 (HSF1) [44,45]. AROS suppressed

HSF1 acetylation and increased its promoter occupancy and

target transcription, correlating with the role of SIRT1. How-

ever, it is not known whether SIRT1 requires AROS for all

activity; although AROS has been reported to promote

SIRT1 activity, it is possible that SIRT1 functions in the

absence of AROS in certain cellular contexts. In reconstituted

in vitro SIRT1 deacetylase assays using purified factors, SIRT1

is able to deacetylate p53 in the absence of AROS [46,47].

However, the contribution of AROS to SIRT1 deacetylase

activity in a more physiological setting has not been studied

in detail.

Supplementary to regulation of SIRT1, AROS also directly

associates with the ribosomal protein RPS19 [48]. Through

this interaction, AROS promotes the assembly of small ribo-

somal subunits, with depletion of the protein perturbing

ribosome biogenesis and limiting global protein synthesis [49].

Interestingly, AROS may also regulate protein synthesis via a

continued association with mature small ribosomal subunits

and the suppression of eIF2a phosphorylation at serine 51, a

key limiting step in the initiation of protein synthesis [49].

The initial characterization of AROS as a regulator of

SIRT1 found that AROS depletion reduced the viability

of the HCT116 cancer cell line [42]. Conversely, the viability of

HEK293 cells, of non-cancerous origin, was not affected by

knockdown of AROS [45]. This is consistent with AROS

cooperating with SIRT1 to determine cell fate—we previously

identified SIRT1 as a survival factor for epithelial cancer cell

lines, whereas SIRT1 was redundant for survival of cell lines

of non-cancerous origin [50]. Importantly, the role of AROS in

regulating both cancer and non-cancer cell fate has not been
addressed by a dedicated study. We address this here by

using cell lines of both cancerous and non-cancerous origin

to explore the role of AROS in cell viability.
3. Results and discussion
3.1. Active regulator of SIRT1 expression does not

correlate with SIRT1
We hypothesized that similar expression patterns of SIRT1 and

AROS would suggest a consistent regulatory relationship

between the two proteins. To assess this, we compared the

protein expression of SIRT1 and AROS across a panel of

human cell lines by western blot (figure 1a). AROS shows vari-

able expression across the panel, and does not correlate with

SIRT1 expression. Taking densitometry readings and plotting

values for SIRT1 against AROS for each cell line gives a

R2-value of 0.394, indicating this poor correlation (see elec-

tronic supplementary material, table S1). Taking an example,

AROS expression is comparable between the MCF10A and

MCF7 cell lines, whereas the expression of SIRT1 is more

than twice as great in the MCF7 line. These expression patterns

imply a variance in the SIRT1/AROS relationship. We also note

the higher expression of SIRT1 in the cancer cell lines compared

with the non-cancer cell lines (figure 1a).

We proceeded to analyse the function of AROS, using

SIRT1 function for comparison. To do this, both SIRT1 and

AROS were targeted by RNAi in parallel to knockdown of a

positive control mRNA, Lamin AC. RNAi against AROS
reduces its mRNA expression, such that it is not detectable

by qPCR in ARPE19 cells (figure 1b) and leads to depletion

of AROS protein (figure 1c). Both SIRT1 and Lamin AC
mRNA and protein are also effectively and specifically reduced

by siRNA transfection with the relevant siRNAs (figure 1b,c).

3.2. Active regulator of SIRT1 promotes cancer cell
line survival

We next analysed the roles of SIRT1 and AROS in cell line

viability, using RNAi in a panel of cell lines with defined ori-

gins (figures 2 and 3). Suppression of either SIRT1 or AROS

in three epithelial cancer cell lines results in an increase in

refringent cells, consistent with an induction of apoptosis,

along with a concomitant reduction in the adhered cell popu-

lation (figure 2a). Effective knockdown of AROS is confirmed

by western blotting in each cell line (figure 2b). The apoptotic

phenotype was quantified by flow cytometry for annexin V

positive and propidium iodide negative cells, which are sig-

nificantly induced following silencing of either SIRT1 or

AROS in each of the cancer cell lines (figure 2c). AROS knock-

down induces a 4.4-fold increase in apoptosis in the HCT116

cell line compared with mock-treated cells, with 2.7-fold and

3.1-fold induction seen in the HCT116 p53– / – and MCF7

lines, respectively. These values are comparable with the

apoptotic induction following silencing of SIRT1 in each

cell line (figure 2c). Co-knockdown of AROS and SIRT1 in

HCT116 cells results in a similar induction of apoptosis to

knockdown of each individually (see electronic supplemen-

tary material, figure S1a). This non-additive induction of

apoptosis could imply that AROS suppresses apoptosis via

its activation of SIRT1—loss of AROS cannot further reduce
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graphs 48 h following targeting of AROS or SIRT1 in HCT116, p53 wild-type
and null ( p532/2), and MCF7 cancer cells. (b) Western blotting for AROS
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autoradiographs. (c) Quantification of apoptotic induction in each cancer
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Figure 1. AROS expression in cancer and non-cancer cell lines. (a) Western
blotting for the expression of AROS and SIRT1 proteins across a panel of
cancer and non-cancer cell lines (see Materials and methods). b-actin is
used as a loading control. (b) Quantification of Lamin AC, SIRT1 and AROS
mRNA by qRT-PCR from total RNA extracted from ARPE19 non-cancer cells
72 h post-transfection. ***p , 0.001. (c) Western blotting for expression of
proteins targeted by RNAi in ARPE19 cells in parallel to (b). Equal loading
of protein is assessed using b-actin.
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RNAi-depleted SIRT1 activity. However, it is possible that

single knockdown of each target induces maximal apoptosis,

and as such additive apoptosis upon co-knockdown was not

registered, or alternatively that knockdown of each target

converges on this induction of apoptosis via different routes.

Importantly, in each of the cancer cell lines targeting of a

control mRNA does not induce an increase in apoptosis, indi-

cating that AROS or SIRT1 suppression-induced apoptosis

was not the consequence of functional RNAi (figure 2c). An

independent siRNA, AROS 2 siRNA, induces a similar altera-

tion in phenotype in the HCT116 cells to the first AROS
siRNA (see electronic supplementary material, figure S1b).

A significant 2.3-fold increase in apoptosis is seen following

AROS 2 siRNA treatment, supporting the role for AROS in

HCT116 cancer cell line survival.

3.3. Active regulator of SIRT1 is redundant for
non-cancer cell line survival

The observation that AROS silencing induces apoptosis in

three cancer cell lines is consistent with SIRT1 requiring

AROS to promote survival. This led us to analyse the role

of AROS in non-cancer cells, where SIRT1 is not essential for

survival [50]. Suppression of either SIRT1 or AROS in

ARPE19, WI-38 and MCF10A cell lines does not greatly alter
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cell phenotype compared with mock treatment (figure 3a).

AROS suppression by RNAi is comparable with the level

seen in the panel of cancer cell lines (figures 3b and 2b). Despite

the efficient knockdown, silencing of either SIRT1 or AROS

does not increase the number of apoptotic cells, measured by

flow cytometry, compared with mock treatment in each of

the non-cancerous cell lines (figure 3c).

These data indicate that AROS is required for the survival of

three human cancer lines, but is redundant for viability in three

cell lines of non-cancerous origins. Furthermore, AROS is able

to promote cancer cell survival in the absence of p53 expression,

demonstrated by apoptotic induction in the HCT116 p53–/2

line (figure 2c). Apoptotic induction is lower in these p53 null

cells compared with wild-type cells, perhaps indicating that

p53 facilitates apoptosis when expressed. Importantly, the

data for AROS correlate with the role of SIRT1 in all cell lines

analysed (figures 2 and 3 and [50]). These data also suggest

that targeting AROS in cancer may be of therapeutic benefit.
3.4. Active regulator of SIRT1 does not influence
SIRT1 expression

The similarity in phenotype following AROS or SIRT1 knock-

down suggests similar function, and is consistent with SIRT1

activity being promoted by association with AROS [42]. Simi-

lar to the original report of AROS function, knockdown of

AROS does not alter SIRT1 protein expression in the panel

of cell lines analysed (figure 1c and figure 4), aside from a

slight decrease in SIRT1 expression in the MCF10A cell line

following AROS knockdown. AROS knockdown does not

negatively affect SIRT1 mRNA expression in the ARPE19

cell line (figure 1) or the other five cell lines analysed

(see electronic supplementary material, figure S2). Figure 4

illustrates SIRT1 silencing resulting in the phenotypes in

figures 2 and 3. To this point, the data presented correlate

with a role for AROS in promoting SIRT1 function at the cel-

lular level, despite differences in relative expression of the

proteins between cell lines. We next analysed the role of

AROS in the molecular function of SIRT1-deacetylation.

3.5. Active regulator of SIRT1 suppression of p53
acetylation is variable

The role of SIRT1 in promoting cancer cell survival has been

linked to the suppression of p53 [27,28,50]. We therefore

asked whether AROS suppresses p53 in HCT116 cancer

cells, by monitoring total and acetylated p53 levels by

western blot following RNAi against AROS, and SIRT1 for

comparison. Suppression of SIRT1 results in an induction of

both total and acetylated p53 (figure 5a, left panel). This is

due to disruption of a constitutive cycle of acetylation and

deacetylation of p53 at lysine residue 382 via loss of SIRT1
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deacetylation activity [50]. As a result, acetylation of p53

continues, leading to increased acetyl-p53 (K382Ac). Acety-

lation of p53 is essential for activation of the transcriptional

programme required for tumour suppression [33], and is

generally followed by accumulation of p53 protein.

Should AROS promote SIRT1 activity towards p53, we

would expect a similar increase in p53 acetylation following

AROS knockdown, as reported previously [42]. However,

we observe that targeting of AROS does not increase acetyl-

ated or total p53 levels compared with mock treatment

under normal cell growth conditions (figure 5, left panel).

Thus, under these conditions, AROS does not appear to be

required for p53 deacetylation, suggesting that SIRT1 is

able to suppress p53 when AROS expression is reduced. It

is possible that incomplete silencing of AROS allows partial

function and suppression of p53. However, the extent of

AROS suppression achieved through RNAi-induced cancer

cell apoptosis (figure 2), suggesting that a loss of AROS

function has occurred.

In the light of these differences between AROS and SIRT1,

we noted that the most conclusive previous data indicating a

suppressive role for AROS upon p53 were obtained where

p53 had been activated by the application of stress in the

form of etoposide and trichostatin A [42]. This treatment

induces DNA damage, and subsequently elevates p53 levels

([51,52] and electronic supplementary material, figure S3b).
Reproducing this treatment here results in a modest increase

in p53 acetylation following AROS knockdown (figure 5,

middle panel). SIRT1 silencing following drug treatment mir-

rors the effect of silencing SIRT1 in the absence of stress, with

both total and acetylated p53 levels increased.

Given the moderate suppression of p53 by AROS follow-

ing etoposide and trichostatin A treatment, we assessed a

second form of p53-inducing stress, ultraviolet (UV-C)

irradiation (see electronic supplementary material, figure S3b).

A single dose of 10 J m22 was applied 24 h prior to harvesting

cells which had been pre-treated with siRNAs against SIRT1

or AROS 48 h prior to harvesting. Following UV-C stress,

knockdown of either AROS or SIRT1 results in a large increase

in both total and acetylated p53 (figure 5, right panel). The

extent of p53 acetylation is greater following SIRT1 knockdown,

but the correlation between SIRT1 and AROS knockdown is

consistent with AROS promoting SIRT1-mediated deacetyla-

tion of p53 [42]. Silencing of either SIRT1 or AROS following

etoposide and trichostatin A treatment or UV-C irradiation

induced an increase in apoptosis (see electronic supplementary

material, figure S3c).

Consistent with the findings of Kim et al. [42], we find that

overexpression of flag-tagged AROS protein under normal

cell growth conditions reduces p53 acetylation (figure 5c).

From this, it appears that AROS has the capacity to activate

SIRT1 in the absence of exogenous stress, even though
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RNAi against AROS does not increase p53 acetylation under

basal conditions. However, it is important to contrast the

loss-of-function RNAi experiments in figure 5a with the

gain-of-function overexpression experiments in figure 5c.

Forced overexpression of AROS reveals the functions AROS

is able to carry out, whereas removal of AROS by RNAi indi-

cates the functions AROS is actually carrying out. In this

instance, it appears that AROS is able to suppress p53, but

under basal conditions is not doing so. Thus, in HCT116

cells, SIRT1 can continue to deacetylate p53 in the absence

of AROS under basal conditions.

3.6. SIRT1 and active regulator of SIRT1 have different
molecular functions

All together, these data indicate different molecular roles for

SIRT1 and AROS in the regulation of p53; SIRT1 deacetylates

p53 under all conditions analysed, whereas AROS suppres-

sion of p53 acetylation is dependent upon cell context. We

assume that the regulation of p53 by AROS occurs via

SIRT1, or conversely that the lack of regulation of p53 results

from a lack of activation of SIRT1.

To understand this further, we analysed p53 protein

following co-knockdown of AROS and SIRT1 (figure 5b).

Surprisingly, we found that co-knockdown reduced the acety-

lation of p53 compared with SIRT1 knockdown alone—lanes

2 and 4. Unexpectedly, this suggests that AROS may be able

to promote p53 acetylation when SIRT1 protein levels are

reduced. One possible explanation is that SIRT1 regulates

AROS protein and activity, reminiscent of the functional inter-

action SIRT1 shares with its repressor DBC1 [53], and opposing

acetyl-transferase p300 [54]. While not fully understood at

present, this may add an extra layer of complexity to the

relationship between SIRT1, AROS and p53 that warrants

further investigation.

It is important to note that the reduction in p53 acetylation

following co-knockdown of AROS and SIRT1 compared with

SIRT1 alone does not correlate with a reduction in apopto-

sis; no difference in the level of apoptosis is seen between

the two conditions (see electronic supplementary material,

figure S2a). This, and the fact that SIRT1 and AROS suppress

apoptosis in HCT116 p532/2 cells (figure 2), is consistent

with SIRT1 and AROS enhancing cancer cell survival by

p53 independent routes. Furthermore, it suggests that AROS

may regulate cell survival via regulation of alternative SIRT1

targets. Future studies should analyse AROS regulation of

SIRT1 targets other than p53 in an effort to understand whether

AROS acts as an on/off activator or perhaps more intricately

via direction of SIRT1 towards certain substrates.

3.7. Physiological implications of a variable SIRT1/active
regulator of SIRT1 relationship

Interestingly, our data indicate a potential mechanism by

which SIRT1 responds to environment cues linked to cell

damage. SIRT1 may only require AROS for suppression of

p53 after cellular stress. In vitro analyses of SIRT1 activity

lend support to this non-essential role for AROS in SIRT1

activity [46,47]. Given that AROS regulation of SIRT1 depends

on direct association, we note that the SIRT1–AROS interaction

has recently been described as weaker than SIRT1 interactions

with many other proteins [55]. These interactions were
quantified from cells under basal conditions, with the potential

for changes in the SIRT1 interactome following stress not ana-

lysed. Future studies will aim to elucidate the interaction and

regulatory dynamics between SIRT1 and AROS.

It is possible that the variable role for AROS in p53 suppres-

sion represents relative substrate availability; following stress,

the abundance of p53 is increased, perhaps rendering SIRT1

more dependent upon AROS for p53 deacetylation (see elec-

tronic supplementary material, figure S3b). However, p53

appears to be induced to a greater extent by etoposide and tri-

chostatin A treatment than UV-C irradiation, yet regulation by

AROS is greater following UV-C irradiation (figure 5 and the

electronic supplementary material, figure S3b). The intra-

cellular response to these insults will differ, which could

account for the differing severity of the de-repression of p53 fol-

lowing AROS silencing. UV-C irradiation damages DNA,

RNA and protein constituents of the cell [56], whereas the

application of etoposide and trichostatin A will be restricted

to DNA damage [51,52]. We recently identified AROS as a ribo-

some associated protein, important for maintaining maximal

ribosome function [49]. Interestingly, the ribosome acts a hub

for both RNA and protein quality control within the cell

[57,58], provoking the possibility that the differences in regu-

lation of SIRT1 by AROS are linked to regulation of AROS

via its ribosomal association.

Abnormal ribosome biogenesis has long been discussed as a

marker for cancer, presumably owing to a need for increased

protein synthesis [59,60]. Targeting of ribosome biogenesis

could provide a means to target rapidly dividing cells without

mutagenic chemotherapeutics. Recently, a proof-of-concept

study analysed suppression of ribosome biogenesis for anti-

cancer therapy, showing excellent specificity against lymphoma

cells in vivo [61]. Interestingly, cancer cell death was not depen-

dent on reduced protein synthesis, but instead required p53

activation following nucleolar disruption. We have shown

here that AROS is able to suppress p53 in cells exposed to

stress, is required for cancer cell survival, and previously, that

AROS is required for ribosome biogenesis [49]. It remains to

be seen how these functions of AROS relate to each other, and

to cancer cell survival.
4. Conclusion
We have demonstrated a cancer-specific role for AROS in the

regulation of survival in a panel of human cell lines. The data

suggest that AROS, as well as SIRT1, promotes survival in

cancer cells while being redundant for viability in non-cancer

cells. However, at the molecular level, the roles of SIRT1 and

AROS differ with respect to regulation of p53. We find evi-

dence supporting a suppressive role for AROS in regulation

of p53, as previously reported [42], but also that AROS function

can be suppressed with no effect on p53—which is the case

under basal conditions. This indicates that SIRT1 does not

require AROS as a physiological activator under all circum-

stances and leads to the conclusion that the positive role of

AROS in regulating SIRT1 can respond to stimuli. As well as

the variable suppression of p53 by AROS, this could have

implications in the regulation of further SIRT1 targets, which

may be regulated in a similar manner. It will be interesting to

assess whether AROS is able to regulate multiple SIRT1 targets

differently, suggesting that AROS has the capacity to act as a

stimulus responsive orchestrator of SIRT1 activity. With
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SIRT1 implicated in diseases such as cancer, diabetes and

neurodegeneration, greater understanding of its endogenous

regulation could also lead to opportunities for therapeutic

intervention.
alsocietypublishing.org
Open
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5. Material and methods
5.1. Cell culture and treatments
All cell lines were grown at 378C in a humidified atmosphere

supplemented with 5% CO2. HCT116 and HCT116 p532/2

epithelial colorectal adenocarcinoma cell lines were kindly

provided by Prof. Bert Vogelstein [62]. These and the MCF7

(breast epithelium—ATCC HTB22) cell line are of cancerous

origin. The ARPE19 (retinal pigmented epithelium—ATCC

CRL-2302 [63]), WI-38 (lung fibroblast—ATCC CCL-75) and

MCF10A (breast epithelium—ATCC CRL-10317) cell lines

are not of cancerous origin. Etoposide and trichostatin A

(Sigma) were used at 20 and 0.5 mM, respectively, for 6 h

prior to harvesting of cells [42]. UV-C exposure was at a flu-

ency of 2 J m2 s21 with a total exposure of 10 J m2 as

previously described [64]. SiRNA transfection and sequences

for lamin AC and SIRT1 were previously described [50].

AROS siRNA sense sequences: (i) 50-CCGUGUUCACCGA

GGAAGA-(dTdT)-30 and (ii) 50-GACCACCUCAGAGUAAA

CC-(dTdT)-30. LDH-B siRNA sense sequence: 50-ACUUAAU

CCAAUAGCCCAG-(dTdT)-30. SiRNAs were provided by

Dharmacon and applied at between 100 and 200 nM using

Oligofectamine (Invitrogen). Mock cells were transfected

with Oligofectamine alone. Flag-tagged AROS [42] was

transfected using lipofectamine reagent and cells grown for

24 h (Invitrogen).

5.2. Whole cell analysis
Representative cell phenotypes were recorded using phase

contrast microscopy (Olympus). Annexin V positive and pro-

pidium iodide negative staining identified early apoptotic

cells by flow cytometry (Roche, Beckton–Dickinson). The
percentage of apoptotic cells were adjusted relative to mock

transfection set to 1. n � 2 and error bars represent standard

deviation. Degrees of significance were calculated using

paired two-tailed Student’s t-tests. Data are representative

of three biological replicates.
5.3. Quantification of mRNA
Total RNA was purified by the RNeasy protocol (Qiagen) and

used in qRT-PCR with primers for Lamin AC and SIRT1 pre-

viously published [50]. AROS forward primer: 50-GGAAGA

CGAAGGCAATTCAGGC-30 and reverse primer: 50-TCCT

CGGTGAACACGGTGCC-30. n � 3 and error bars represent

standard deviation. P-values were calculated using paired

two-tailed Student’s t-tests.
5.4. SDS – PAGE and immunoblotting
Cells were lysed (10 mM Tris at pH 8.0, 140 mM NaCl, 2 mM

CaCl2, 0.5% v/v NP-40, 1� protease inhibitor cocktail (Roche)

and 5 U ml21 micrococcal nuclease), and the protein quantity

assayed by the Pierce bicinchoninic acid method. Lysates

were denatured in Laemmli’s sample buffer and equivalent

protein by mass analysed by SDS–PAGE. Nitrocellulose mem-

branes were pre-blocked for 1 h then incubated in primary

antibody overnight at 48C. Antibodies for western blotting

were provided by Santa Cruz (SIRT1, p53, Lamin AC), Alexis

(AROS), Epitomics (acetyl-p53 K382), Sigma (Flag) and

Millipore (b-actin) and were detected by HRP-conjugated

secondary antibody (Dako) and POD reagent (Roche). Densito-

metry was carried out using the open access IMAGEJ software

(National Institute of Health).

Acknowledgements. We thank Fiona Warrander for critical reading of the
manuscript. J.R.P.K. carried out all experimental work. J.R.P.K., S.J.A.
and J.M. designed the study and interpreted the data. J.R.P.K. and
J.M. wrote the manuscript. All authors declare no conflict of interest.

Funding statement. Funding was provided by a project grant award from
Yorkshire Cancer Research to J.M.
References
1. Guarente L. 2011 Sirtuins, aging, and metabolism.
Cold Spring Harbor Symp. Quant. Biol. 76, 81 – 90.
(doi:10.1101/sqb.2011.76.010629)

2. Banks AS, Kon N, Knight C, Matsumoto M,
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