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Abstract Human impact on the environment is steadily in-
creasing the amounts of aluminum in the ecosystems. This
element accumulates in plants and water, potentially exposing
herbivores to its harmful effect. In heavily polluted sites, a
decrease in the density of small rodent populations has been
observed. This decline may be caused by many factors, in-
cluding decreased fertility. The aim of the presented research
was to determine how aluminum, administered at concentra-
tions similar to those recorded in industrial districts (Al
I = 3 mg/l, Al II = 200 mg/l), affects the reproductive abilities
of small rodents. As the indicators of reproductive abilities,
body weight, weight of the testes and accessory sex glands of
males, and uterus weight of females were estimated. In fe-
males, the number of matured follicles (types 6, 7, and 8)
was analyzed, while in males, the quantity and quality (ma-
tured, viable, swollen, motile, head abnormalities) of epidid-
ymal sperm cells were assessed. Moreover, the development
of testes, measured by spermatogenic index, was determined.
The model species was the bank vole. Our results have proven
that aluminum impairs adult individuals’ reproductive abilities
by decreasing the quality and quantity of sperm cells and by
causing morphologically abnormal development of the go-
nads. However, no difference in male organometric parame-
ters was found, and only in females treated with 3 mg/l Al, the
uterus weight was higher than control. No differences were
found in the total number of matured follicles. These results
suggest that the decline in rodent numbers in industrial

districts is due, at least in part, to poorer males’ reproductive
abilities, resulting from exposure to aluminum contamination.
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Introduction

Soil contamination resulting in substantial concentrations of
different pollutants, including metals, has been observed in
plants [1], which then may be ingested by herbivores. In pol-
luted sites, a decline in the density of rodent populations has
been widely observed [2–4]. To date, there is no data pub-
lished clarifying whether the decrease is due to increased mor-
tality; other ecological processes, such as migration; or the
altered reproductive abilities. The presented research ad-
dresses this question by testing the effects of aluminum on
reproductive abilities of small rodents.

Aluminum has no known biological role in living organ-
isms and may be classified as a toxic metal [5]. In vertebrates,
this element may be deposited in different tissues, including
the central nervous system, becoming a neurotoxin [6, 7]. This
element has long been implicated in the pathogenesis of
Alzheimer’s disease, but the precise mechanism of aluminum
toxicity in this disease remains unknown [8]. Deposition can
occur throughout the brain, as Al can cross the blood-brain
barrier [9–11]. Disorders of steroidogenesis may arise through
the deposition of Al in the hypothalamus and pituitary gland.
However, the mechanisms of aluminum toxicity are not fully
understood [12, 13].

Intraperitoneal administration of aluminum is known to
decrease testosterone levels in the testes and plasma of mice,
depending on the dose and duration of exposure: the reduction
was much greater under treatment with a dose of 175 mg
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AlCl3/kg/day and then at 66 mg AlCl3/kg/day [14].
Aluminum also decreased mice serum testosterone levels
and testicular and epididymal weight and significantly re-
duced testicular, spermatid, and epididymal sperm counts [7,
14, 15]. Aluminum accumulation in the testes has been corre-
lated with necrosis of mice spermatids and spermatocytes, as
well as reduced fertility [15]. A negative impact of aluminum
on rabbit sperm cell motility and viability has been shown
in vitro [16].

Knowledge of the effects of aluminum on the female re-
productive system is limited. In female mice, Mohammed and
collaborators [17] showed histopathological changes in the
ovaries and decreased fertility, as measured by the number
of pregnant females and the number of absorbed fetuses, after
12 weeks of aluminum chloride administration (dose range
1000–1400 mg/kg). Fu and collaborators [18] noted a disrup-
tion of the rat ovary structure after 64, 128, and 256 mg/kg
aluminum intake, while Trif and collaborators [19] reported
significant lengthening of the sexual cycle in female rats after
0.2, 0.4, and 1 mg/kg aluminum sulfate administration in the
uterus.

There are no data on the impact of aluminum doses, equiv-
alent to the environmental levels of the metal, on the repro-
ductive system.

Plants growing on contaminated soil may accumulate sub-
stantial concentrations of different metals which then often
become ingested by herbivores [20]. For animals living in
polluted areas, often the only sources of water are contaminat-
ed [21]. Significant concentrations of different metals have
been found in the tissues of such animals [20, 22–28].
According to Zafar and collaborators’ [29] research on labo-
ratory rats, the first target of aluminum accumulation is bones
and then the spleen, kidney, and liver. Aluminum is a chemical
element abundant in the biosphere and widespread in the air
(ca. 150 mg/m3), water (ca. 0.8 mg/l), and plants (up to
200 mg/kg) [30]. Kabata-Pendias [30] reported that exposure
to 3 mg/l of aluminum did not disrupt the proper functioning
of invertebrates’ internal organs. On heavily polluted sites,
plants, which are the rodent’s food base, may accumulate up
to 200 mg/kg aluminum from the atmosphere and water [1];
therefore, those two doses were chosen to be tested in our
research. However, some species, adapted to acid soils, accu-
mulate more than 10,000 mg/kg Al [31, 32]. The more acidic
the environment, the more Al is accumulated in the plant
tissues [33].

The model species chosen for these experiments is the bank
vole (Myodes glareolus, Schreber 1780). It is the most com-
mon rodent species in Europe and Asia. Bank vole is an ani-
mal living mostly in mixed forests with rich undergrowth,
thickets, meadows, and forest gaps [34–36] and foraging often
in fields [37]. For many years, the bank vole was considered a
polygynous species [38], but molecular techniques have re-
vealed that females commonly mate with multiple males [39,

40] and, therefore, should be considered promiscuous. In the
wild, bank vole reproductive season starts in April and lasts
through late September [41]. In standard laboratory condi-
tions, it reproduces all year long. Females give birth to one
to eight pups, pregnancy lasts 18–19 days, and lactation oc-
curs from 18 days up to 3 weeks [41]. Moreover, in the wild, it
may be found in many of the contaminated areas [42]. As a
small rodent, it is particularly useful as a bioindicator, which
has been proven in a number of studies [24, 25, 43, 44].
Moreover, our own breeding colony originated from the wild
and its reproductive biology has been very well described (for
example: [45–48]). Those attributes make it a perfect model
species for the presented research.

To determine the impact of aluminum on the reproductive
abilities of sexually mature bank vole males, body weight and
the weight of the testes and accessory sex glands were com-
pared between animals treated with aluminum solutions and
those provided with water. The quantity and quality of epidid-
ymal sperm and spermatogenic activity were also assessed.
Sexually mature females’ reproductive abilities were assessed
based on their body weight and uterus weight. Also, the num-
ber and type of mature follicles in females from the experi-
mental groups were analyzed from histological slides of
ovaries.

Material and Methods

Animals and Housing Conditions

The bank voles (M. glareolus, Schreber 1780) came from the
laboratory colony of the Institute of Environmental Sciences,
Jagiellonian University, Krakow. The original stock was ob-
tained in 1976 from the Mammalian Research Institute of the
Polish Academy of Sciences (Białowieża) and is maintained
as an outbred stock colony according to the system described
by Green [49]. Briefly, each generation consists of at least 22
breeding pairs; the male and female of each mating pair do not
share parents or grandparents. This breeding system ensures
the heterogeneity of the colony [49]. The animals were housed
in polyethylene cages (40 cm × 25 cm × 15 cm) under a 14-h
photoperiod (7 am–9 pm light, 9 pm–7 am dark) at 21 ± 1 °C
and 60 % humidity. Wood shavings were provided as a bed-
ding material and changed once a week. Standard pelleted
chow for laboratory rodents (Labofeed H, Kcynia) and liquid
in the form of deionized water or solutions of aluminum were
available ad libitum.

For the study, at 19–20 days of age, the weanlings were
separated from their parents and placed in clean cages. At
4 weeks of age, three to five individuals were placed in the
same-sex cages. Then, both females and males were randomly
divided into three experimental groups. Starting from 4 weeks
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of age, for 12 weeks, the animals were treated with different
metal solutions or given deionized water.

Experimental Groups

The control (C) group was provided with deionized water, Al I
(3 mg/l dose)–aluminum chloride(VI) hexahydrate (AlCl3·
6H2O) (AR purity grade, Avantor, Poland) at a concentration
of 3 mg Al3+/l (1.5 mg Al3+/kg body mass/day), and Al II
(200 mg/l dose)–aluminum chloride(VI) hexahydrate (AlCl3·
6H2O) (AR purity grade, Avantor, Poland) at a concentration
of 200 mg Al3+/l (100 mg Al3+/kg body mass/day).

Reproductive Activity of Adults

Males

Organometric Parameters

After cervical dislocation, 12 males from each experimental
group, at 16 weeks of age, were weighed, and the paired
testes, seminal vesicles, and coagulation glandswere dissected
out and weighed (the latter two together). Testes were placed
in a fixative. Semen was collected for further analysis as de-
scribed below.

Epididymal Sperm Evaluation

Preparation of Epididymal Sperm SuspensionAfter apply-
ing gentle pressure to each cauda epididymis with forceps,
allowing epididymal sperm to pass to the vasa deferentia,
the content of the latter was suspended in a 100 μl M2 medi-
um (Sigma-Aldrich, Germany) and allowed to disperse for
2 min.

Epididymal Sperm Suspensions and ConcentrationA 1:20
dilution of epididymal sperm suspension with theM2medium
was prepared, and the number of live sperm cells in 100
squares of a hemocytometer (Bürker chamber) was counted
under a light microscope at ×400. A cover slip was placed on
the sample to restrict sperm cell movement.

Epididymal Sperm Motility Sperm cell motility was
assessed in a hemocytometer. The proportion of motile
sperm—sperm showing a progressive movement among 100
counted sperm cells—was recorded.

Epididymal Sperm Tail Membrane Integrity—Water Test
The integrity of the epididymal sperm tail membrane was
determined in hypoosmotic swelling tests; 20 μl of epididy-
mal sperm suspension was mixed with 120 μl distilled water
on a clean glass slide. Then, the mixture was gently covered

with a cover slip and incubated for 5 min at 37 °C before being
examined [32]. The proportion of sperm cells showing swell-
ing, among 100 counted sperm cells from each male, was
recorded and classified as follows: swollen (sperm cells with
loop on tail) and not swollen (sperm cells with straight or
gently bent tail).

Epididymal Sperm Viability—Eosin-Y Test The test re-
flects the structural and morphological integrity of the sperm
membrane [50]. To assess sperm viability, 20μl of epididymal
sperm suspension was mixed with 20 μl of 0.2 % eosin-Y,
incubated for 10 min at 37 °C, and smeared on a slide. The
proportion of cells, with unstained heads (viable sperm cells)
among 100 counted cells, was recorded.

Epididymal Sperm Cells Without a Cytoplasmic Droplet
In this procedure, 20 μl of epididymal sperm suspension was
transferred to a slide and gently covered with a cover slip. The
percentage of spermatozoa with a cytoplasmic droplet among
100 counted spermatozoa showing a progressive movement
was recorded [50].

Epididymal Sperm Morphology For morphological exami-
nation, a small drop of epididymal sperm suspension was
smeared on a slide, air-dried, fixed in acetic alcohol (absolute
alcohol/glacial acetic acid, 3:1), dehydrated in ethanol series,
and stained with Papanicolaou to determine the proportions of
different sperm head anomalies.

Head anomalies were classified as follows: normal (sperm
with proper head morphology), class 1 (lack of the top part of
the hook and anomalies in the base of head), and class 2 (lack
of the hook as well as serious anomalies in the proximal part
of the sperm head, with possible changes in base the of head)
[32].

All above procedures were performed twice, and the mean
was calculated for each individual [50].

Spermatogenic Index

Isolated testes were fixed in formalin, dehydrated in an etha-
nol series, infiltrated and embedded in paraffin, cut into 7-μm-
thick cross sections, and then stained with hematoxylin and
eosin and classified with light microscopy as to functional
state according to the spermatogenic index [51, 52]. The sper-
matogenic index (SI), with values from 5 to 0, gives a measure
of the seminiferous epithelium activity, with 5 representing
complete spermatogenesis with abundant sperm production
and 0 representing the presence of only Sertoli cells and sper-
matogonia; values from 1 to 4 represent incremental changes
of spermatogenesis:
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IS = 0—The tubules are very small and contain only
Sertoli cells and spermatogonia. A few spermatocytes
are visible.
IS = 1—There are small tubules containing only Sertoli
cells, spermatogonia, and primary spermatocytes. The in-
terstitial cell patches are very small, and most of the cell
nuclei are no longer round.
IS = 2—No elongated spermatids are present, but round
spermatids still occur. Some interstitial nuclei are no lon-
ger round.
IS = 3—There is a further reduction in the number of
sperm cells and spermatids. The interstitial cell patches
are much smaller, but the nuclei are still round.
IS = 4—Spermatogenesis is complete, but elongated
spermatids and sperm cells are less abundant. The inter-
stitial cell patches are slightly smaller.
IS = 5—The seminiferous tubules are large, and sper-
matogenesis is complete. The interstitial cell patches are
very large, and the cell nuclei are round.

The average of two groups of ten seminiferous tubules
situated in the center of the testicular cross section was taken
as the spermatogenic index estimate.

Females

Organometric Parameters

After cervical dislocation, 12 females from each experimental
group, at 16 weeks of age, were weighed, after which the
uterus was removed and weighed. Ovaries were also dissected
and placed in a fixative for further analysis.

Ovarian Follicle Assessment

Isolated ovaries were fixed in Boinea’s solution, dehydrated in
an ethanol series, infiltrated and embedded in paraffin, cut into
6-μm-thick cross sections, and then stained with hematoxylin
and eosin and analyzed under a light microscope to classify
the different stages. The follicles in ovaries from the females
in all experimental groups were classified as type 6 (diameter
355.06–417.99 μm), type 7 (diameter 526.58–594.67 μm), or
type 8 (diameter 715.78–867.39 μm) according to Pedersen
and Peters [53]. Follicle diameter was determined using
ImageJ 1.48k (National Institutes of Health, USA) software.
The sum of each type of follicle, in an individual, was
recorded.

Statistical Analysis

The following statistical tests were used to analyze the data:
one-way ANOVA for morphological parameters, sperm cell
parameters, spermatogenic index, and number and type of

ovarian follicles, and post hoc Tukey’s test following one-
way ANOVA to test the significance of differences between
means.

All procedures employed STATISTICA v. 10. All data are
presented as means ± SE. The level of statistical significance
was deemed to be p < 0.05.

Results

Male Organometric Parameters and Sperm Evaluation

Organometric Parameters

The results summarized in Table 1 show that aluminum did
not affect the morphological parameters of adult males. There
were no significant differences in body weight (g) between
control and Al I males, between control and Al II males, or
between Al I and Al II males (p = 0.38, NS) (NS = not
significant). Similarly, weight of the testes (p = 0.7, NS) and
accessory sex gland (mg; p = 0.28, NS) did not significantly
differ between control and Al I males, between control and Al
II males, or between Al I and Al II males.

Epididymal Sperm Evaluation

As shown in Figs. 1 and 2, exposure to aluminum lowered
sperm quantity and quality. Sperm counts were significantly
lower in males treated with 200 and 3 mg/l Al than in control
males. There were no significant differences in sperm count
betweenAl I and Al II males (p = 0.39, NS). The proportion of
motile sperm cells was lower in Al II males than in both the
control and Al I animals. Al I males also had a lower propor-
tion of motile sperm cells than control males (p < 0.01). The
proportion of swollen sperm cells was lower in Al II males
than in both the control and Al I males, but there were no
differences in the proportion of swollen sperm cells between
control and Al I males (p = 0.14, NS). As shown in Fig. 2, the
proportion of viable sperm cells was lower in Al II males than
in control and Al I males. Males from the Al I group had also a
lower proportion of viable sperm cells than control individuals
(p < 0.01). There were no differences in the proportion of
mature sperm cells without a droplet between males from
the control, Al I, and Al II groups (p = 0.42, NS; Fig. 2). As
presented in Table 2, Al II males had a significantly higher
proportion of abnormal sperm heads than both the control and
Al I males (p < 0.01). There were no differences in the total
proportion of abnormal sperm heads between males given
deionized water and those receiving 3 mg/l aluminum
(p = 0.11, NS; Table 2). There were significant differences
in the proportions of both classes of abnormal sperm heads
between males from all experimental groups (Table 2). The
proportion of class 1 abnormal sperm heads was the highest in
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Al II males and higher in control and Al I animals, and the
same relations were found for the proportion of class 2 abnor-
mal sperm heads (p < 0.01). There were no significant differ-
ences in the proportion of class 1 (p = 0.13, NS) as well as
class 2 (p = 0.1, NS) abnormal sperm heads between males
from the control and Al 1 groups.

Spermatogenic Index

The highest dose of aluminum (200mg/l, Al II) had a negative
effect on spermatogenesis stage as measured by the spermato-
genic index (Table 2). Al II animals had a lower spermatogen-
ic index than both control and Al I males (p < 0.01). The
spermatogenic index of control and Al I males did not differ
significantly (p = 0.07, NS).

Female Organometric Parameters and Ovarian Follicle
Evaluation

Organometric Parameters

As shown in Table 3, there were no differences in body weight
(g) between control and Al I females, between control and Al
II females, or between Al I and Al II females (p = 0.89, NS).
Al I females had a higher uterus weight (mg) than control
individuals (p < 0.05). There were no differences in uterus

weight between control and Al II females (p = 0.17, NS) or
between Al I and Al II females (p = 0.38, NS).

Ovarian Follicle Evaluation

As seen in Table 4, there were no differences in the total number
of ovarian follicles (sum of types 6, 7, and 8) between the
females from all experimental groups (p = 0.48, NS). The same
was true for follicle types 6 (p = 0.44, NS) and 8 (p = 0.45, NS)
which were analyzed separately. The number of type 7 follicles
was higher only in Al I than in Al II females (p < 0.01); there
were no significant differences in the proportion of type 7
follicles between control and Al I females (p = 0.07, NS) or
between control and Al II females (p = 0.52, NS).
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Table 1 Organometric
parameters of bank vole males
treated with two aluminum
solutions (Al I = 3 mg/l and Al
II = 200 mg/l) or deionized water
(C = 0 mg/l)

Experimental group

C Al I Al II F(2,33) p

Body wt (g) 27.5 ± 1.1 28.3 ± 1.2 29.7 ± 1.1 1.01 NS

Testes wt (mg) 763.2 ± 33.4 780.4 ± 18.7 795.6 ± 27.2 0.36 NS

Accessory sex gland wt (mg) 351.9 ± 25.1 362.8 ± 25.2 412.8 ± 33.1 1.34 NS

Means ± SE
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Discussion

In male bank vole, aluminum ingestion did not affect body
weight or any other tested morphological parameter. The lit-
erature reports various findings on the effects of aluminum on
the reproductive parameters of males of different species.
Exposure to aluminum within a concentration range of 3–
200 mg/l seems to have no effect on the body, testes, and
epididymal weights of other adult rodents [54]. Only much
higher aluminum concentrations significantly reduced the
weight of those organs in mice [55] and rats [56]. These can
be explained by the finding that aluminum concentrations
higher than 200 mg/l are correlated with lower levels of tes-
tosterone [57, 58], the main androgen controlling reproductive
tissue development in males.

We did not find any effect of aluminum on male reproduc-
tive organ weights but did show a decline of spermatogenic
activity (SI) inversely proportional to the aluminum concen-
tration. Other researchers have found similar effects of alumi-
num in mice [59] and rats [60, 61]. Seminiferous epithelium
activity is a key factor in spermatogenesis [62] and, along with
sperm count and sperm quality, is crucial to the successful
fertilization. Sperm quality and quantity, as assessed by its
motility, sperm tail morphology, viability, and head abnormal-
ities, were curtailed by aluminum in our experiment. Only
sperm maturation, measured as the proportion of sperm cells
without a cytoplasmic droplet, was not affected by the alumi-
num ingestion, probably because the aluminum does not af-
fect the morphology of the epididymis, where final sperm

maturation takes place [62, 63]. However, under Al exposure,
sperm cells with abnormal head morphology were produced,
and this process also takes place and is regulated in the epi-
didymis [64]. Lower sperm counts and altered sperm param-
eters under aluminum exposure have also been found in
humans [65, 66], rats [54], and rabbits [16, 67]. Sun and col-
laborators [58] found lower testosterone levels in male rats
exposed to 256.72 mg/kg Al, so it is possible that testosterone
disorders occurred in the 200 mg/l Al treatment.
Spermatogenic activity, spermatogenesis, and spermiogenesis
are mainly under the control of testosterone [68]. Their nega-
tive effect on SI, sperm quality, and quantity may be explained
by the effect of 200 mg/l dose, disturbing testosterone homeo-
stasis, but two other mechanisms may also play a role. Guo
and colleagues [69]suggested that aluminum induces produc-
tion of nitrogen monoxide (NO), a suppressor of circulating
and testicular testosterone. Alternatively, Zhu and collabora-
tors [70] suggested that the main reason for reduced spermato-
genesis in male rats was a decline in testicular enzyme activity
and an imbalance in the concentrations of other trace elements
(Zn, Fe, Cu) in the testes. Further investigations should shed
more light on those mechanisms.

Aluminum is a non-physiological element considered to be
a potent neurotoxicant [71]. It can cross the blood-brain bar-
rier and may be deposited in brain tissue [9–11]. It deposits in
most areas of the brain (the cerebellum, ventral midbrain,
cortex, hippocampus, and striatum), depending on the form

Table 2 Proportion of sperm cell
head abnormalities and
spermatogenic index in bank vole
males treated with two aluminum
solutions (Al I = 3 mg/l and Al
II = 200 mg/l) or deionized water
(C = 0 mg/l)

Experimental group

C Al I Al II F(2,33) p

Total abnormalities 0.22A ± 0.01 0.29B ± 0.03 0.43AB ± 0.03 17.77 <0.01

Class 1 0.13A ± 0.02 0.19a ± 0.02 0.28Aa ± 0.02 12.82 <0.01

Class 2 0.15A ± 0.02 0.21B ± 0.03 0.32AB ± 0.02 15.23 <0.01

Spermatogenic index 4.8A ± 0.1 4.6B ± 0.0 3.7AB ± 0.0 216.54 <0.01

Means bearing the same letter differ significantly; means ± SE
A,B p < 0.01; a p < 0.05

Table 4 Number of ovarian follicles in bank vole females treated with
two aluminum solutions (Al I = 3 mg/l and Al II = 200 mg/l) or deionized
water (C = 0 mg/l)

Experimental group

C Al I Al II F(2,33) p

Total 12.8 ± 1.6 14.3 ± 1.5 11.9 ± 0.9 0.76 NS

Type 6 5.0 ± 0.9 5.0 ± 0.9 5.1 ± 0.9 0.83 NS

Type 7 3.6 ± 0.6 5.5A ± 0.7 2.7A ± 0.5 6.06 <0.01

Type 8 4.2 ± 0.8 3.8 ± 0.7 2.9 ± 0.7 0.81 NS

Means bearing the same letter differ significantly; means ± SE
A p < 0.01

Table 3 Organometric parameters of bank vole females treated with
two aluminum solutions (Al I = 3 mg/l and Al II = 200 mg/l) or deionized
water (C = 0 mg/l)

Experimental group

= Al I Al II F(2,33) p

Body wt (g) 23.5 ± 1.1 21.9 ± 1.0 21.9 ± 0.6 0.36 NS

Uterus wt (mg) 63.8a ± 10.2 99a ± 6.3 79.4 ± 8.0 0.02 <0.05

Means bearing the same letter differ significantly; means ± SE
a p < 0.05
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of exposure: a greater and more significant increase was noted
in the group of rats receiving aluminum via an intraperitoneal
administration, then in rats receiving aluminum via an oral
administration [9, 72, 73]. The neurodegenerative effects of
the intracisternal injection of Al included the formation of
intraneuronal neurofilamentous aggregates, oxidative stress,
and apoptosis [74]. Verstraeten and collaborators [75] in their
review about Al and molecular mechanisms of brain toxicity,
indicated that Al neurotoxicity is not caused by a single alter-
ation, but it is a result of adverse effects at multiple cellular
levels. Barabasz and collaborators [76] suggested that neuro-
toxic effects of aluminum result in the displacement of mag-
nesium ions in ATP, which causes changes in the functioning
of all enzymes utilizing ATP as a substrate. Aluminum may
also play a role on the hormonal level, by interfering with
some of the neurohormonal pathways, like the serotonin
system [77].

Aluminum’s influence on the brain tissue potentially may
also play a role in the interruption of reproductive processes
[78]. Our experiments showed almost no influence of alumi-
num on adult females’ reproductive abilities. Females treated
with 3 mg/l Al had an increase of uterus weight as compared
to control females. That increase was accompanied by an in-
creased number of type 7 ovarian follicles in the females treat-
ed with 3 mg/l Al. Research on adult rat females employing
aluminum doses three and six times smaller than our lower
dose showed no effect of aluminum on body and uterus
weights [79, 80]. Much higher Al concentrations (1000–
1400 mg/kg) reduced female body weight, reduced absolute
uterus weight, and caused histological changes in ovarian sec-
tions [17]. It may be that the concentrations we applied, which
are near-normal, though at levels found in polluted districts,
were too low to cause significant ovarian disorders. However,
this assumption would not be coherent with overall obtained
result. Both sexes were exposed to the same aluminum con-
centration, but in males, the damage caused by aluminum on
the reproductive system is more visible than that in females.
This sex-specific difference may lay in the detoxification
systems.

The liver is considered to be the main detoxification target
organ. It is characterized by sexually dimorphic gene expres-
sion translating into sex-specific differences in xenobiotic, for
example aluminum andmetabolism, with distinct responses of
males and females to environmental challenges [81, 82]. In
mice, examples of sex-dependent genes include the male-
predominant cytochrome P450 Cyp2d9, which encodes tes-
tosterone 16-a-hydroxylase inactivating the main male sex
hormone, and the female-predominant Cyp2a and Cyp2b
genes involved in xenobiotic metabolism [82]. Kalthoff and
collaborators [83] indicated that transcriptional regulation of
human uridine diphosphate glucuronosyltransferase genes
(UGT1A), important hepatogastrointestinal detoxification en-
zymes for xenobiotics, is also gender-specific. In response to

environmental challenges, on a molecular level, males display
a higher predisposition than females for liver abnormalities
[84, 85]. Therefore, liver handicap in males may result in a
more rapid reproductive biology decline caused by aluminum
intoxication. Moreover, Gómez and collaborators [86] have
proven that tissue Al retention patterns may be significantly
altered and are also depending on the age at which Al expo-
sure occurs.

A properly functioning reproductive system and well-
developed reproductive organs are not the only key ingre-
dients of reproductive success; sexual behavior is impor-
tant as well. Aluminum concentrations, similar to those
applied in our experiments, are correlated with changes
in non-reproductive rodent behavior [87–90]; it is reason-
able to suggest that aluminum may also modify sexual
behavior. Indeed, Abu-Taweel and collaborators [57]
found a significant decrease of social contacts and sexual
behavior after aluminum application, but they used higher
doses (300 and 600 mg/kg) than those in our experiment.
Our pilot behavioral research did not indicate changes in
rodent sexual behavior under aluminum exposure, except
for fewer aggressive approaches, in a preference test by
females to males treated with 200 mg/l Al than, to control
males. Because the aggressiveness is considered a part of
bank vole sexual behavior [91] and might be correlated
with an aluminum-induced decrease of libido [16], more
behavioral research in this field should be performed.
Additionally, to extrapolate the obtained results into a
natural environment, it would be required to run similar
types of measurements on wild-caught voles from Al-
polluted sites and to couple such measurements with pop-
ulation studies, to determine whether there are effects on
reproductive success and juvenile recruitment into the
population.
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