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Abstract: A growing body of evidence points to the role of glucose variability (GV) in the devel-
opment of the microvascular and macrovascular complications of diabetes. In this review, we
summarize data on GV-induced biochemical, cellular and molecular events involved in the patho-
genesis of diabetic complications. Current data indicate that the deteriorating effect of GV on target
organs can be realized through oxidative stress, glycation, chronic low-grade inflammation, en-
dothelial dysfunction, platelet activation, impaired angiogenesis and renal fibrosis. The effects of
GV on oxidative stress, inflammation, endothelial dysfunction and hypercoagulability could be
aggravated by hypoglycemia, associated with high GV. Oscillating hyperglycemia contributes to
beta cell dysfunction, which leads to a further increase in GV and completes the vicious circle. In
cells, the GV-induced cytotoxic effect includes mitochondrial dysfunction, endoplasmic reticulum
stress and disturbances in autophagic flux, which are accompanied by reduced viability, activation
of apoptosis and abnormalities in cell proliferation. These effects are realized through the up- and
down-regulation of a large number of genes and the activity of signaling pathways such as PI3K/Akt,
NF-κB, MAPK (ERK), JNK and TGF-β/Smad. Epigenetic modifications mediate the postponed
effects of glucose fluctuations. The multiple deteriorative effects of GV provide further support for
considering it as a therapeutic target in diabetes.

Keywords: diabetes; hyperglycemia; hypoglycemia; glucose variability; complications; gene; epige-
netic; signal pathways

1. Introduction

The concept of glucose variability (GV) is gaining increasing attention from scientists
and clinicians. In recent decades, various methodological approaches have been developed
to assess fluctuations in glucose levels [1,2]. Some GV metrics are implemented in the
standardized analysis of continuous glucose monitoring (CGM) data [3]. The minimization
of GV is recognized as a therapeutic target in diabetes management [4,5]. The growing
attention to GV is explained primarily by the predictive value of this phenomenon. Many
observational studies and post hoc analyses of randomized clinical trials have demonstrated
that short-term GV and variability of glycated hemoglobin A1c (HbA1c) are associated
with an increased risk of diabetic microvascular and macrovascular complications [6–11].
Some studies have also documented the association between high GV and mortality rates
in patients with type 2 diabetes (T2D) [4,10,12]. Accumulating data indicate that ambient
hyperglycemia can be even more dangerous for the cells of the cardiovascular and nervous
systems, and renal and pancreatic beta cells than persistently high glucose levels [13–18].
The molecular pathways of the GV effect have been partially discovered in recent years
and must be systematized.

In this review, we summarize data on GV-related biochemical/pathophysiological,
cellular and molecular events in conditions of high GV, which may be important for the
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development of diabetic complications. We consequently searched the relevant articles in
Pubmed/MEDLINE, Scopus and the Web of Science with the following keywords: “glu-
cose variability” or “glycemic variability”, “glucose fluctuation” or “glycemic fluctuation”,
“glucose excursion” or “glycemic excursion”, “glucose oscillations” or “glycemic oscilla-
tions”, “intermittent high glucose”, “fluctuating glucose”. We also combined these terms
with “hypoglycemia”. Reference lists of relevant reviews and articles were thoroughly
checked to ensure all relevant studies were obtained. Both experimental and clinical studies
were reviewed.

2. Biochemical and Pathophysiological Abnormalities Induced by Excessive
Glucose Fluctuations
2.1. Oxidative Stress and Non-Enzymatic Glycation

It is generally accepted that hyperglycemia induces the overproduction of reactive
oxygen species (ROS) and impairs the endogenous antioxidant defense, a condition known
as oxidative stress. A number of experimental studies have indicated that intermittently
high glucose (IHG) can generate even more severe oxidative stress than a constantly
high glucose (CHG) level. Specifically, this effect was described in cultured endothelial
cells [13,19–21], podocytes [22], adipocytes [23], Schwann cells [14,15] and pancreatic beta
cells [24]. The effect of IHG was related to the enhanced activation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase [13] and included excessive ROS production,
oxidative DNA damage and the depletion of superoxide dismutase activity [19,20]. An in-
crease in plasma levels of malondialdehyde and 8-isoprostaglandin, well-known oxidative
stress markers, as well as the enhanced generation of ROS in vascular endothelial cells,
was demonstrated in rats with blood glucose fluctuations (5.5–20 mmol/L) induced by
intermittent intravenous glucose infusion [25]. In patients with T2D, the levels of 8-iso-
prostaglandin F2α, thiobarbituric acid-reactive substances and 8-hydroxydeoxyguanosine
showed positive correlations with the mean amplitude of glucose excursions (MAGE),
but not with the HbA1c level. Long-term GV, estimated by the standard deviation (SD)
of HbA1c levels over a 2-year period, was also correlated with these oxidative stress
markers [26]. Meanwhile, in other studies, no association between the urinary excretion
of 8-iso-prostaglandin-F2α and CGM-derived GV parameters was revealed in patients
with type 1 diabetes [27] and well-controlled T2D [28]. Recent research has indicated a
correlation between 1,5-anhydroglucitol, an intermediate-term marker of GV, and ROS
metabolites in patients with T2D and HbA1c below 8% [29].

A growing body of evidence indicates the role of GV as a predictor of hypogly-
cemia [10,30,31]. The alternation of hyperglycemic and hypoglycemic episodes, a char-
acteristic feature of increased GV, can be a powerful inducer of oxidative stress. It was
demonstrated that an episode of 2 h of hyperglycemia, followed by the recovery from the
induced 2 h of hypoglycemia, aggravates oxidative stress in both healthy subjects and
patients with type 1 diabetes (T1D) [32,33].

In diabetic conditions, hyperglycemia promotes the accumulation of advanced glyca-
tion end-products (AGEs). The activation of AGE receptors can lead to oxidative stress,
low-grade inflammation and other events contributing to vascular complications [34].
However, little is known about the role of GV in the formation of AGEs. It was demon-
strated that, among subjects with prediabetes, the levels of nitrotyrosine, a marker of
nitrosative stress, and glyceraldehyde-derived AGEs were higher in those with increased
MAGE [35,36]. Recent data indicate that acute glucose fluctuations up-regulate the expres-
sion of the receptor for AGEs in rat podocytes [37].

At present, oxidative stress and non-enzymatic glycation are considered as the mecha-
nisms of “metabolic memory”, which determine the extent of the effect of glycemic control
on metabolism and clinical outcomes in diabetes [35,36]. It was shown that the increased
production of ROS in cultured human endothelial cells, caused by an excess of glucose
(30 mmol/L), persists for at least a week after the normalization of glucose levels [38]. The
incubation of human umbilical vein endothelial cells (HUVECs) in conditions of CHG
(25 mmol/L) or IHG (24 h in 5 mmol/L, followed by 24 h in 25 mmol/L) for 2 weeks
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resulted in the up-regulation of ROS production. The generation of ROS was increased
a week after the normalization of glucose levels, especially in cells that were previously
incubated with IHG. Therefore, the memory effect can be more pronounced in high-GV
conditions [37].

2.2. Chronic Low-Grade Inflammation

The activation of inflammatory pathways plays an important role in the pathogenesis
of diabetic complications [39,40]. Increased GV contributes to the inflammatory response.
As compared to CHG, oscillating glucose was a more potent inducer of intercellular
adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), E-selectin
and interleukin 6 (IL-6) expression in HUVECs. This effect was related to the oxidative
stress and activation of poly (ADP-ribose) polymerase and protein kinase C [41,42]. The
exposure to IHG enhanced the secretion of IL-6 and tumor necrosis factor α (TNF-α), the
inflammatory cytokines, by activated monocytes; this effect was partly attributable to
the inherent osmotic stress [43]. The expression and secretion of interleukin 18 (IL-18) in
mouse peritoneal macrophages were increased to a greater extent under the influence of
IHG than CHG; this effect was mediated by the c-Jun N-terminal kinase (JNK) signaling
pathway [44]. In rat podocytes, acute glucose fluctuations induced the expression of
TNF-α and interleukin 1 beta (IL-1β) to a greater extent than CHG [22]. In adipocytes,
IHG induced a greater increase in the expression and secretion of IL-18 and monocyte
chemoattractant protein 1 (MCP-1) than CHG [23]. An inflammatory response to fluctuating
glucose has also been demonstrated in vivo. In rats, blood glucose fluctuations induced
by intermittent glucose infusions increased the expression of IL-6, TNF-α and ICAM-1 in
vascular endothelial cells [25].

Hypoglycemia may act as an additional trigger of inflammation under oscillating
conditions. In cultured macrophages, the intermittent episodes of hypoglycemia and hy-
perglycemia (3–15 mmol/L) promoted M1 polarization and an inflammatory response,
estimated by the secretion of integrin alpha X, IL-1β, TNF-α, IL-6 and MCP-1, via a
mechanism involving the Toll-like receptor 4 (TLR4)–interferon regulatory factor 5 (IRF5)
pathway [45]. It was found that hypoglycemia promotes the mobilization of specific leuko-
cyte subsets into the bloodstream and induces proinflammatory changes in the leukocytes
in healthy individuals and patients with T1D [46]. Specifically, the mobilization of cluster of
differentiation 8-positive (CD8+) T cells, cytotoxic natural killers and natural killer T cells,
as well as non-classical monocytes, was observed [47]. In patients with T1D, an episode
of two-hour hypoglycemia was followed by an increase in the levels of soluble ICAM-1
(sICAM-1) and IL-6 [48]. High blood glucose, replacing hypoglycemia, caused a further
increase in the concentrations of sICAM-1 and IL-6 [49]. In T1D patients on pump therapy,
the number of hypoglycemic episodes predicted plasma levels of ICAM-1, VCAM-1 and
E-selectin [50]. In subjects with T1D, acute hyperglycemia was followed by an elevation in
urinary excretion of a number of proinflammatory chemokines and cytokines [51]. In non-
diabetic subjects with reactive hypoglycemia, Eik W. et al. observed a rise in the plasma
levels of proinflammatory (IL-2, IL-5 and IL-17) and anti-inflammatory cytokines (IL-4,
IL-1RA, IL-2R, IL-13 and fibroblast growth factor basic) during hypoglycemia after the
glucose load [52]. An increase in adrenaline mediates the inflammatory response associated
with hypoglycemia in non-diabetic subjects and patients with T1D [53].

Associations between inflammatory markers and GV have been observed in some
clinical studies. A correlation between high-sensitivity C-reactive protein (hsCRP) levels
and CGM-derived SD was reported in adolescents with T1D [54]. In patients with T2D,
hsCRP correlated with both short-term (MAGE index) and long-term GV (SD of HbA1c
level over two years) [26]. In another study, acid α1-glycoprotein, but not hsCRP, was
related to GV indices reflecting hyperglycemic fluctuations in subjects with T2D [55]. An
association between the coefficient of variation (CV), calculated from CGM data, and blood
IL-6 levels was shown in non-diabetic persons with metabolic syndrome [56].
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2.3. Endothelial Dysfunction and Vascular Remodeling

Endothelial dysfunction is considered as an important player in the pathogenesis
of diabetic vascular complications. Hyperglycemia impairs the vascular endothelium
function through the polyol and hexosamine pathways, protein kinase C (PKC) activation
and generation of AGEs, all of which lead to ROS overproduction, the dysregulation of
growth factors and cytokines and epigenetic changes [57]. A growing body of evidence
indicates a deleterious effect of supraphysiological glucose fluctuations on endothelial
function. When compared to CHG, IHG produced a stronger impairing effect on NO
synthesis in cultured HUVECs [58]. Increased GV, even in the absence of high glucose
levels, can suppress the endothelial defense against hyperglycemia-induced metabolic
disorders. Modeling short-term fluctuations similar to those in diabetic patients changed
the synthesis of a number of key enzymes in cultured human endothelial cells. Specifically,
a decrease in the expression of superoxide dismutase 2, heme oxygenase 1, glyoxalase
and transketolase was observed [59]. It was demonstrated that IHG can promote vascular
endothelial senescence to a greater extent than CHG, which is partially dependent on
oxidative stress [60].

Horvath et al. compared the effect of stable and intermittent hyperglycemia on
endothelial function in rats with streptozotocin-induced diabetes. The endothelium-
dependent dilation was significantly impaired in rats that were periodically injected with
insulin compared with animals that did not receive treatment, despite the lower mean blood
glucose levels in the insulin-treated group [61]. In patients with T1D, glucose fluctuations
in the range of 5–15 mmol/L induced a more severe impairment of endothelium-dependent
arterial dilation compared to that induced by stable hyperglycemia (10 and 15 mmol/L).
The effect of intermittent hyperglycemia on endothelial function has been associated with
oxidative stress [49]. In non-complicated T2D subjects receiving a diet and/or metformin,
mean postprandial glucose excursions correlated negatively with flow-mediated arterial
dilation [62]. Similarly, enhanced GV was related to flow-mediated dilation in patients
with T2D and coronary artery disease [44]. In children with T1D, flow-mediated dilation
was related to hypoglycemia, but not MAGE or other GV metrics [63]. It was found that
endothelial microparticles, a novel surrogate marker of endothelial injury and dysfunction,
are differentially produced in response to hypoglycemia in subjects with and without T2D.
Insulin-induced hypoglycemia provoked a more dramatic increase in the levels of CD31+
and CD105+ endothelial microparticles in individuals with T2D compared to controls [64].

There are some data indicating endothelial dysfunction in individuals with impaired
glucose tolerance, which can be considered as an equivalent to enhanced GV in non-
diabetic subjects. It was reported that plasma levels of von Willebrand factor, and soluble
E-selectin, two widely used markers of endothelial damage, are elevated in patients with
impaired glucose tolerance [65]. In the population-based Maastricht Study, which enrolled
2758 participants, the glucose peak during a glucose tolerance test was independently
associated with aortic stiffness and carotid remodeling, as well as with microvascular
function, estimated by retinal arteriolar dilation and heat-induced skin hyperemia [66].
In subjects with T2D and unstable angina, the SD of blood glucose was an independent
predictor for coronary artery calcification [67].

2.4. Platelet Activation and Hypercoagulability

The interactions between activated vascular cells and vulnerable atheromatous plaques
are considered as a cornerstone in atherothrombotic burden in diabetes [68]. Some data
indicate that enhanced GV could be related to platelet reactivity. Specifically, in patients
with T2D, postprandial hyperglycemia was associated with platelet activation, estimated
by the urinary excretion of 11-dehydro-thromboxane B2. The excretion rate was reduced
by the treatment with acarbose, following earlier decreases in postprandial glucose and
MAGE [69]. In subjects with well-controlled T2D via clopidogrel therapy, MAGE and CV
provided independent and additional diagnostic significance in identifying patients with
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high platelet reactivity [70]. At the same time, no impact of acute glucose load (75 g) on
platelet aggregation was observed in patients with T2D or acute coronary syndrome [71].

While the effect of hyperglycemic fluctuations on platelets warrants further research,
the role of hypoglycemia in platelet activation and hypercoagulability is well established.
In a study with hyperinsulinemic-hypoglycemic and euglycemic clamps, hypoglycemia
mobilized monocytes, increased platelet reactivity and promoted the interaction between
platelets and proinflammatory monocytes in healthy subjects [72]. In the study of Ceriello
et al., hypoglycemia increased plasma levels of prothrombin fragment 1 + 2, thrombin-
antithrombin III complexes and plasminogen activator inhibitor-1 (PAI-1) in both healthy
subjects and people with diabetes. The transition from hypoglycemia to normoglycemia
was accompanied by a significant improvement in coagulation parameters. On the contrary,
hyperglycemia following hypoglycemia worsened coagulation markers; the effect persisted
even after an additional 6 h of normoglycemia [33].

2.5. Impaired Angiogenesis

An angiogenic paradox has been described in diabetes, which refers to the excessive
angiogenesis in retinopathy and nephropathy and suppression of blood vessel growth
in limb and myocardial ischemia [73]. It was found that, according to this pattern, GV
causes a bidirectional effect on angiogenesis. Acute glucose fluctuations (in the range
of 5–25 mmol/L) impaired the proliferation of HUVECs and angiogenesis in vitro and
delayed wound healing in mice. The effect of IHG on angiogenesis was more prominent
than that of CHG [74]. In agreement with these data, the modeling of increased GV in mice
impaired ischemia-induced angiogenesis in the hind limb by the suppression of vascular
endothelial growth factor (VEGF) production [75]. At the same time, both CHG and IHG
up-regulated VEGF in human retinal endothelial cells. The IHG effect on cell proliferation
and VEGF expression was mediated via mitochondrial ROS overproduction [21].

The dysfunction and count abnormalities of endothelial progenitor cells (EPCs), which
are derived from the bone marrow and involved in endothelial repair and new blood vessel
formation, have been observed in diabetes [76]. The direct influence of IHG on EPCs has not
been tested. Nonetheless, in patients with the T1D, the J-index, a GV parameter, correlated
negatively with CD34+ EPC count [77]. In turn, reducing GV with continuous subcutaneous
insulin infusion increased the EPC levels in subjects with T1D [78]. In patients with T1D,
the levels of hematopoietic stem/progenitor cells (CD34+ CD133+, CD34+ CD45dim) were
reduced and correlated positively with CV and time in hypoglycemia estimated by flash
glucose monitoring; the relationships were mitigated in long-lasting diabetes [79].

2.6. Renal Fibrosis

More than half a century ago, it was shown that supraphysiological glucose fluctu-
ations can induce renal lesions characteristic of diabetic nephropathy in rats [80]. Many
years later, the biochemical aspects of this effect were identified. It was demonstrated
that IHG (5–25 mmol/L) increases the production of collagen types I, III and IV in cul-
tured mesangial cells, and type III collagen synthesis increases to a greater extent when
stimulated by oscillatory glucose rather than CHG [81]. In proximal tubular cells, IHG
was found to be a more potent stimulating factor for the secretion of transforming growth
factor beta (TGF-β1), one of the most powerful fibrogenic mediators. In both cortical
fibroblasts and proximal tubular cells, IHG increases collagen synthesis [82]. In cortical
fibroblasts, fluctuating glucose enhances the production of collagen IV and fibronectin. In
addition, it increases the synthesis of tissue inhibitor of matrix metalloproteinase, inhibiting
matrix degradation. A short-term (90 min) increase in the glucose concentration stimulates
TGF-β1 secretion by fibroblasts [83]. Thus, excessive glucose fluctuations can cause a more
pronounced fibrogenic effect in a diabetic kidney than persistent hyperglycemia. This fact
is consistent with data indicating that high GV is associated with a decline in renal function
in diabetic rats [84] and patients with T2D [85,86].
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2.7. Beta Cell Dysfunction

An inverse relationship between beta cell function and GV was observed in subjects
with both T1D [87] and T2D [88,89]. Obviously, a compromised insulin response causes
an increase in GV. At the same time, excessive GV can contribute to the progressive
deterioration of beta cell function. It was found that IHG induces a more significant
impairment of the glucose-stimulated insulin release response in rat islets and insulinoma
cells (INS-1) than CHG, and this effect is related to the stress of the endoplasmic reticulum
and oxidative stress [24]. When incubated under IHG conditions, INS-1 demonstrated a
reduction in the response to glucagon-like peptide 1 [90]. In these cells, IHG generated
a more toxic effect than CHG, including both apoptosis-inducing and antiproliferative
activity [17]. A deteriorating effect of IHG on apoptosis and insulin release could be
diminished by antioxidant pretreatment [91]. In rats, either continuous or intermittent
hyperglycemia induced beta cell dysfunction and insulin resistance [25]. Chronic oscillating
glucose caused beta cell dedifferentiation and failure in rats [67]. The long-term effect of
enhanced GV on beta cell function and plasticity needs further research.

Thus, the role of supraphysiological glucose fluctuations in the pathogenesis of vas-
cular complications of diabetes is realized through non-enzymatic glycation, oxidative
stress, chronic low-grade inflammation, endothelial dysfunction, vascular remodeling,
angiogenesis disorders, activation of blood cells (platelets and leukocytes), hypercoag-
ulability and renal fibrosis (Figure 1). Some of these abnormalities are exacerbated by
hypoglycemia, which is at an increased risk in patients with high GV. Finally, oscillating hy-
perglycemia contributes to beta cell dysfunction, which further increases GV and completes
the vicious circle.
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3. Cell Biology under High-GV Conditions
3.1. Altered Mitochondrial Homeostasis

Abnormalities of mitochondrial biogenesis, fission, fusion and mitophagy are reported
to be involved in impaired oxidation, reduced mitochondrial contents and excessive ROS
production in diabetes [92]. Specifically, the signs of altered mitochondrial homeostasis and
mitochondrial dysfunction were observed in the diabetic kidney [93], retina [94], heart [95]
and pancreatic beta cells [96].

Mitochondrial dysfunction could be considered a cornerstone in the development
of GV-related oxidative stress. In cultured HUVECs, oscillating glucose induced ROS
generation and an altered mitochondrial membrane potential [97]. Similar changes were
recorded in INS-1 cells under IHG conditions [98]. In astroglial cells, up and down glu-
cose fluctuations induced mitochondrial dysfunction, which was accompanied by oxida-
tive/nitrosative stress, impaired glutamate metabolism and increased proinflammatory
cytokine secretion [99]. In hepatic L02 cells incubated with palmitic acid, IHG induced
more pronounced oxidative stress and mitochondrial dysfunction compared to CHG. Treat-
ment with cyclosporin A, a mitochondrial permeability transition inhibitor, prevented
mitochondrial dysfunction, oxidative stress and hepatocyte apoptosis in a model of high
GV in high-fat diet C57BL/6J mice [100]. In a model of ischemia/reperfusion injury in
the diabetic heart, glucose fluctuations increased the levels of miRNA-200c and miRNA-
141. These changes were associated with decreased activities of mitochondrial superoxide
dismutase and catalase and enhanced ROS production [101].

At present, little is known about the effect of GV on mitochondrial respiration and
bioenergetics. It was demonstrated that in human islet cells, exposure to CHG for 4 days
induced an increase in mitochondrial respiration and the cytosolicATP/ADP ratio [102].
Similarly, glucose fluctuations intensified aerobic glycolysis in cultured mouse mesangial
cells. Oscillating glucose lowered the activity of aconitase, an enzyme of the Krebs cycle,
and suppressed mitochondrial respiratory chain complex I [103]. At the same time, a
reduction in the mitochondrial complex I activity was observed in the rat brain in a model
of T1D [104]. Therefore, this effect may be induced by hyperglycemia per se, rather than
increased GV. The role of glucose fluctuations in altering the mitochondrial respiratory
chain requires further research.

3.2. Endoplasmic Reticulum Stress

The endoplasmic reticulum (ER) is considered to be important for nutrient sensing
in many cell types, including hepatocytes, adipocytes, muscle cells, neurons and beta
cells. An imbalance between the demand and capacity of the ER for protein folding is
referred to as ER stress. Evidence is accumulating on the role of ER stress in the devel-
opment of diabetes [105] and its complications, including retinopathy, nephropathy and
neuropathy [106].

In diabetes, excessive glucose exposure alters ER homeostasis, and high GV may be
an additional trigger for ER stress. It was demonstrated that in human retinal pericytes,
IHG, but not CHG, increases the expression of activating transcription factor 4 (ATF4) and
C/EBP homologous protein (CHOP), key mediators of ER stress-associated inflammation
and cell death [107]. In cultured rat pericytes, strong unfolded protein response activation
leading to apoptosis was observed when glucose was reduced from high to low levels,
or the zero level [108]. High GV turned out to be a more powerful inductor of ER stress-
related apoptosis compared with CHG in cultured rat vascular smooth muscle cells [67].
The modeling of recurrent short-term hypoglycemia and hyperglycemia induced apoptosis
and oxidative stress via the response to ER stress in mouse Schwann cells [109]. In subjects
with metabolic syndrome, the glucose load in the oral glucose tolerance test enhanced the
expression of spliced XBP-1, Grp78 and calreticulin, the ER stress markers, in mononuclear
cells. These changes were accompanied by a significant increase in the expression of
inflammatory cytokines interleukin 1 α/β, IL-6 and interleukin 8 [110]. These data clearly
indicate the role of glucose fluctuations in the generation of ER stress in diabetes.
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3.3. Autophagy

Autophagy is a process of self-degradation and reconstruction of damaged organelles
and proteins via lysosomes. This cellular recycling is vital for highly differentiated cells,
including neurons, podocytes, cardiomyocytes, retinal cells and beta cells [111,112]. The
impaired autophagy plays a role in the development of both T1D and T2D [113–116], and
diabetic kidney disease [117–119].

Glucose seems to be a prominent regulator of autophagy [120–122]. Glucose levels
indirectly affect autophagy in many cell types through the regulation of glucagon and
insulin secretion. Glucagon is known as a potent stimulator of autophagy, whereas insulin
suppresses it by stimulating mammalian target of rapamycin complex 1 (mTORC1) [122].
In cells, glucose withdrawal causes ATP depletion, which stimulates AMP-activated protein
kinase (AMPK) and the AMPK–S-phase kinase-associated protein 2 (SKP2)–coactivator-
associated arginine methyltransferase 1 (CARM1) signaling pathway, an upstream activator
of autophagy [122–124]. On the other hand, impaired autophagy can influence insulin
sensitivity through the changes in glucose transporter type 4 (GLUT4) degradation and
recovery [125]. Moreover, impaired glycophagy, a selective autophagy in the liver, heart
and muscles, could contribute to hyperglycemia [126].

It was shown that IHG causes enhancement of the autophagic flux in cultured HU-
VECs [74] and rat podocytes [22]. Similarly, in human retinal pigmented epithelial cells,
IHG significantly increased the generation of autophagosomes, decreased the expression of
an autophagy receptor, p62, a marker of suppressed autophagy, and induced the conversion
of an autophagosome-associated protein microtubule-associated protein 1A/1B light chain
3B (LC3) I to its active form LC3 II [127]. The role of GV in altering autophagy in vivo
requires further research.

3.4. Apoptosis

The metabolic changes and dysfunction of organelles under high-GV conditions ulti-
mately reduce the survival of a number of cells. Some in vitro studies have demonstrated
the pro-apoptotic effect of IHG in endothelial cells [25,128,129], mesangial cells [103,130],
cardiomyocytes [131], neurons [132,133], glial cells [134], Schwann cells [135] and beta
cells [98,136]. The activation of GV-related apoptosis was attributed to mitochondrial
dysfunction, ER stress and autophagy [100,124,127,131].

Glucose fluctuations have been validated to be more harmful than CHG in exacerbat-
ing the apoptosis of beta cells. In cultured INS-1, IHG induced apoptosis by the significant
up-regulation of pro-apoptotic proteins caspase-3 and 9, and by down-regulation of the
antiapoptotic protein Bcl-2 [98].

Wu N. et al. performed in vivo experiments demonstrating the effect of acute glucose
fluctuations on the levels of apoptosis regulators in aorta endothelial cells in rats. Ani-
mals with glucose fluctuations induced by intermittent glucose infusions demonstrated
reduced Bcl-2 and pro-caspase-3 levels, and enhanced Bax mitochondrial translocation and
caspase-3 p17 protein levels, in comparison with those with persistent hyperglycemia [25].
In the high-GV model established by insulin and glucose injections in rats with diet- and
streptozotocin-induced diabetes, the predominance of pro-apoptotic regulators with an
increased Bax/Bcl-2 ratio was found [84]. Interestingly, sodium-glucose cotransporter 1
(SGLT1) knockdown down-regulated Bax expression, up-regulated Bcl-2 expression and re-
duced caspase-3 activation induced by high GV in cultured rat H9c2 cardiomyocytes [131].

The activation of apoptosis is among the most important mechanisms of neurodegen-
eration in diabetes. It was shown that IHG induces the oxidative stress-related apoptosis
of Schwann cells by both caspase-dependent and caspase-independent pathways. The
cytotoxic effect of IHG was significantly more potent than that of CHG [14,15]. The cen-
tral nervous system, being highly dependent on the glucose supply, becomes especially
vulnerable in conditions of high GV. In diabetic rats, intermittent hyperglycemia turned
out to be a more critical factor, promoting neuron apoptosis and inducing inflammation
in the hippocampus, than CHG [132]. At the same time, acute glucose fluctuations affect
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microglial activity. It was demonstrated that a sharp increase in the glucose level (from
5.5 to 25 mmol/L) promotes cell growth, induces oxidative and inflammatory stress and
activates microglial cells. The reverse shift from hyperglycemia to normoglycemia trapped
microglia in a state of metabolic stress, which triggered apoptosis and autophagy [134].

3.5. Cell Proliferation

Enhanced GV can modulate the proliferative response. It was found that either CHG
or IHG induces the proliferation of vascular smooth muscle cells (VSMCs) in vitro [137].
Fluctuating glucose increased the proliferation and migration of VSMCs in an OLETF rat
T2D model [138]. Earlier research demonstrated that IHG enhances cell proliferation and
VEGF expression in retinal endothelial cells. These changes were associated with ROS
overproduction at the mitochondrial transport chain [21].

At the same time, GV can suppress the proliferation of endothelial cells, podocytes
and beta cells. Both IHG and CHG decreased the proliferation of cultured HUVECs [74]. It
was revealed in INS-1 culture that IHG decreases beta cell viability and induces G0/G1 cell
cycle arrest. INS-1 demonstrated a decreased expression of mitogen factors cyclin D1 and
S-phase kinase-associated protein 2, whereas the expression of cyclin-dependent kinase
inhibitors 1A and 1B, two antiproliferative factors, was increased [17,139].

Thus, high GV can promote many events in the targeted cells, including mitochondrial
dysfunction, ER stress, changes in the intensity of autophagic flux, apoptosis activation
and abnormalities in the proliferative response (Figure 2).
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cursions. The thick arrows show the cellular events induced by high GV, the thin arrows demonstrate
the relationships between these events.
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4. Molecular Mechanisms of the High GV Effects in the Target Cells
4.1. Gene Expression

Although there are scarce data on changes in gene expression induced by excessive
GV, there is a large pool of studies on gene profiling related to hyperglycemia. Using
high-throughput technologies, differential gene expression was measured under hyper-
glycemic conditions in beta cells [140,141], pancreatic cells [142], hepatic cells [143,144],
endothelial cells [145], myotubes [146], cardiomyocytes [147], vascular smooth muscle
cells [148,149], adipose progenitor cells [150], kidney cells [151], renal tubular epithelial
cells [152], retina [153,154], immune cells [155,156] and others. The genes that demonstrate
an altered expression in hyperglycemia are mostly involved in glucose metabolism, inflam-
mation and immune processes, endothelial dysfunction, angiogenesis, oxidative stress,
mitochondrial dysfunction, hypoxia and cell death.

Transcriptomic studies have revealed the effect of hyperglycemia on the expression
profile of a large number of genes. More than 80 genes involved in hepatic lipid metabolism
were differentially expressed in hyperglycemic rats with a model of T1D [143]. With the
use of high-throughput RNA sequencing, it was demonstrated that hyperglycemia has
a strong effect on HepG2 cells, with 4259 genes showing a differential expression. These
genes participate in cholesterol metabolism, DNA replication, complement and clotting
cascades [144]. Maier et al. hypothesized that hyperglycemia amplified the expression of
genes induced by thrombospondin-1 in vascular smooth muscle cells. Microarray analysis
revealed that hyperglycemia altered the expression of 30 genes, while hyperglycemia
combined with thrombospondin-1 altered the expression of 2822 genes. These findings
suggest that hyperglycemia may significantly enhance the thrombospondin-1 effect on
atherosclerosis progression [148].

Fewer studies have focused on gene expression in hypoglycemia. In sirtuin 6-deficient
mice that developed a lethal early-life hypoglycemia, the microarray revealed nearly
200 genes with an altered expression. These genes were involved in glucose metabolism,
nutrient stress responses, glycolysis and mitochondrial function [157]. A gene response to
insulin-induced hypoglycemia was estimated in the mouse retina by an array. Genes whose
expression was modified by low glucose were enriched in lysosomal function, glutathione
metabolism and apoptotic pathways and potentially involved in retinal cell death [158]. A
set of genes specifically activated by recurrent hypoglycemia was revealed in a study of
whole genome expression profiling after recurrent hypoglycemia and acute hypoglycemia
in the adrenal medulla of normal Sprague Dawley rats. These genes were related to the
activation of the unfolded protein response, impaired epinephrine secretion, increased
neuropeptide signaling, altered ion homeostasis and down-regulation of genes involved in
Ca2+-dependent exocytosis of secretory vesicles [159].

It was found that even short-term enhanced GV could adversely affect gene expression
in the arterial wall. In the study of Zervou et al., pIns-c-MycER(TaM) transgenic mice
were successively exposed to hypo- and hyperglycemia, after which they recovered for
up to 3 months. The expression of 95 genes was significantly affected by hypoglycemia,
and 769 genes were affected by hyperglycemia. These genes were involved in atherogenic
processes, including inflammation and arterial calcification. Although the expression of
many genes returned to its initial level after 3 months, in one in four genes, recovery
was not observed [160]. These data indicate that non-physiological glucose fluctuations
may have a prolonged effect on gene expression. Further research in this direction is
urgently needed.

Recently, we performed the bioinformatic reconstruction and analysis of the gene
network of GV. The network consisted of 37 genes/proteins associated with both hyper-
glycemia and hypoglycemia. GV-related molecules were involved in glucose metabolism,
intracellular signaling, cell proliferation and other biochemical/physiological processes;
they were identified in the central positions of the gene networks of diabetic vascular
complications [161].
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4.2. Epigenetic Modifications

Glucose can induce a number of epigenetic modifications that significantly alter the
functioning and vital activity of various cell types. In a pivotal work in this field, El-
Osta et al. demonstrated that transient elevation in the glucose level causes long-lasting
epigenetic changes in the NF-κB subunit p65 promoter in aortic endothelial cells in vitro
and in non-diabetic mice. These changes were associated with an increased p65 gene
expression that persisted for at least 6 days of subsequent normal glucose levels, and
NF-κB-induced increases in MCP-1 and VCAM-1 expression [162]. These data clearly
indicate that epigenetic modifications may be an important mechanism in GV-induced
vascular inflammation and dysfunction.

Costantino S. et al. found DNA hypomethylation and histone 3 acetylation on the
p66Shc promoter of the SHC-transforming protein 1 gene (SHC1), resulting in gene overex-
pression, in patients with T2D. CGM-derived MAGE and postprandial glucose, but not
HbA1c, were associated with the epigenetic profile. The intensification of glycemic control
over 6 months did not eliminate the changes [163]. The mechanism of p66Shc-reduced CpG
methylation could be related to methyltransferase DNA (cytosine-5-)-methyltransferase 3
beta (DNMT3b), an enzyme playing an important role in the maintenance of DNA methy-
lation. Sirtuin 1 (SIRT1) could be involved in H3 deacetylation of p66Shc [163,164]. In
patients with T2D, the expression of DNMT3b and SIRT1 was inhibited compared to the
control [163].

Recently, the effect of glucose on whole genome DNA methylation was studied in
human retinal endothelial cells and HUVECs [165]. The lines were exposed to basal
(5 mmol/L) or high (25 mmol/L) glucose-containing media for variable lengths of time.
When comparing the endothelial cells, incubated for 2 days versus 7 days, 17,354 and
128 differentially methylated CpGs in 88 and 8 differentially methylated regions were iden-
tified for HUVECs and retinal endothelial cells, respectively. Pathway enrichment analyses
highlighted the involvement of regulators of embryonic development (i.e., HOX genes),
TGF-β signaling, bone morphogenetic protein (BMP) signaling, runt-related transcription
factor 2 (RUNX2) transcriptional regulation and the complement cascade.

It was demonstrated that fluctuating glucose significantly decreased the phospho-
rylation of the endothelial nitric oxide synthase (eNOS) at Ser-1177 and increased the
phosphorylation of JNK and p38, leading to the damage of vascular endothelial cells [166].
IHG lowered the phosphorylation levels of protein kinase B (v-akt murine thymoma vi-
ral oncogene homologue, Akt), AMPK and glycogen synthase kinase 3 beta (GSK3β),
influencing the function of endothelial cells and beta cells [19,91,167].

Small single-stranded non-coding RNAs (miRNAs) have been discussed as another
method of epigenetic regulation. Aberrant miRNA expression is implicated in the patho-
genesis of numerous diseases, including diabetes and its complications [168]. In HUVECs
cultured under IHG conditions, 13 miRNAs were differentially expressed. miR-1273g-3p
partially mediated the effect of IHG on the autophagy, migration and proliferation of
HUVECs [74]. Another example of GV-induced miRNA-dependent changes is a phenotype
polarization switch of microglia. In microglial cells, glucose fluctuations induce polariza-
tion transitions from M2 to M1. The M1 phenotype has proinflammatory effects and can be
responsible for neuronal damage; in contrast, M2-polarized microglia can inhibit the inflam-
matory response and promote nerve repair. It was found that miR-124, miR-145, miR-146a
and miR-711 are implicated in the M2 phenotype polarization of microglia, while miR-689
and miR-155 are involved in M1 polarization. In macrophages, miR-124 and miR-146a in-
duced M2 phenotype polarization [169]. In the glucose fluctuation cell model, miR-129-3p
suppressed glucose-mediated hippocampal neuronal damage. Specifically, miR-129-3p
overexpression produced a dramatic reduction in calcium overload, ROS generation and
an increase in antioxidant activity [170]. In cultured HUVECs, miR-1273g-3p mediates
the effect of GV on autophagy and endothelial dysfunction [74]. In human endothelial
cells, miR-185 and miR-21 were induced by oscillating glucose, leading to an impaired
antioxidant response by the dysregulation of glutathione peroxidase 1 and superoxide
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dismutase 2 [97,171]. It was demonstrated that IHG induces the up-regulation of HIF-1α
and miR-210 in glomerular mesangial cells, which might play a pivotal role in the series of
molecular events triggered by GV [22].

Thus, the effects of glucose fluctuations on gene expression can be exacerbated and pro-
longed by epigenetic modifications. At present, glucose-induced epigenetic modifications
and related changes in the activity of signaling pathways are considered as an important
mechanism of “metabolic memory” or “metabolic karma” in diabetes [168,172,173].

4.3. Signaling Pathways

The cellular and molecular effects of GV are realized through a variety of signaling
pathways. The activation of PKC is among the initial molecular events under high-glucose
conditions. PKC is a driver of numerous signal transduction cascades that regulate cell
metabolism and plasticity. Among the downstream targets of PKC is NADPH oxidase that
activates superoxide production and thus exacerbates oxidative damage [174].

A number of molecular effects of oxidative stress are mediated via NF-κB-dependent
signaling pathways. NF-κB is a universal transcription factor that controls the expression
of genes for the immune response, apoptosis and cell cycle. In diabetes, ROS, AGEs and an-
giotensin II induce an inflammatory response, endothelial dysfunction and renal fibrosis via
the activation of NF-κB. Accordingly, NF-κB is considered as a potential target in diabetic
vascular complications [175]. As it has previously been mentioned, transient high glucose
induces prolonged NF-κB activation in vascular endothelial cells [162]. The IHG-stimulated
activation of NF-κB in cultured HUVECs down-regulated the expression of bcl-2, an anti-
apoptotic protein [176]. In vascular cells, glucose fluctuations promote the dysfunction of
large-conductance, calcium-activated potassium channels via the overproduction of ROS
and activation of PKCα/NF-κB/MuRF1 signaling [177]. ROS-mediated NF-κB activation
under high-GV conditions up-regulates the receptor for AGEs in podocytes [22].

The dysregulation of the phosphoinositide-3-kinase (PI3K)/Akt, mitogen-activated
protein kinase (MAPK) and AMPK pathways is considered to be involved in altered glucose
metabolism and related biochemical abnormalities in diabetes and high GV [178,179]. The
PI3K/Akt signaling pathway, which is essential for cell survival and growth, plays an
important role in preventing endothelial cell injury induced by high glucose. It was shown
that IHG induces a more severe decrease in the phosphorylation of Akt and GSK-3β than
CHG in cultured HUVECs; this effect is associated with reduced cell viability [19]. In
agreement with these data, it was demonstrated that IHG suppresses NO synthesis in
cultured HUVECs to a greater extent than CHG via the inhibition of PI3K/Akt and eNOS
activity [58]. The pro-apoptotic effect of IHG in cultured neuronal cells (PC12 cell line)
also involves the PI3K/Akt pathway [133]. The oxidative and inflammatory stress and
microglial activation induced by acute glucose fluctuation in the mouse microglial BV-2
cell line were mediated through the PI3K/Akt, NF-κB and MAPK cascades [134].

MAPK families play an important role in cell proliferation, differentiation and apopto-
sis. The MAPK families include extracellular signal-regulated kinase (ERK), JNK and p38
MAPK [180]. Some data point to the role of these signaling molecules in the realization of
the effects of GV in the target organs. It was demonstrated that MAPK (ERK1/2), as well
as the PI3K and NF-κB signaling pathways, is involved in the proliferative effect of IHG in
VSMCs [138].

In vascular endothelial cells, IHG increased the phosphorylation of JNK [166]. The
JNK pathway plays a central role in the cell response to hyperglycemia, oxidative stress,
proinflammatory cytokines and other stress-inducing stimuli. The JNK-dependent effects
include the regulation of gene expression, cell death and cellular senescence [181,182]. In
patients with diabetes, JNK contributes to vascular insulin resistance and endothelial dys-
function [183]. It was demonstrated both in vivo and in vitro that the PKC/JNK pathway
mediates the pro-apoptotic effect of glucose fluctuations in endothelial cells [129,184].
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In diabetes, high glucose activates p38 MAPK signaling [181]; high GV may be an
additional trigger of the event [166]. It was shown that GV generates the more severe
up-regulation of type I collagen synthesis and fibrosis of aorta via the activation of the
ROS/p38 MAPK/Runx2 pathway in Sprague Dawley rats with streptozotocin-induced
diabetes [185]. In astroglial cells, glucose fluctuations induce toxicity with oxidative and
inflammatory stress by activating p38 MAPK and NF-κB [99].

The interactions among the MAPK, NF-κB and TGF-β/Smad signaling pathways are
essential for fibrogenesis. It is well known that TGF-β’s biological effects were realized
by activating downstream mediators Smad2 and Smad3, which is negatively regulated by
an inhibitory Smad7 [186]. The activation of the MAPK/ERK and TGF-β/Smad signaling
pathways is considered as a cornerstone in the pathogenesis of renal fibrosis in diabetic
kidney disease [187]. As it was demonstrated in mice with alloxan diabetes, excessive
blood glucose fluctuations cause the more pronounced activation of the TGF-β/Smad2 and
ERK/MAPK pathways in the kidney compared to stable hyperglycemia. These changes in
signal transduction were accompanied by the marked increase in type I collagen synthesis
and suppression of collagen degradation [188]. The inhibition of skin collagen synthesis
and increase in collagen degradation under high GV is also attributed to both the MAPK
and Smad signaling pathways [189].

AMPK is a master regulator of metabolism which acts as an intracellular sensor of
energy availability [178]. The glucose shortage promotes AMPK activity; meanwhile,
overnutrition inhibits it. In many cell types, AMPK stimulates glucose uptake via traf-
ficking glucose transporters GLUT1 and GLUT4; acutely stimulates glycolysis; and, in
the longer term, tends to promote oxidative metabolism. The activation of autophagic
flux via ULK1 is considered as an important AMPK-dependent mechanism of cellular
metabolic adaptation [190,191]. Recently, it has been demonstrated that high glucose re-
presses AMPK signaling via MG53 E3 ubiquitin ligase-mediated AMPKα degradation and
deactivation [192]. Currently, little is known about the effect of GV, which is characterized
by intermittent glucose excess and deprivation, on AMPK activity in diabetes. It was found
that the activation of AMPK by globular adiponectin can inhibit, at least partially, the
IHG-induced apoptosis of HUVECs [193].

mTORC1 is another protein kinase that is regulated by glucose availability; however,
unlike AMPK, mTORC1 is activated in high-glucose conditions. When it is activated,
mTORC1 shifts the metabolic paradigm towards anabolic processes, promotes cell growth
and suppresses autophagic flux [191]. It was demonstrated that the inhibition of AMPK by
high glucose inversely correlates with the activation of the mechanistic target of rapamycin
(mTOR) pathway in beta cells [194]. It is currently known that upon glucose depletion,
mTORC1 is inhibited by AMPK-dependent and AMPK-independent mechanisms [195].
Recent data indicate that aldolase could be a sensor for both low and high glucose levels,
linking to the AMPK and mTORC1 pathways [196]. In cancer, diabetes and other diseases
characterized by abnormal glucose metabolism, mTORC1 is deregulated [195,197]. In
diabetes, hyperactivated mTORC1 is involved in the pathogenesis of cardiomyopathy [198],
diabetic retinopathy [199] and diabetic kidney disease [200]. Unfortunately, the role of
mTORC1 signaling in GV-related vascular effects has not been studied to date.

Thus, the deteriorative effects of high GV in the target cells are realized through
the PI3K/Akt, NF-κB, MAPK (ERK), JNK, TGF-β/Smad and other signaling pathways
(Table 1). Elucidating the pathophysiological role of AMPK and mTORC1 under fluctuating
glucose conditions is a promising challenge for future research.
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Table 1. The principal signaling pathways mediating the pathophysiological effects of high GV in diabetic complications.

Effect Pathways Refs.

Oxidative stress in endothelial and neural cells PKC/NF-κB, PI3K/Akt, p38MAPK [99,134,174,175]

Endothelial dysfunction and apoptosis PI3K/Akt, NF-κB, PKC/JNK [19,58,129,176,184]

Proliferation of VSMCs MAPK (ERK1/2), PI3K/Akt, NF-κB [138]

Vascular low-grade inflammation NF-κB and p38 MAPK [162]

Renal fibrosis MAPK (ERK1/2) and TGF- β/Smad [188]

Aortic fibrosis TGF-β/Smad, NF-κB, p38 MAPK and Runx2 [185]

Neuronal apoptosis and neurodegeneration PI3K/Akt, NF-κB [133,134]

5. Conclusions

Current data indicate that the deteriorating effect of high GV on the targeted cells
may be realized through a number of molecular abnormalities. Fluctuations in glucose
levels alter the expression profile of a large number of genes and modulate the activity of
intracellular signaling pathways. Epigenetic modifications prolong the effects of GV. These
changes cause the dysfunction of cell organelles and disrupt the life cycle and synthetic
function of endothelial cells and other cells of the vascular wall, the nervous system,
the kidneys, the liver and other organs. These changes are manifested by biochemical
and pathophysiological abnormalities underlying diabetic complications. The multiple
deteriorative effects of GV provide further support for considering it as a therapeutic target
in diabetes. Treatment modalities focused on reducing GV may have an advantage in
diabetes management. Further study of the cellular and molecular effects of high GV is
needed to develop targeted methods for the treatment and prevention of diabetic vascular
and neural complications.
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AGEs Advanced glycation end-products
AMPK AMP-activated protein kinase
ATF4 Activating transcription factor 4
BMP Bone morphogenetic protein
CARM1 Coactivator-associated arginine methyltransferase 1
CGM Continuous glucose monitoring
CHOP C/EBP homologous protein
CHG Constantly high glucose
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DNMT3b DNA (cytosine-5-)-methyltransferase 3 beta
eNOS Endothelial nitric oxide synthase
EPCs Endothelial progenitor cells
ER Endoplasmic reticulum
ERK Extracellular signal-regulated kinase
GLUT4 Glucose transporter type 4
GSK3β Glycogen synthase kinase 3 beta
GV Glucose variability
HbA1c Glycated hemoglobin A1c
hsCRP High-sensitivity C-reactive protein
HMGB1 High-mobility group box 1
HUVECs Human umbilical vein endothelial cells
ICAM-1 Intercellular adhesion molecules 1
IHG Intermittently high glucose
INS-1 Insulinoma cells
IRF5 Interferon regulatory factor 5
JNK c-Jun N-terminal kinase
LAMP Lysosomal-associated membrane protein
LC3 Microtubule-associated proteins 1A/1B light chain 3B
MAGE Mean amplitude of glucose excursions
MAPK Mitogen-activated protein kinase
MCP-1 Monocyte chemoattractant protein 1
miRNAs small single-stranded non-coding RNAs
mTOR Mechanistic target of rapamycin
mTORC1 Mammalian target of rapamycin complex 1
NADPH Nicotinamide adenine dinucleotide phosphate
NF-κB Nuclear factor kB
PAI-1 Plasminogen activator inhibitor-1
PI3K Phosphoinositide-3-kinase
PKC Protein kinase C
ROS Reactive oxygen species
RUNX2 Runt-related transcription factor 2
SHC1 SHC-transforming protein 1
SKP2 S-phase kinase-associated protein 2
SD Standard deviation
sICAM-1 Soluble intercellular adhesion molecules 1
SIRT1 Sirtuin 1
SGLT1 Sodium-glucose cotransporter 1
SOD2 Superoxide dismutase 2
T1D Type 1 diabetes
T2D Type 2 diabetes
TGF-β1 Transforming growth factor beta 1
TLR4 Toll-like receptor 4
TNF-α Tumor necrosis factor α
TSP-1 Thrombospondin-1
TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling
VCAM-1 Vascular cell adhesion molecules 1
VEGF Vascular endothelial growth factor
VSMCs Vascular smooth muscle cells
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