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Abstract

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) analysis can detect protein/DNA-binding and histone-
modification sites across an entire genome. Recent advances in sequencing technologies and analyses enable us to compare
hundreds of samples simultaneously; such large-scale analysis has potential to reveal the high-dimensional interrelation-
ship level for regulatory elements and annotate novel functional genomic regions de novo. Because many experimental
considerations are relevant to the choice of a method in a ChIP-seq analysis, the overall design and quality management of
the experiment are of critical importance. This review offers guiding principles of computation and sample preparation for
ChIP-seq analyses, highlighting the validity and limitations of the state-of-the-art procedures at each step. We also discuss
the latest challenges of single-cell analysis that will encourage a new era in this field.
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Introduction

Genome-wide investigations into cooperative interactions
among genomic functions, e.g. DNA replication, segregation,
translation, repair and rearrangement, are vital for systematic-
ally elucidating all biological activities on the genome. To this
end, chromatin immunoprecipitation followed by sequencing
(ChIP-seq) analysis was developed to understand the cooper-
ation and interactions that occur in a wide variety of organisms
using next-generation sequencing (NGS) [1–3]. ChIP-seq analysis
is a mainstream method in genomics and epigenomics, and has
led to important discoveries related to disease-associated tran-
scriptional regulation [4–7], tissue-specificity of epigenetic regu-
lation [8, 9] and chromatin organization [10–13].

ChlP-seq protocols have many steps involving sample prep-
aration and computational analysis (Figure 1). In brief, cross-
linked chromatin is sonicated, and purified with and without
immunoprecipitation (ChIP and corresponding input DNA

fragments, respectively). DNA fragments are sequenced as
reads, which are then mapped onto the reference genome, and
the genomic regions that are significantly enriched for ChIP
reads, compared with input reads, are detected as peaks. Other
genomic regions are regarded as non-specific background.
Called peaks, which represent candidates of targeted protein/
DNA-binding and histone modification sites, can be used to
identify associated functional annotations, including binding
motifs [14, 15] and gene ontology [16, 17]. ChIP-seq results can
also be integrated with other types of genomic assays, including
gene expression, DNA methylation and chromatin conform-
ation, to understand mechanisms of genomic functions from
multiple aspects [18–20].

The shapes of the peaks vary among proteins, and are classi-
fied into three modes [1]: ‘sharp mode’, located at specific pos-
itions in the genome; ‘broad mode’, associated with large
genomic domains; and ‘mixed mode’, which involves both peak
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modes. As most point-source transcription factors (TFs) and
localized chromatin markers (e.g. H3K4me3) have sharp modes,
a large majority of peak-calling algorithms have been designed
for this mode, even though other proteins (e.g. heterochromatin
protein HP1 [21]) and some histone modifications (e.g.
H3K9me3) have broad modes. The mixed mode is observed for
RNA polymerase II (Pol II) and transcription elongation factors
[22]. The read distribution of Pol II-related NGS analyses, such
as Nascent RNA-seq [23] and NET-seq [24], are also classified as
mixed mode. Different peak-calling strategies are required for
each shape.

Recent advances in sequencing technologies and analyses
enable us to handle hundreds of ChIP samples simultaneously;
such large-scale analyses revealed the high-dimensional inter-
relationship for regulatory elements [25–27] and annotate novel
functional genomic regions de novo [28, 29]. Because a large-
scale analysis is sensitive to the quality of input samples and
adjusting the protocols for each sample’s quality is difficult,
samples which have insufficient quality should be rejected
automatically. As there are various factors (including antibody
quality) during sample preparation that affect the quality of the

obtained results [30, 31], multilateral quality assessments dur-
ing the computational procedures are essential. Despite great
efforts to streamline this process, no single workflow that is op-
timal under all circumstances exists, and there are many ex-
perimental considerations that are relevant to the method
choice for a ChIP-seq analysis. Consequently, to obtain high-
quality, unbiased and reasonable data, the overall protocol
design and quality management, which are adjusted to the
studies’ properties, are of critical importance.

In this review, we describe the computational protocol and
sample preparation for a ChIP-seq analysis, and discuss the val-
idity and limitations of emerging programs and quality meas-
ures currently available for specific analytical tasks by
providing concrete examples. There are ChIP-seq-extended
methods that can detect DNA-protein binding sites with base-
pair resolution [32, 33]. For simplicity, we have limited the scope
of this review to ChIP-seq protocols, for which the computa-
tional protocols are similar. The key issues described here also
underpin protocols for other NGS-based analyses [34–37].
Finally, we discuss the latest challenges of single-cell analysis
that will encourage a new era in this field.

Figure 1. ChIP-seq analysis workflow. Boxes indicate the steps involved in ChIP-seq analyses for various aims discussed in this review. The considerations for each

step are itemized. (A) Sample preparation, sequencing and mapping. This procedure is common to both (B) and (C). (B) Small-scale analysis (single or a few samples). In

this case, adjusting peak-calling strategy and parameters to each sample’s property is possible. (C) Large-scale analysis (many samples). Left rectangles indicate the

different experiments (e.g. same analysis for different cell types). Because integrative analysis is sensitive to the quality of input samples and one-by-one adjusting is

difficult, objective quality metrics for multilateral quantitative assessment is necessary to filter poor-quality data automatically.
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Sample preparation and sequencing

Fragmented DNAs (150–500 bp) from ChIP-seq samples are
sequenced as reads (36–100 bp). Single-end reads are often used
for typical ChIP-seq analyses, while paired-end ones improve
the library complexity and increase mapping efficiency at re-
petitive regions [38]. When research focuses on repetitive re-
gions, longer and/or paired-end reads are preferred. While
paired-end reads can be used to obtain the fragment size distri-
bution, several methods exist that estimate it from single-end
mapped data [12, 39, 40].

The chromatin accessibility during fragmentation is not uni-
form across the genome. In some open-chromatin regions (e.g.
actively transcribed promoter regions), DNA is amenable to
fragmentation and thereby preferentially represented in the
fragmented sample, which causes false-positive read enrich-
ment [41]. Tightly packed regions, e.g. heterochromatin, are
sheared to a lesser extent by DNA fragmentation, thereby
confounding weak enrichment of true binding sites for hetero-
chromatin markers [38]. These fragmentation biases in a gen-
ome-wide read distribution profile should be taken into account
when using null model analysis to obtain meaningful conclu-
sions. One way to mitigate this fragmentation bias is to shear
longer DNA fragments (350�800 bp) further using ultrasonica-
tion after the immunoprecipitation step [4]. Although including
longer fragments widens the obtained peaks, peak-summit
resolution is not strongly affected [38].

Read mapping

Sequenced reads are mapped onto the genome using mapping
tools [42, 43]. Most ChIP-seq experiments do not require gapped
alignments that consider insertions and deletions (indels) be-
cause the sequenced reads do not contain them, unlike exon
junctions in RNA-seq analyses. The exception is cross-species
analysis, which maps reads onto different species’ genomes. If
the information about heterozygous variants (e.g. single nucleo-
tide polymorphisms and indels) in the reference genome is
available, the allele-specific regulation analysis (personalized
genome analysis) can be applied [3, 44, 45].

An important issue concerns the inclusion of multiple
mapped reads (reads mapped to multiple loci on the reference
genome). Allowing for multiple mapped reads increases the
number of usable reads and the sensitivity of peak detection;
however, the number of false positives may also increase [46].
In general, uniquely mapped reads are sufficient to analyze
typical TFs, except for in-repeat analyses [47]. Considering
the percentage of mapped reads (mapping ratio) is important,
and desirable rate depends on the species and the read lengths.

Mappability

Recent central ChIP-seq studies [29, 45] used uniquely mapped
reads. Instead of including multiple mapped reads, they con-
sidered the mappability [48] to correct for the loss of true
signals in low-mappable regions. Theoretically, the mappability
of a reference genome depends on the read length, read type
(color or nucleotide space) and the mapping tool and param-
eters used [49], but calculating the genome-wide mappability
for each is often time-consuming. Moreover, it is difficult to cal-
culate the mappability of paired-end and gapped alignment
data, although there has been an effort to calculate the for-
mer [50]. Consequently, it is practical to use the mappability
data publicly available for similar parameter sets. When low-

mappable regions (e.g. a ratio < 0.25) are of interest, it might be
better to include multiple mapped reads or use paired-end
reads.

Library complexity

Library complexity is measured by the non-redundant fraction
(NRF), the fraction Nnonred/Nall, where Nnonred and Nall are the num-
bers of non-redundant reads and the total number of mapped
reads, respectively. The non-redundant reads are defined as reads
mapped on the same genomic positons T times or less, where T is
the threshold for redundant reads. The redundant reads (Nall �
Nnonred) should be filtered from further analysis. For human, T is
typically set 1 because the expected number of mapped reads per
base pair (sequencing depth)� 1. When it becomes >1, due to
the small genome under investigation (e.g. yeast), or in enriched
regions for the very high signal-to-noise ratio (S/N) of the anti-
body (e.g. Pol II), it may be appropriate to relax the threshold T be-
cause stringent filtering has small effect on the sensitivity of the
peak detection [38]. Moreover, when studying highly repetitive re-
gions (e.g. rDNA regions in Saccharomyces cerevisiae), filtering
redundant reads should be omitted.

Because the NRF score depends on the total number of
mapped reads, read sampling is necessary when comparing
NRF scores among samples. The ENCODE consortium endorses
an NRF > 0.8 for 10 million reads (T ¼ 1) [30]. A low library com-
plexity often occurs when samples are prepared from a small
amount of starting materials. Even if the number of sequenced
reads is sufficient after polymerase chain reaction (PCR) amplifi-
cation, the substantial read number may be small, resulting in a
poor significance power.

Sequencing depth

The number of called peaks increases with the sequencing
depth, because weaker sites become statistically significant
with a greater number of reads [51]. Although early ChIP-seq
analyses produced <10 million reads per sample, it was re-
ported that some highly active regions displayed a modest ChIP
enrichment [30] and that weak protein binding by other factors
may have important subfunctions [52]. Therefore, deep
sequencing is required to include all functional sites. Broad
markers that cover large genomic areas require more depth
than those of sharp-mode peaks.

A sufficient sequencing depth depends on the S/N of the
antibody. To determine sufficient sequencing depths, a ‘satur-
ation analysis’ can be used, which subsamples the original read
set in a stepwise fashion and calculates the proportion of identi-
fied peaks that overlap the original ones for each depth [1]. The
point where the proportion is saturated is defined as sufficient
depth. Although this approach is useful, there is no clear satur-
ation point for most histone modifications [53]. Therefore, an
agreeable depth has been determined empirically. For human
samples, the ENCODE consortium suggested that at least two
biological replicates with 10 million uniquely mapped reads for
each replicate (providing at least 20 million reads per factor) is a
minimum for typical TFs (sharp mode) [30]. Chen et al. [38] sug-
gested that up to 60 million reads may be required for broad his-
tone markers, and Jung et al. [53] suggested 40–50 million reads
as a practical minimum for most broad histone markers. If the
saturation point has not been detected at the available depth, it
is still possible to apply tools for a sufficient depth estimation
using a power analysis [54] or for predicting the benefits of add-
itional sequencing [55].
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Signal-to-noise ratio (S/N)

The S/N is evaluated by the number and strength of peaks ob-
tained for each ChIP sample. This measure can also be used to as-
sess the degree of noises in the input sample. The ENCODE
consortium proposed two metrics, fraction of reads in peaks
(FRiP) and cross-correlation profiles (CCPs) to measure the S/Ns
[30]. The FRiP value is calculated as FRiP ¼ Npeak/Nnonred, where
Npeak is the number of reads falling within peak regions. This
value correlates positively with the number and intensity of the
identified peaks. ChIP samples that have too few peaks can be fil-
tered using a cutoff for this score. However, because the FRiP
score obviously depends on the sequencing depth and the par-
ameters set for peak calling, it is not a perfectly objective metric.
Conversely, CCPs assess the read-clustering levels without calling
peaks beforehand [30]. This analysis plots the Pearson cross-cor-
relations (CCs) between mapped read densities of positive and
negative strands (y-axis) with shifting one strand (x-axis).
Samples with large and small S/Ns typically have high CCs at the
shift points corresponding to the fragment length (Cfrag) and the
read length (Cread), respectively. Based on this observation, two
quantitative measures are scored, the normalized strand coeffi-
cient NSC ¼ Cfrag/Cmin and relative strand correlation RSC¼ (Cfrag

� Cmin)/(Cread � Cmin), where Cmin is the minimum CC observed.

The ENCODE consortium recommends an NSC � 1.05 and an RSC
� 0.8 for typical TFs (sharp mode). Conversely, input and negative
control samples should have low scores. Using this criteria,
Marinov et al. [56] reported that a substantial minority (20%) of
vertebrate ChIP-seq data sets for TFs in the Gene Expression
Omnibus (GEO) were of insufficient quality, suggesting the neces-
sity of quality check even for published data. Hansen et al. [12]
has proposed the Hamming distance plot analogous to CCPs.
CCPs are helpful; however, they have mainly been tested using
only a few species and a more extensive investigation is neces-
sary to understand the applicability of this approach to many
other species. Moreover, a large S/N does not guarantee that the
identified peaks are genuine binding sites—a large score merely
means that there are many read-enriched regions in the genome.
Samples that have many false-positive sites (e.g. non-specific
binding sites) also have large S/Ns.

Example of the visualization and quality check

In Figure 2 we show an example of human ChIP-seq data ob-
tained from the ENCODE project [45]. This example includes
sharp mode (H3K4me3), broad mode (H3K36me3, H3K27me3
and H3K9me3) and mixed mode (RNA Pol II) samples with the

Figure 2. Statistics and visualization of ChIP-seq analysis for human K562 cells. A representative data set of ENCODE consortium [45]. The sequenced read files

(fastq) and the reference peak lists (detected by Scripture [57] under the assumption of uniform background signal) were downloaded from GEO under accession

number GSE29611. The fastq files were mapped onto the human genome (UCSC hg19) using Bowtie version 1.1.0 [42], allowing uniquely mapped reads only.

(A) Summary statistics for each sample. The averaged read quality was obtained using fastqc version 0.11.4 (http://www.bioinformatics.babraham.ac.uk/projects/

fastqc). The number of non-redundant reads, library complexity for 10 million mapped reads and FRiP scores were calculated using DROMPA3 version 3.0.0 [58].

Normalized strand coefficient (NSC) and relative strand correlation (RSC) scores were obtained using phantompeakqualtools version 1.1 (https://code.google.com/p/

phantompeakqualtools). (B) The non-redundant read distribution for each sample with a RefSeq gene annotation (chromosome 1, 244.5–245.1 Mb). For the gene line

(yellow box), genes in the upper and lower halves are on forward and reverse strands, respectively. The green and blue histograms represent the read distribution of

ChIP and the input samples for 100-bp bins, respectively. The reference peak regions are highlighted in red. Note that the y axis indicates the read number normalized

for the number of non-redundant reads, whereas the reference peak lists were identified based on raw read numbers. The gene reference was obtained from the UCSC

genome browser [59]. (C) Visualization of the ChIP/Control enrichment distribution for 100-kb bins (chromosome 10). Bins with ChIP/control >1 are highlighted in red,

and those with ChIP/control �1 are in gray. The GC contents and gene numbers for 500 kb windows are also plotted. The figures (B) and (C) were generated by

DROMPA3.
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control. Figure 2A summarizes the statistics of the quantitative
quality metrics. The differences in average peak widths reflect
the binding modes of each sample. The larger mapping ratio of
H3K9me3 compared with H3K36me3 is mainly a consequence
of the greater read quality. Conversely, the low affinity of the
H3K9me3 antibody is indicated by the small RSC score and a
comparable FRiP score against a much larger total peak width.
These metric scores are used to automatically assess sample
quality, leading to the rejection of poor-quality samples from
further analyses.

Figure 2B shows the read distribution of each sample nor-
malized for total non-redundant reads. The visualization of the
read distribution is useful at the first step for judging the valid-
ity of the experimental results. In this figure, the active regions
occupied by H3K36me3 and the silent regions occupied by
H3K27me3 are distinguishable. On the other hand, H3K9me3
also has peaks, whereas their reads are not highly enriched.
Considering H3K9me3 is a heterochromatin marker and gener-
ally not enriched in active gene regions [29], these peaks might
be false positives. This is possibly because the mapped read
number of H3K9me3 is more than twice that of the other sam-
ples (Figure 2A), resulting in a peak-calling threshold that is not
stringent enough. In fact, because the S/N of the H3K9me3 anti-
body is smaller than those of H3K36me3 and H3K27me3, a high
sequencing depth may be required to identify enriched regions.
However, the chromosome-wide visualization of ChIP/input en-
richment with a 100-kb bin clearly shows the exclusivity be-
tween H3K9me3 and H3K27me3 (Figure 2C). This large bin size
enables us to directly use the ChIP/control distribution, even for
large genomes, and provides an important insight.

Peak-calling

Establishing a definitive algorithm for peak detection has been
the central topic in ChIP-seq analysis, resulting in the develop-
ment of a plethora of programs. As the space is limited, we will
just introduce here 20 representative programs.

Progress in the development of peak-calling algorithms

Peaks detection of a ChIP sample generally uses a correspond-
ing input sample to estimate the background distribution at any
genomic locus. Naked genomic DNA is less appropriate as a
control because the input sample reflects the GC bias and chro-
matin structure rather than naked DNA [38, 41]. It was also re-
ported that histone H3 ChIP-seq data can be used as a control
[60]. ChIP samples for non-DNA-binding proteins, e.g. IgG, are
often used to detect nonspecific binding sites. See [30] for a de-
tailed discussion regarding control samples.

Early programs adopted the Poisson model, which assumes
that the background reads are uniformly distributed along the
genome (e.g. SICER [61] and CCAT [62]). However, a greater vari-
ation in the read distribution than allowed by the Poisson model
is typically experimentally observed, and the negative binomial
model that is an extension of the Poisson model was adopted to
approximate such an overdispersion (e.g. CisGenome [63] and
BayesPeak [64]). This model was extended to a zero-inflated
negative binomial model to account for the zero-inflated read
distribution caused by a lack of sequencing depth and low-map-
pable regions (e.g. MOSAiCS [65] and ZINBA [66]). For other strat-
egies, MACS [39] uses the local Poisson model that estimates
the parameter k for each local genomic position. GPS [67] and
PICS [68] predict protein-binding events using an EM algorithm.
SISSRs [69], Peakzilla [70] and Q [12] focus on the equivalence

between the read numbers of positive and negative strands to
improve peak resolution. PePr [71] and JAMM [72] integrate in-
formation from multiple replicates to identify consistent or dif-
ferential binding sites. The multiple hypothesis correction is
performed to calculate false-discovery rates (FDRs) using the
Benjamini–Hochberg procedure or the empirical method that
calculates the peak number of the input sample compared with
that of the ChIP sample.

Broad mode and mixed mode peaks depict weak and wide-
spread enriched regions compared with the sharp mode, and
there are no clear peak summits and sequence specificity.
Although several peak-calling programs for the broad mode
have been developed [61, 66, 73–75], and some peak-calling pro-
grams also have parameter settings for the broad mode, detec-
tion of such enrichment is still challenging. For proteins that
are expected to be distributed within genic regions (e.g. Pol II
and H3K36me3), a gene-annotation-based method is also use-
ful, e.g. an aggregation plot around active genes and methods
for differential gene expression analyses [76, 77]. For the charac-
terization of Pol II occupancy, a travelling ratio (or pausing
index) has been proposed [78]. The traveling ratio for gene i is
defined as TRi ¼ dpp/dgene, where dpp and dgene are the Pol II dens-
ity in the promoter-proximal region and the gene body of gene i,
respectively. This score indicates whether the promoter-prox-
imal Pol II stalled at the gene. MUSIC discriminates between the
binding modes, and between stalled and elongating forms of Pol
II [74]. When investigating broad markers distributed in inter-
genic regions (e.g. H3K9me3), the gene-annotation-based
method cannot be used. In such cases, it is still possible to use
genome-wide visualization (Figure 2C) and compare the results
with other public annotations, e.g. genome-wide maps of his-
tone modifications [29].

While large genomes (e.g. human) require a statistical
framework for peak calling owing to the low density and high
variance of the reads, it is effective for small genomes (e.g. yeast
[13, 79–81]) to inspect a genome-wide ChIP/input enrichment
distribution itself (Figure 3).

Which program is best for our analysis?

A performance comparison with a large set of programs in vari-
ous aspects is of interest. However, several issues make such
large-scale comparative study difficult. First, installing dozens
of programs with multiple prerequired data (e.g. mappability)
and assembling their results are often problematic owing to a
large variety of existing file formats, and the availability and
version-control of required tools in different computing envir-
onments. Second, because the programs have different underly-
ing assumptions (e.g. using mappability and/or multiple
mapped reads, subdividing peaks and necessity of replicates),
the simultaneous comparison of them is difficult to be fair.
Finally, the substantial evaluation of obtained peaks is difficult
due to the lack of annotation for ‘true’ binding sites (see the
next subsection). Although there are early studies of perform-
ance evaluations for peak-calling programs, based on the num-
ber, width and the distribution of peaks [82, 83], the
reproducibility across replicates [38] and the accuracy against
the known binding motif sites [84] or the manually curated
benchmark data sets [85], the number of programs compared
and quality metrics used in each study were limited. Moreover,
the comparison with latest programs is lacked.

The appropriate method depends on the species, sample
conditions and target proteins. Even though there is no clear
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consensus on which is best, the latest and widely used pro-
grams may be satisfactory for our needs.

How reliable are the obtained results?

Owing to the lack of annotation for true binding sites, the devel-
opment of computational methods to evaluate the identified
peaks has been limited. Motif-based evaluations are not applic-
able for proteins that do not have sequence specificity (e.g. his-
tone modifications). Even for proteins with canonical motifs,
there can be many tissue-specific binding sites recruited by
other factors that do not involve the motif sequence [52, 86].
Another way of assessing the validity of the identified peaks is
to focus on reproducibility. Cross-correlation coefficients of
peak regions or whole-genomes measure the global similarity
between two biological replicates [87]. The irreproducible dis-
covery rate (IDR) assesses the rank consistency of common
peaks between two replicates [88]. Based on a copula mixture
model, IDR estimates the reproducibility of each peak pair, and
reports the expected rate of irreproducible discoveries in the ob-
tained peaks in a similar way to the FDR. In contrast to the CC
coefficient, the IDR can assess each peak separately and there-
fore, can be used as a threshold robust for the technical
variance owing to the analysis protocols and the choice of a
peak-calling program. However, the poorest quality samples
can become the bottleneck. When many true peaks do not ap-
pear in a replicate with a low S/N, they will be rejected as non-
reproducible. Furthermore, several genomic regions tend to
show artificially high enrichment levels, resulting in ‘reprodu-
cible’ false-positive peaks that cannot be filtered by the IDR. The
ENCODE consortium summarizes empirically identified ‘black-
list regions’ for several species, which include repetitive and
low-mappable regions [45]. Moreover, there are ‘hyper-ChIPable’
regions in the genome, in which peaks of unrelated proteins,
including negative controls, overlap [79] (see Figure 3). These

regions are positively correlated with promoters of well-ex-
pressed genes and are unchanged in cells containing the mu-
tant protein of interest [89]. This result indicates that the peaks
obtained by current methods may contain some (or a large)
amount of unrecognizable false positives. Therefore, when
investigating a protein with an unknown DNA-binding pattern,
the obtained peaks should be validated carefully with a negative
control (e.g. IgG), especially around transcription start sites
(TSSs) of expressed genes.

How to treat low-quality samples?

There are various factors that can affect the data quality of the
sample preparation step, including the quality of the antibody—
e.g. its affinity and specificity, over-crosslinking, DNA fragmen-
tation and overamplification by PCR and ChIP conditions.
Different antibodies, even for the same protein (and even biolo-
gical replicates of the same antibody), often produce completely
different peak distributions. Despite an investigation of
sequencing biases present in NGS data [90], it is still difficult to
ascertain the exact sources of each bias in a sample preparation
protocol [31]. In our experience, when a sample has a poor score
for a quality measure, it often has other problems (e.g. low com-
plexity causes a strong GC bias). As it is difficult to rescue poor-
quality samples and include them in the analysis pipeline even
with read normalization, fine-tuning sample preparation proto-
cols to produce high-quality samples may be necessary for each
project.

An efficient way to allow the use of ChIP-seq data of modest
quality, while suppressing the noise, is by limiting the genomic
regions to be investigated to a few candidate regions that satisfy
the working hypothesis, and then validating them using other
biological experiments, as suggested in [30]. This is a practical
approach, rather than seeking the most accurate method by mi-
nutely tuning the parameters for each sample. Adding samples
from related proteins and biological replicates increases
reliability.

Normalization for a differential analysis
Relative-level difference (de novo normalization)

A typical procedure after obtaining peak sets is to summarize
peak similarities and differences among samples in a binary
(common or unique) or quantitative (variety of peak intensity)
manner, which necessitates read normalization. The simplest
normalization approach is to scale reads using the total read
number (Nnonred) within the whole genome or background re-
gion, which assumes that the differences in the mapped reads
among samples are small enough compared with the total read
number. Instead of scaling reads using a constant factor, Taslim
et al. [91] proposed the nonlinear method using a locally
weighted regression (LOESS) to remove the effects of bias and
systematic errors. However, the underlying assumption that the
genome-wide distribution of read counts has an equal mean
and variance across samples may not be valid in most cases
(e.g. the different S/Ns between samples). Maehara et al. [92]
proposed the co-localization score that measures the global
similarity between two samples based on the common peaks,
while it does not aim to identify individual differential peaks.
Methods for differential gene expression analysis [76, 77] can be
used to directly compare more than two groups, and these
methods do not consider the different S/Ns among samples ei-
ther. In contrast, MAnorm [93] and ChIPcomp [94] are designed

Figure 3. ChIP/input enrichment distribution of S. cerevisiae (chromosome I, 136–

162 kb). Data from [11]. Smc6, Nse4 and ‘No tag (negative control)’ ChIP-seq data

for a 100-bp bin with gene annotation obtained from the Saccharomyces Genome

Database (http://www.yeastgenome.org). The reads were mapped onto the gen-

ome, allowing multiple mapped reads. For the yeast genome, inspecting the

genome-wide ChIP/input enrichment distribution is effective because a read

depth is large enough (>10-fold) and the division with the input sample can

minimize the technical and biological biases of the conditions. The enriched re-

gions of Smc6 and Nse4 that overlap those of the ‘No tag’ sample (black arrows)

suggest false positives (e.g. hyper-ChIPable regions).
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to consider different S/Ns. MAnorm scales the reads of peaks
common to two samples using a robust linear regression based
on the MA plot. ChIPcomp performs quantitative comparison of
multiple ChIP samples, which measures genomic background
using control data and considers multiple-factor experimental
designs. These tools assume that most of the common peaks
should have similar binding intensities among the samples (e.g.
same antibody for different conditions). See reference [94] for a
detailed discussion regarding these de novo normalization
programs.

Absolute-level difference (spike-in analysis)

In cases where the genome-wide peak distribution changes
drastically (e.g. knock down analysis or stimulated versus non-
stimulated) the aforementioned assumptions do not hold.
Moreover, those normalizations are essentially limited to inves-
tigating relative differences in protein binding among samples
[31]. For example, when the reads are relatively enriched in eu-
chromatic regions and depressed in heterochromatic regions in
a sample, it is difficult to discern whether protein binding was
increased in the euchromatin or decreased in the heterochro-
matin in vivo. Recently, to investigate the absolute differences,
several studies adopted spike-in analysis for human [95–97] and
yeast [98, 99]. This analysis adds same quantities of chromatin

DNA to all samples compared before or after immunoprecipita-
tion. Because the number of reads derived from this reference
chromatin should be same across samples, this number can be
used as an internal control for read normalization. Thus, the
spike-in analysis can detect global differences that cannot be
identified by aforementioned de novo normalization methods.
To discern reference reads from sample ones, the reference
chromatin should be derived from a different genome.

Herein, we show an example of the spike-in data of
H3K79me2 for EPZ5676-treated Jurkat cells from Orlando et al.
(Figure 4). As shown in the original paper, spike-in normalization
revealed a decrease in the H3K79me2 enrichment (Figure 4A and
B). Next, the relative enrichment of H3K79me2 against that of 0%
cells was visualized (Figure 4C). In the total read normalization
for 100%/0% (fifth line), the read depth in the background (blue
bars) was about four times greater owing to the genome-wide
substantial decrease in H3K79me2-enriched regions (green bars).
Using spike-in normalization (bottom line), the relative enrich-
ment of the background declined to one, which indicates there is
little difference within the background at an absolute level.
A similar tendency can be observed for three other sample pairs,
but they were less significant.

Although a spike-in analysis should be powerful and useful,
its applicability and limitations, e.g. balancing the amount of
spike-in relative to the chromatin of interest, are still not clear

Figure 4. Spike-in analysis of H3K79me2 ChIP-seq data for 0%, 25%, 50%, 75% and 100% EPZ5676-treated Jurkat cells. Data from [96] (GEO under accession number

GSE60104). Spike-in normalization was implemented using the number of reads uniquely mapped onto the fly genome (UCSC dm3). (A) Read distribution near the

RPL13A gene locus for 100-bp bins. Left: total read normalization, right: spike-in normalization. (B) Aggregation plots of total read normalization (left) and spike-in nor-

malization (right) from 5-kb upstream to 10-kb downstream of the TSSs of the RefSeq genes. Shaded regions indicate a 95% confidence interval. (A) and (B) are identical

visualizations of Figure 3C and E in reference [96], respectively. (C) Log-scale relative enrichment of H3K79me2 for 25%, 50%, 75% and 100% treated cells against 0%

treated cells near the RPL13A gene locus (chromosome 19,49.88–50.13 Mb), with a 100-kb bin and 20-kb smoothing window. The top green line displays a H3K79me2

read distribution for 0% treated cells to roughly identify H3K79me2-enriched (green bars) and background regions (blue bars). Regions in which the enrichment (y-axis)

is>1 and <1 indicate a relative increase and decrease, respectively.
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[31]. Moreover, we have occasionally observed a decrease in the
read density owing to protein knockdowns in both the peak re-
gions and in the background. It is challenging to determine
whether a decrease in the read density of the background indi-
cates that the protein of interest is also distributed in the back-
ground, and if we can conclude that the peak decreases owing
to the knockdown when the read depth in the background de-
creases as much as in the peak regions. To answer these ques-
tions, extensive testing may be necessary, e.g. using a mock
knockdown analysis. In addition, spiking genomes of multiple
species may make the analysis more robust. The optimal nor-
malization method should be chosen based on prior knowledge
of the system and the statistics of the sequenced samples. The
obtained results of a differential analysis should be evaluated
using another method, e.g. quantitative PCR.

Integrative analysis for a de novo genome
annotation

Although it is now possible to produce many ChIP-seq data sets
at reasonable costs, their comparison and integration are not
trivial. For example, when examining the differential ChIP-seq
analysis of four proteins obtained under two conditions, and
the knockdown effects on these data sets are of interest, it is ne-
cessary to investigate the differences among four proteins
under the two conditions and/or between wild-type and knock-
down cells simultaneously. As the results strongly depend on
the peak-calling result of each sample [87], of which the proto-
col should be selected individually, the extensive work needed
for tuning the protocol and integrating all results will be chal-
lenging. Consequently, there is a great demand for tools that
jointly analyze all samples simultaneously.

Context-specific co-association identification

In the ENCODE consortium, Gerstein et al. [25] applied a
machine-learning framework and examined the genome-wide
co-association of 119 TFs that contained over 450 ChIP-seq sam-
ples. In this framework, peak calling is used with relaxed
thresholds merely to obtain candidate regions for investigation.
The identified sample peak sets are integrated into co-binding
maps, and then ‘context-specific’ co-associations are identified,
which are subsets of peaks binding to different TF sets in other
genomic regions. These combinatorial patterns provide biolo-
gical information on the high-dimensional interrelationship
level for regulatory elements, which is difficult to ascertain
using typical genome-wide pairwise comparisons. This concept
has also been used for cross-species analyses of regulatory in-
formation [100–102]. Because this approach targeted the binding
sites of point-source TFs, the results did not contain regions en-
riched in broad markers and background regions. The targeted
regions may differ among experiments, and therefore it is
difficult to directly compare the results across multiple
experiments.

Joint analysis for a de novo genome annotation

Recently, integrative methods were developed to segment, clas-
sify and annotate a whole-genome sequence de novo, based on
unsupervised machine-learning methods. These methods dir-
ectly receive all ChIP sample data and analyze them simultan-
eously, instead of calling peaks and comparing them
individually.

ChromHMM [103] and Segway [104] were developed to sys-
tematically identify the specific combination patterns of his-
tone modifications as a chromatin state, which can detect
large-scale variations of histone marks across the genome.
ChromHMM is the most widely used tool, which models binary
vectors (1 or 0) for each 200-bp bin converted from raw read
counts using a sample-specific threshold as an independent
Bernoulli random variable. Segway, by contrast, transforms the
counts into real values and uses a dynamic Bayesian network at
a 1-bp resolution. It can incorporate more complex relation-
ships among samples in each region, although it requires a
magnitude larger computational cost. Using these tools, high-
quality chromatin-state maps for many cell lines are available
[28, 29]. Several methods also exist that expand the methodolo-
gies of these tools to improve accuracy, computational cost or
the interactive navigation [105–108]. Although this chromatin-
state segmentation is not suitable for quantitative analysis
among multiple experiments, several tools were developed to
integrate and compare chromatin state sets from different ex-
periments [109, 110]. hiHMM jointly infers chromatin state
maps across multiple genomes and cell types [111].

There are also various joint analysis tools designed for TFs,
based on several probabilistic models, such as the generalized
EM algorithm and the Markov random field model [112–115].
These tools jointly model the dependencies among ChIP sam-
ples to identify global and local combinatorial enrichment pat-
terns in whole-genome or specific functional regions. The
number of classified enrichment patterns is not necessarily op-
timal for distinct functions of each protein, but these powerful
approaches do efficiently reveal context-specific co-associ-
ations, and it may be possible to find out the false positives
derived from hyper-ChIPable regions from total peak sets.
Although the machine-learning approach for a large number of
TFs is computationally daunting, these data-driven approaches
may positively impact large-scale analyses in the near future.

Future potential: single-cell analysis

A limitation of ChIP-seq analysis is the requirement for large
amounts of starting material (�105 cells); accordingly, ChIP-seq
analysis focuses on ensemble (averaged) features across large
number of cells. To elucidate the internal heterogeneity within
complex tissues and cell populations, the development of sin-
gle-cell methodology is desired. In spite of rapid development of
single-cell technologies in other genomic fields (reviewed in
[116, 117]), there has been so far no report for single-cell ChIP-
seq analysis. Recently, the first method for collection of chro-
matin data at single-cell resolution was published [118]. This
‘Drop-ChIP’ method adopts a droplet-based microfluidics sys-
tem [119] for labeling chromatin from single cells before immu-
noprecipitation, which is also employed for single-cell RNA-seq
analysis [120–122]. Labeled chromatins from all cells are
sequenced, mapped and partitioned into single-cell reads by
their barcode sequences. The single-cell profiles are classified
by an unsupervised hierarchical clustering, and aggregated into
profiles for subpopulations. The experiment using H3K4me2
antibody demonstrated that, although just a few hundred peaks
were identified per cell owing to low sequencing depth (�10 000
reads), this method could distinguish individual three cell types
(mouse embryonic stem (ES) cells, embryonic fibroblasts and
hematopoietic progenitors cells) with nearly 100% accuracy,
and identify subpopulations in ES cells using the differences in
chromatin signatures of pluripotency and differentiation
priming.
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This method involves several important considerations.
First, because of low sensitivity and high technical read vari-
ance owing to low depth, this method can accept only antibod-
ies for sharp mode peaks with high S/N so far. It is difficult to
directly apply exiting techniques and quality metrics for trad-
itional ChIP-seq to single-cell ChIP-seq data. Therefore, it is bet-
ter to combine the result with typical ChIP-seq analysis, if
possible. Second, this single-cell analysis aims to unveil internal
heterogeneity by classifying patterns of subpopulations, rather
than examine an individual cell (e.g. single-cell-level compari-
son with gene expression data). In this respect, this method is
not interchangeable with low-input analyses [123–127], which
aims to reduce the cell number required by a typical ChIP-seq
workflow for precious biological samples (e.g. primary cells and
clinical samples). Finally, identification of small subpopulation
requires large number of sample cells [118]. Significance power
of this method depends on the number of input cells and the
performance of systems. Anyway, this first innovative chal-
lenge will encourage a new era in this field.

Concluding remarks

In this review, we discuss the computational aspects of ChIP-
seq analysis and highlight key points associated with each step.
We emphasize that the design of a ChIP-seq experiment is of
critical importance and that a quality check of the data at each
step is important, even when using published ChIP-seq data. By
addressing a wide range of relevant subtopics within ChIP-seq
analysis, which include integrative large-scale analysis and sin-
gle-cell analysis, this review expands the topic and enhances
the value of previous reviews. We believe that this review bene-
fits researchers in related fields.

There are high-quality genome-wide maps of TFs and his-
tone modifications provided by many consortia, and the open
web servers (e.g. UCSC genome browser [59] and WashU
Epigenome Browser [128]) enable researchers to effectively refer
and track these resources for their own projects. Growth of pub-
licly available resources will be a superb driving force for re-
search progresses in the biological and bioinformatics field.

Remaining challenges for the future is to classify direct and
indirect binding, capture temporary and non-site-specific (drift-
ing) TF binding and investigate highly repetitive regions, e.g.
centromeres. Finally, integration with other technologies, e.g.
human genetic variation analyses [129–131], genome editing [132]
and de novo assembly [133, 134], will make ChIP-seq analysis
more fruitful and provide us with knowledge regarding the
underlying mechanisms of genome function and evolution. Such
comprehensive analyses facilitate the systematic elucidation of
diverse biological activities intricately cooperating in the genome.
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Key Points

• Recent advances in sequencing technologies and ana-
lysis tools enable us to compare hundreds of ChIP-seq
samples simultaneously; such large-scale analysis can
reveal the high-dimensional interrelationship level for
regulatory elements and annotate novel functional
genomic regions de novo.

• Despite great efforts to streamline the ChIP-seq pro-
cedure, no single workflow that is optimal under all
circumstances exists, and there are many experimen-
tal considerations that are relevant to the method
choice for a ChIP-seq analysis.

• This review highlights important points using con-
crete examples to provide guiding principles for the
design and management of various computational
ChIP-seq analyses.

• The emerging machine-learning approaches that
jointly analyze all samples simultaneously have po-
tential to positively impact large-scale analyses.

• The first innovative challenge of single-cell ChIP-seq
analysis will encourage a new era in this field.
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