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Abstract. The Notch pathway plays a key role in several processes, including stem-cell self-
renewal, proliferation, and cell differentiation. Several studies identified recurrent mutations in 
hematological malignancies making Notch one of the most desirable targets in leukemia and 
lymphoma. The Notch signaling mediates resistance to therapy and controls cancer stem cells 
supporting the development of on-target therapeutic strategies to improve patients’ outcome. In 
this brief review, we outline the therapeutic potential of targeting Notch pathway in T-cell acute 
lymphoblastic leukemia, chronic lymphocytic leukemia, and mantle cell lymphoma. 
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Introduction. Notch pathway comprises a family of 
single-pass transmembrane receptors, their ligands, and 
coactivators that regulate evolutionarily conserved 
signaling that controls development and tissue 
homeostasis1,2 in all metazoan organisms. Mammalian 
NOTCH receptors (NOTCH 1-4) are pre-processed 
during maturation by a furin-like protease (S1), leading 
to the formation of two, non-covalently associated 
subunits. In non-malignant cells, canonical Notch 
signaling is initiated by cell-to-cell contact of the 
Notch extracellular domain (NECD) to a ligand of the 
Delta-like (DLL1, DLL3, DLL4) and Jagged family 
(JAG1, JAG2), expressed on the cellular surface of the 
neighboring cell. This receptor-ligand interaction 
mediates a sequence of two proteolytic cleavages in the 
Notch transmembrane subunit. The first, resolved by 
ADAM-10 or ADAM-17 metalloproteases, occurs 
within a juxtamembrane negative regulatory region 
(NRR) at a site that is protected in the inactive state 
(S2).3-5 This cleavage generates a trans-membrane 
intermediate that is the substrate for a secondary 
cleavage (S3) by the γ-secretase, an event that releases 

the intracellular domain of NOTCH (ICN, NICD).6 
ICN moves to the nucleus, complexes with the DNA-
binding factor RBPJ, and recruits coactivator of the 
Mastermind-like (MAML) family. The resulting 
macromolecules complex activates genes transcription 
but is usually short-lived because the C-terminal 
portion of ICN (PEST, peptide sequence that is rich in 
proline (P), glutamic acid (E), serine (S), and threonine 
(T)) is recognized by an E3 ubiquitin ligase and 
degraded.7 

The NOTCH proteins have several functional 
domains organized in modules. The NECD N- terminal 
domain is responsible for ligand binding through EGF-
like Ca2+ dependent repeats, followed by three LNR 
(Lin12/Notch) units. Next to the LNR region lays the 
juxtamembrane heterodimerization domain (HD), a 
linker between the extracellular tail and ICN. LNR and 
HD modules constitute the negative regulatory region 
(NRR) that prevents ADAM-10/17 cleavage of 
mammalian Notch in the ligand's absence (Figure 
1A).3-5,8 

While oncogenic alterations in the Notch signaling 
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have been described in almost all human cancers,3,9 the 
majority of the recurrent somatic mutations of NOTCH 
proteins are observed in the NOTCH1 gene. 

The role of NOTCH1 in the pathogenesis of T-cell 
acute lymphoblastic leukemia (T-ALL), was first 
investigated in 1991.1 Ellisen and colleagues described 
a chromosome translocation, t(7;9)(q34;q34), that 
juxtaposes the T-cell receptor-β to the active form of 
ICN1 in T-ALL.10 This fusion creates an oncogenic 
Notch1 signaling in leukemia cells. Similarly, to the 
translocation, activating NOTCH1 mutations generate 
ligand independent or proteasome resistant ICN1 
peptides that sustain T-cell transformation, leukemia 
growth, or resistance to therapy.10 In T-ALL, NOTCH1 
mutations cluster in two different but not mutually 

exclusive hotspots.11,12 The first comprises a single 
amino acid substitution and in-frame insertion in the 
extracellular NRR. To this class also belongs the rare 
in-frame insertion in the juxtamembrane extracellular 
domain (JME). Within the NRR module, most of these 
mutations occur in the HD domain, and they are 
defined as type 1A and 1B.13 Briefly, HD mutations 
cause ligand-independent Notch conformational 
changes that constitutively activate ICN1. The second 
hotspot of NOTCH1 mutations comprises small 
insertion/deletion in the exon 34 (PEST domain). 
These genetic lesions truncate NOTCH1 C-terminal 
generating a long-lived ICN1 caused by the consequent 
loss of the “degron” recognition site of the PEST 
unit.11,14

 

 
Figure 1. 
A) The schema shows domain organization of NOTCH protein (NOTCH1 shown). The extracellular domain of NOTCH receptor consists of 
multiple EGF repeats followed by the NRR (negative regulatory region), which consists of three LNR (Lin-12 and Notch repeats) domains 
and HD (heterodimerization domain). The intracellular domain of NOTCH receptor consists of a membrane proximal RAM (RBPJ 
associated molecule) domain, ANK (ankyrin repeats), and a C- terminal TAD (trans-activation domain) comprised of three NLS (nuclear 
localization sequences) and degron-containing PEST (rich in proline, glutamate, serine, and threonine) sequence. 

B) An overview of Notch1 signaling and proteolytic processing in the presence of SERCA inhibition. NOTCH1 receptor is a cell surface 
protein. In physiological condition interaction with the Notch ligand, such as JAG1-2 or Dll-4, initiates proteolytic cleavage at the 
extracellular site by a metalloprotease (TACE) followed by a γ-secretase (GSI) cleavage, resulting in the release of ICN1. ICN1 is then 
translocated into the nucleus where it interacts with CSL and recruits coactivators to form a transcription-activating complex. In the presence 
of NOTCH1 mutations, ICN1 is constitutively active and avoids activation through ligand interaction. Inhibition of the sarco/endoplasmic 
reticulum Ca2+ ATPase (SERCA) leads to alteration in NOTCH1 trafficking causing a loss of NOTCH1 proteins on the surface of the cells 
and an accumulation of full-length polypeptides on the endoplasmic reticulum/Golgi region. The consequent lack of TACE and GSI substrate 
causes a reduction in ICN1 level. 
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Recently, NOTCH1 emerged as one of the most 
frequently mutated genes (~5-20%) in chronic 
lymphocytic leukemia (CLL), where it may represent 
an early driver lesion in a proportion of cases.15,16 Most 
of these mutations, ~80%, are a 2-bp deletion in exon 
34 that generates a premature stop codon (P2514fs*4), 
that truncates the PEST region. Similarly to T-ALL, 
these mutations cause an over-activation of Notch1 
signaling because of the lack of its degradation.17 
Interestingly Kridel and colleagues reported a similar 
pattern of mutations within the PEST domain in mantle 
cell lymphoma (MCL).18,19 Furthermore, 50% of 
NOTCH1 wild-type CLL cases express ICN1 
suggesting that the activation through the canonical 
Notch signaling is required for leukemia growth in this 
disease.20 However, in CLL and MCL, mutations in 
NOTCH1 are associated with a worse prognosis.17,21-23 
In addition to these observations, Schmitz and 
colleagues recently described a genetic framework for 
diffuse large B-cell lymphoma (DLBCL) that may 
influence the therapeutic response.24 They identified 
gain-of-function NOTCH1 mutations (“N1”; these 
mutations mainly occur in the PEST region) in 19/574 
cases of DLBCL. Among these cases, 95% were 
activated B-cell-like (ABC) diffuse large B-cell 
lymphoma and no other type of mutation (BCL6 
fusions (B) NOTCH2 (N2), or SPEN mutations) co-
occurred suggesting that NOTCH1 and NOTCH2 act 
through different pathogenetic pathways. 24Moreover, 
within ABC DLBCL, patients with N1 mutation had 
worse progression-free survival and overall survival 
compared to patients with N2 mutation.24 These data 
highlight that N1 and N2 mutations are genetically, 
phenotypically, and clinically different, suggesting the 
need to extend targeting Notch1 in these aggressive 
forms of B-cell malignancies. 

Here we review some of the latest strategies to 
target Notch in hematological malignancies with 
emphasizing innovative approaches or experiences that 
translated pre-clinical observations into clinical trials 
(Figure 2). 

 
Targeting Extracellular NOTCH1. Unlike Notch 
pathway activation in mutated T-ALL, CLL, MCL, the 
canonical activation of Notch signaling is mediated by 
ligand-mediated mechanisms.25,26 Thus, given the role 
of Notch in several humans’ cancers, the development 
of therapeutic agents that interfere with ligand-receptor 
binding has seen a great impetus in the last years.27 

A strategy that has been extensively explored is the 
development of antibodies (Abs) to block Notch 
ligand-receptor interaction. Several groups developed 
receptors-directed antibodies designed to antagonize 
NOTCH1, 2 and 3 by recognizing the NRR region of 
NOTCH to prevent the ADAM mediated 
metalloprotease cleavage.28-30 

For example, Aste-Amezaga reported the 

identification of two classes of NOTCH1 inhibitory 
monoclonal (m)Ab derived from cell-based and solid 
phase screening of a phage display library.31 The first 
class comprises Abs directed to the EGF-repeat region 
(WC613), and the second directed to the NRR 
NOTCH1 domain (WC75). Both classes of antibodies 
inhibited canonical Notch signaling in vitro by 
repressing Notch transcriptional targets such as Hes1 
and DTX1 genes. As predicted by the analysis of the 
putative NOTCH1 binding site, WC75 also inhibited 
Notch activation in a ligand-independent fashion such 
as in cancers mutated models (T-ALL), and similar to a 
γ-secretase inhibitor, Compound E, induced a gene 
expression signature consistent with Notch1 abrogation. 
Consistently WC75 inhibited the proliferation of 
NOTCH1 mutated T-ALL cell lines such as DND41 
and KOPT-K1.31 

Similarly OMP-52M51, a mAb generated by 
immunizing mice with a fragment of human NOTCH1 
protein comprising the LNR plus the HD domain, 
efficiently blocked canonical Notch signal and reduced 
Notch activation in a series of T-ALL bearing HD and 
PEST mutations in vitro and in two patient-derived 
xenograft leukemia models carrying a L1679P 
mutation and a PEST deletion respectively.32 In 
addition, OMP-52M51 prevented Notch1 activation in 
MCL cell lines in vitro.33 OMP-52M51 
(Brontictuzumab) was subsequently tested in a phase I 
dose escalation trial (NCT01778439) in patients with 
previously treated CLL, MCL, T-ALL, or other 
hematologic malignancies with known NOTCH1 
mutational status. Of the 24 patients enrolled in this 
study, only five carried a NOTCH1 mutation, and just 
one of them achieved stable disease as the best 
response after 101 days of treatment. Overall OMP-
52M51 was generally well tolerated but showed limited 
antitumor efficacy in this study.34 

However, Sharma and colleagues further extended 
targeting NRR domain and reported the identification 
of the first mAb that recognizes clinically relevant 
mutant receptors.35 The mAb 604.17 exhibited higher 
binding to mutant NOTCH1 compared to wild type and 
inhibited the proliferation of the T-ALL mutated cell 
line CCRF-CEM. Interestingly, 2 µg/mL of mAb 
604.17 preferentially inhibited the transcriptional 
activation of the NOTCH1 mutants L1549P, R1599P, 
and II1681N as assessed with a validated RPBJ 
12xCSL-luciferase promoter assay. Finally, 15 mg/kg 
of mAb 604.17 inhibited the tumor growth of different 
xenograft cancer models supporting the development 
of Notch mAbs as immunotherapeutic tools for 
different cancers.35 

Besides Abs directed to NOTCH1 NRR domain, 
additional probes have been developed to NOTCH2 
and NOTCH3.28 For example, OMP-59R5 
(Tarextumab), was generated by panning the HuCAL 
GOLD phage-display library with recombinant
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Figure 2. The figure shows an overview of therapeutic targeting of 
Notch signaling. 

NOTCH2 extracellular domain (EGF1–12) containing 
the ligand-binding site. OMP-59R5 showed antitumor 
activity in breast, ovarian, and small-cell lung cancer.36 
A phase Ib clinical trial showed that Tarextumab is 
well tolerated, and showed a dose-dependent 
biomarker-driven activity in patients with small-cell 
lung cancer (SCLC).37,38 

The Blacklow laboratory leveraged the development 
of inhibitors and activators NRR mAbs to dissect the 
dynamics of NOTCH3 activation.39,40 Given the 
prevalence of NOTCH3 activation (ICN3) and the 
recurrence of NOTCH3 mutations in different cancer 
models, including T-ALL, the authors demonstrated 
that MOR20350 and MOR20358 inhibited Notch3 
signaling in vitro.41,42 MOR20350 and MOR20358 
exhibited an anti-tumor effect using orthotopic 
xenograft models representative of cancer carrying a 
NOTCH3 PEST (MDA-MB468) or NRR (TALL-1) 
mutations, respectively.41 

A second strategy to inhibit Notch signaling is by 
developing Abs directed against Notch ligands such as 
DLL1 and DLL4.43 For example, OMP-21M18 
emerged from murine hybridoma library screen set to 
identify DLL4 inhibitors using a Notch-responsive 
luciferase reporter assay in HeLa cells.44 DLL4 has a 

unique role in regulating vascular endothelial cell 
proliferation and differentiation. Suppression of DLL4-
mediated Notch signaling increases nonproductive 
angiogenesis but efficiently inhibited tumor growth in 
several cancer models.45 However chronic inhibition of 
dll4 showed to alter normal liver endothelial histology 
in mice, rats, and cynomolgus monkeys and promotes 
subcutaneous vascular neoplasms in rats.46 Despite 
safety concerns, OMP-21M18/Demcizumab entered 
clinical development, and it has been investigated in a 
phase I dose escalation and expansion study in patients 
with previously treated solid tumors (RGN-124, 
NCT01189929).47 However, given the lack of clinical 
responses assessing the role of OMP-21M18 in 
combination with paclitaxel plus gemcitabine in 
treatment-naïve patients with metastatic pancreatic 
cancer OncoMed Pharmaceuticals discontinued 
ongoing demcizumab trials. Similarly to demcizumab, 
enoticumab a humanized IgG1 anti-Dll4 was tested in a 
phase I trial in ovarian cancers and solid tumors (48). 
Enoticumab was well tolerated (most of the patients 
experienced fatigue, headache, hypertension, and 
nausea) and response to treatment was confirmed in 2 
out 53 patients (5%) treated at 3 mg/kg (one patient 
with papillary serous ovarian carcinoma, and one 
patient with non–small cell lung cancer) while 16 
patients (36%) had a stable disease.48 Demcizumab, 
enoticumab trials are not extended to patients with 
hematological malignancies so far. 

 
Targeting the γ-Secretase Complex. Because of its 
crucial role in Alzheimer's disease pathology, γ-
secretase has been the target of many small molecules 
that were initially designed to reduce the generation of 
Aβ polypeptides in the amyloid plaques. Among other 
substrates, the γ-secretase complex proteolyzes the 
release of ICN1 and therefore represents a critical step 
in the canonical Notch signaling. Thus, inhibitors of 
the γ-secretase complex (GSIs) that target all NOTCH 
receptors were re-purposed in cancers where NOTCH1 
mutations are common (T-ALL, CLL) and tumor 
dependency has been established in preclinical models. 
For example, in T-ALL, several studies showed that 
GSI treatment induces G0/G1 arrest along with rapid 
clearance of intracellular NOTCH1.49-52 

De Angelo and collaborators completed the first 
GSI trial in T-ALL in six adults and two pediatric 
patients with leukemia (seven with T-ALL) treated in 
average for 56 days with MK-0752 a potent inhibitor 
developed by Merck & Co. In a T-ALL patient, with an 
activating NOTCH1 mutation, the response was 
transient.53 Overall, MK-0752 was poorly tolerated. In 
fact, most of the patients suffered from gastrointestinal 
toxicity, primarily diarrhea, observed at drug doses of 
300 mg/m2. Subsequent studies showed that the 
gastrointestinal toxicity was due to the simultaneous 
blockade of NOTCH1 and NOTCH2 mediated by GSIs. 

http://www.mjhid.org/


 
  www.mjhid.org Mediterr J Hematol Infect Dis 2019; 11; e2019037                                                         Pag. 5 / 13 

 

Abrogation of the Notch1/2 signaling in the gut leads 
to severe intestinal secretory metaplasia, an increase of 
goblet cells and a differentiation failure in the crypts of 
the small intestine54 suggesting that targeted inhibition 
of individual receptors might reduce on-target gut 
toxicity.28 

The MK-0752 failure, rushed for the identification 
of second generations GSIs with better tolerability 
profile and of combination strategies to overcome the 
limitation showed with the single drug treatment. Real 
and colleagues demonstrated that glucocorticoid 
therapy in combination with NOTCH1 inhibition by 
GSIs improved the antileukemic effect of GSIs and 
reduced their gut toxicity in vivo.55,56 GSI sensitizes 
steroids resistant T-ALL cell lines and primary patients 
to glucocorticoid therapy and induced apoptosis 
through induction of BCL2L11. Mice treated with 
glucocorticoids and a GSI showed decreased 
gastrointestinal toxicity compared to animals treated 
with GSI alone. Steroids mediate the induction of 
cyclin D2 (CCND2), a cyclin associated with cell cycle 
progression, and by the down-regulation of Kruppel-
Like Factor 4 (KLF4), a negative regulator of the cell 
cycle that is required for goblet cell differentiation.14,55 
In addition, Cullion and collaborators demonstrated 
that intermittent GSI dosing with drug holiday largely 
avoided gastrointestinal toxicity while maintaining 
efficacy in a mouse T-ALL model.57,58 

However, gut toxicity is not the only off-target 
effect seen in GSI treated patients, raising additional 
concerns on chronic inhibition of wild-type NOTCH1. 
In two early-terminated phase III trials, LY450139 
(semagacestat), failed to achieve the primary endpoints 
(improvement in the cognition and the ability to 
complete activities of daily living) in patients with 
mild-to-moderate Alzheimer's disease.59 Data showed 
that semagacestat was associated with an increased risk 
of skin cancer compared with those who received 
placebo, likely due to inhibition of Notch in the skin by 
chronic GSI administration consistent with the tumor-
suppressor role of Notch signaling in this tissue.60,61 In 
addition, recent studies suggested that Notch signaling 
blockade might increase the risk of developing lung 
squamous cell carcinoma (SCC).62 Whether this risk 
will be ameliorated by intermittent, pulsed therapy with 
GSI, as would be the schedule in cancer-directed 
therapy, is still to be determined.14 

An additional GSI that reached clinical 
development is PF-03084014/Nirogacestat a 
noncompetitive, reversible GSI developed by Pfizer.63 
PF-03084014 induced an anti-leukemic effect in vitro 
and in vivo in T-ALL cell lines expressing mutant 
NOTCH1. An intermittent dosing schedule of PF-
03084014 and the addition of glucocorticoids 
attenuated Notch-dependent gastrointestinal toxicity by 
reducing the loss of body weight in an HBP-ALL T-
ALL xenograft model63 confirming previous Cullion’s 

observations. PF-03084014 induces selective apoptosis 
in primary CLL cells carrying NOTCH1 mutations and 
synergize with fludarabine in a stroma coculture model 
system.64 In a phase I trial aimed to determine the 
safety profile and maximum tolerated dose (MTD) of 
PF-03084014, one out of eight relapsed/refractory T-
ALL patients achieved a complete remission.65 

Knoechel and colleagues reported a complete 
hematological response in a patient with early T-cell 
precursor acute lymphoblastic leukemia (ETP-ALL) 
carrying a NOTCH1 mutation treated with the GSI 
developed by the Bristol-Myers-Squibb 906024. A 
phase I trial, CA216002, confirmed this encouraging 
result and demonstrated the safety of BMS-906024 
administered on weekly dosing (4-6 mg) in 25 pediatric 
patients with T-ALL or T-cell lymphoblastic 
lymphoma.66 This study was the first trial reporting 
multiple responses to GSI inhibition, including a 
complete response and one partial response. Overall, 
32% of the patients showed at least a 50% reduction in 
bone marrow (BM) blasts with tolerable side effects.66 
Interestingly, in pre-clinical studies, BMS-906024 
enhanced the anti-leukemic activity of Ibrutinib in B-
CLL cells in vitro by inhibiting ICN1 activation and 
consequently the transcription of its targets such as c-
MYC.67 

An alternative strategy to modulate γ-secretase 
activity is by developing mAbs directed to functional 
components of this complex. The γ-secretase complex 
comprises a catalytic core formed by presenilin 1 and 
presenilin 2 (PS1 and PS2) and three accessory 
proteins: anterior pharynx-defective 1 (APH-1), 
nicastrin (NCT), and presenilin enhancer protein 2 
(PEN2).68 For example, Hayashi and colleagues 
reported the identification of two mAbs A5226A and 
A5201A directed against the extracellular domain of 
NCT.69,70 A5226A inhibited γ-secretase activity by 
competing with the NCT substrate binding in vitro. In 
addition, A5226A inhibited the proliferation of a 
NOTCH1 mutated T-ALL cell line, DND41, and 
prevented ICN1 cleavage. In a xenograft model of 
DND41, A5226A administered at 50 mg/Kg/day 
reduced cancer cells growth in vivo.69 

As discussed above, several GSIs showed 
preclinical activity and have entered late 
development,71 limitations include lack of substrate 
selectivity and toxicities.72 In addition, genetic and 
epigenetic mechanisms of resistance partially explained 
the lack of successful clinical translation on a large 
scale. To identify mechanisms of resistance to 
NOTCH1 inhibition in T-ALL, the laboratory of Dr. 
Ferrando analyzed the global gene expression 
signatures associated with a sensitivity of resistance to 
GSI. They demonstrated that the transcriptional 
suppression of PTEN was associated with resistance to 
GSI treatment in T-ALL cell lines. Protein analysis and 
mutation sequencing showed the absence, or the 
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marked reduction of PTEN at the protein level and 
biallelic PTEN mutation in resistant T-ALL cell 
lines.73,74 

Knoechel and collaborators described an additional 
mechanism of tolerance to GSI therapy. In this work, 
the authors identified from in vitro long-term culture 
under GSI positive selections a subpopulation of GSI-
tolerant T-ALL cells called “persister”. They described 
that resistance to GSI was reversible after the drug’s 
withdrawal; thus, they speculated the existence of an 
epigenetic mechanism of drug resistance. Therefore, 
they performed a short hairpin RNA (shRNA) screen 
targeting genes involved in chromatin regulation. 
Among top hits, which preferentially impaired the 
viability of “persister” cells while sparing the naïve 
population, they identified the BET (bromodomain and 
extra-terminal domain) family, BRD4. Consistently 
“persister” cells were more sensitive to BRD4 
inhibition (JQ1) in vitro and combination therapy 
targeting “naïve” (GSI) and “persister” (JQ1) was 
significantly more effective in T-ALL xenotransplant 
models in vivo.75 

 
Targeting NOTCH Trafficking. As we described 
above, NOTCH1 is a rational therapeutic target in 
several hematological malignancies, but as a mutated 
transcription factor, it poses a drug discovery challenge. 
Several groups contributed to the development of a 
program to overcome limitations associated with the 
targeting of transcription factors (e.g. NOTCH1)76-81 or 
resistance to target therapy.82-84 For example, we 
completed a gene expression-based high-throughput 
small molecule (GE-HTS)49,85 and a cDNA 
overexpression screen using cell-based assays reporting 
Notch transcriptional activity.86 To enrich for targets 
that preferentially impair NOTCH1 receptor bearing 
HD mutations (NRR), we deliberately selected to 
screen against a human T-ALL cell line (DND41), 
which carries a clinically relevant activating mutation 
in the HD of NOTCH1 along with a PEST domain 
deletion (L1594PΔPEST) and secondly to identify gene 
products that would enhance the activation of a 
transcriptional reporter downstream of a mutant 
NOTCH1 receptor frequently identified in T-ALL 
patients (L1601PΔPEST). Several ion flux modulators 
or genes encoding for ion channels or pumps scored as 
hits in the small molecules or the cDNA screens, 
respectively. One of the top compound hits was 
thapsigargicin, an analog of thapsigargin, which is a 
non competitive inhibitor of the sarco/endoplasmic 
reticulum Ca2+-ATPase (SERCA). Among the top 
cDNA hits were ATP2A1, ATP2A2, and ATP2A3, 
which encode SERCA1, SERCA2, and SERCA3, 
respectively. We next showed that SERCA inhibition 
impairs the trafficking of mutated NOTCH1 receptors 
and induces a G0/G1 arrest in NOTCH1-mutated 
human T-ALL cells (Figure 1B). Thapsigargin had on-

target activity in mouse models of human T-ALL and 
also interfered with Notch signaling in Drosophila.76,87 
Remarkably, thapsigargin preferentially inhibited 
mutated NOTCH1 receptors.76 This selectivity provides 
a therapeutic window not observed before with GSIs or 
most antibody-based approaches that are equipotent 
inhibitors of mutated and wild type (WT) receptors. 
Subsequent independent studies confirmed our original 
observation and demonstrated that thapsigargin alone 
or in combination with mAb 604.107 inhibited “gain of 
function” mutants associated with T-ALL such as 
L1594P, R1599P and I168N.35 

Thapsigargin is an organic heterotricyclic 
compound that is a hexa-γoxygenated 6,7-guaianolide 
isolated from the roots of Thapsia garganica. 
Thapsigargin inhibits SERCA-mediated calcium (Ca2+) 
uptake leading to a depletion of the endoplasmic 
reticulum (ER) Ca2+ storage and sustained elevation of 
cytosolic Ca2+ triggering ER stress,76 unfolded protein 
response (UPR), and different cellular pathways that 
can cause cell death. This general mechanism of 
cytotoxicity to develop SERCA inhibitors for cancer 
therapies has been leveraged. For example, SERCA has 
been identified as an emerging target in the treatment 
of prostate cancer.88 SERCA channels are critical to 
maintaining intracellular Ca2+ homeostasis in all cell 
types. Thus, the direct delivery of thapsigargin to 
animals or humans might be expected to incur cardiac 
toxicity secondary to Ca2+ ion shifts. A strategy to 
prevent a systemic cytotoxic effect by inhibiting 
SERCA is by creating inactive pro-drugs that are 
activated in a histo-specific manner.89 This, for 
example, is the mode of action of mipsagargin,90,91 a 
TG soluble prodrug undergoing clinical trials for solid 
tumor.89 

In the past, we imagined a general strategy for 
efficient TG delivery leveraging the dependency to 
folate metabolism of leukemia cells and developed a 
folate-TG derivative compound to transfer the inhibitor 
specifically to the T-ALL cells.92 We showed that the 
8-O-debutanoylthapsigargin, a cytotoxic TG analog, 
retained the anti-leukemia specificity toward mutant 
NOTCH1 in T-ALL cell lines. Thus, we linked the 
carboxylate of folic acid to the C8-alcohol of 8-O- 
debutanoylthapsigargin, to generate the folate-
thapsigargin conjugate named JQ-FT. We 
demonstrated that JQ-FT inhibits NOTCH1 in vitro in 
multiple T-ALL models and in vivo on a syngeneic T-
ALL mouse model carrying a NOTCH1 L1601P 
ΔPEST a common mutation observed in the human 
disease.92 In the Notch arena, JQ-FT is the first-in-class 
NOTCH1 inhibitor with dual selectivity: leukemia over 
normal and NOTCH1-mutant over wild type receptors. 

In the recent past, several putative SERCA 
inhibitors have been described. However, only a few 
have been tested in Notch-dependent diseases. Ford 
and colleagues demonstrated that the natural tricyclic 
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clerodane diterpene casearin J (CJ),93 can affect the 
Notch1 pathway in human T-ALL cells. CJ reduced 
cell surface expression of NOTCH1 receptors, 
prevented the formation of the cleaved ICN1 molecules, 
which resulted in the transcriptional inhibition of Notch 
targets such as MYC, HES1. The authors showed that 
CJ inhibits SERCA protein causing a rise of 
intracellular Ca2+ and depletion of the ER Ca2+ storage. 
This ion shift concentration increases reactive oxygen 
species (ROS) and ultimately leads to apoptosis in T-
ALL cells.93 However, while the authors claimed 
selectivity toward HD-mutations, they did not 
demonstrate the lack of CJ activity in a large panel of 
wild type T-ALL models. In addition, is not clear 
whether CJ causes an accumulation of full-length 
NOTCH1, as for other SERCA inhibitors,76 suggesting 
that different interactions in the SERCA binding site 
may be responsible for the effect on Ca2+ and 
consequently on Notch activation. 

Ethyl 2-Amino-6-(3,5-dimethoxyphenyl)-4-(2-
ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate 
(CXL017) is a recently synthesized SERCA inhibitor 
tested in multiple leukemia cell lines that acquired 
multidrug resistance through different mechanisms, 
including T-ALL.94 Additional studies demonstrated 
that CXL017 synergizes with other SERCA inhibitors 
including thapsigargin and cyclopiazonic acid 
indicating that CXL017 may bind SERCA at a unique 
allosteric site95 pointing to the potential of developing 
new classes of SERCA modulators. 

In our original GE-HTS screen, multiple 
compounds reported modulating Ca2+ ion flux scored 
as dose-dependent Notch pathway inhibitors including 
ionomycin, salinomycin, and bepridil.76 Thus we 
initially extended testing the FDA approved Ca2+ 
antagonist bepridil in T-ALL.96 In vitro, bepridil 
reduced ICN1 and consequently caused a phenotype 
consistent with Notch abrogation in this tumor. While 
we can reach this effect at the plasma level 
concentration achievable in human, we did not 
demonstrate an effect in T-ALL orthographs, and we 
halted further experiments.96 However, because we 
showed a transcriptional overlap between the NOTCH1 
“Off” signatures in T-ALL and CLL, we re-purposed 
bepridil for B-cell malignancies.97 In CLL bepridil 
exerted an anti-leukemia activity in vivo associated 
with NOTCH1 inhibition.97 Similar to thapsigargin, 
histological analysis of the gut showed normal goblet 
cell number with preservation of the architecture and 
proliferation of the intestinal epithelium suggesting a 
lack of combined NOTCH1 and NOTCH2 inhibition in 
this tissue. This result suggests Ca2+ mediated 
inhibition of Notch signaling may overcome the 
limitation associated with γ-secretase inhibition. An 
additional strategy to alter NOTCH trafficking is by 
modulating the protein O-fucosyltransferase-1. 
POFUT1 catalyzes the addition of O-linked fucose to 

the EGF-repeat domains of the NOTCH receptor that is 
required for NOTCH activation.98 McMillan and 
colleagues showed that CRISPR/Cas9 mediated 
POFUT1 knockout in U2OS cells suppresses Notch 
activation signaling associated with type I and II 
mutations.99 Interestingly, NOTCH1 protein does not 
mature in the CRISPR-engineered U2OS cells lacking 
POFUT1, a phenotype that mimics closely TG 
inhibition. 

 
Targeting NOTCH Degradation. NOTCH is a short-
lived protein and undergoes degradation mainly 
through an E3-ligase (Fbw7) ubiquitin-mediated 
pathway controlled by the PEST domain. As we 
described above, disruption of the PEST domain leads 
to an increase in ICN half-life.25 In recent work, 
Koyama and colleagues demonstrated that the 
proteasome inhibitor, bortezomib, repressed the 
transcription of NOTCH1 and of its downstream targets 
including HES1, GATA3, RUNX3 and CYLD in 
MOLT4, JURKAT and CEM T-ALL cell lines.100 

Drug combination studies revealed that bortezomib 
showed synergistic or additive effects with key drugs 
to treat T-ALL such as dexamethasone, doxorubicin, 
and cyclophosphamide. The synergistic effect of 
bortezomib and dexamethasone was confirmed at 
NOTCH1 protein expression level and later in vivo 
using a murine MOLT-4 T-ALL cell xenograft 
model.100 This study supported the rationale of an 
ongoing clinical trial assessing the role of bortezomib 
in combination with different chemotherapy regimen 
(NCT02112916) in younger patients with newly 
diagnosed T-ALL or stage II-IV T-cell lymphoblastic 
lymphoma. 

In parallel, Bertaina and colleagues tested 
bortezomib in combination with chemotherapy in 30 
and 7 children with B-cell precursor (BCP) and T-cell 
ALL, respectively.101 Bortezomib (1.3 mg/m2/dose) 
was administered intravenously twice a week x 2 with 
a chemotherapy regimen containing dexamethasone, 
doxorubicin, vincristine, and pegylated asparaginase. 
Twenty-two of 30 BCP-ALL patients (73.3%) and 5/7 
patients (71%) with T-cell ALL achieved CR/CRp. The 
2-year overall survival (OS) was 31.3% while patients 
that achieved an MRD response had a 2-year OS of 
68·4%.101 These data suggest that bortezomib may 
represent a clinically effective option in NOTCH1 
mutated T-ALL patients. 

In CLL, Notch2 signaling appears to have a 
constitutive role in promoting cell survival and CD23 
expression.102,103 Several studies showed that B-CLL 
undergoes apoptosis upon proteasome inhibitors 
treatment.104,105 However, Duecheler and colleagues 
demonstrated that bortezomib and MG132 efficiently 
induced apoptosis in B-CLLs in vitro by inhibiting 
NOTCH2 transactivation and repressing CD23 
expression.106 Similarly, in MCL, several studies 
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demonstrated the effects of proteasome inhibition on 
several intracellular mechanisms.107 For example, 
bortezomib showed to induce cell cycle arrest and 
apoptosis by inhibition of NF-kB,108 inhibition of the 
protein kinase CK2,109,110 the depolarization of the 
mitochondria membrane, ROS release, and the 
production of pro-apoptotic proteins (NOXA).111 In 
addition, several pre-clinical studies demonstrated the 
synergist activity of bortezomib with other 
antineoplastic agents112,113 including the HDAC 
inhibitor vorinostat (SAHA),114 idelalisib,115 and the 
anti-CD20 mAb rituximab.116 While many clinical 
trials confirmed that combining bortezomib with other 
anti-lymphoma therapies is feasible effective none at 
the moment focused on the role of Notch signaling 
mediating the efficacy or resistant to therapy. 

 
Targeting ICN1 Complex. As described above, 
activation of NOTCH1 receptor results in a sequence 
of cleavages that cause the release of ICN1. Following 
translocation to the nucleus, ICN1 forms a ternary 
complex with the transcriptional repressor CSL (CBF-1, 
Suppressor of Hairless and Lag-1) co-activators of the 
Mastermind-like family (MAML1-3 in humans) bound 
to DNA. Thus, Moellering and colleagues developed a 
cellular penetrant, soluble α-Helix-constrained “stapled” 
peptide derived from mastermind-like 1, SAHM1 that 
can bind the ICN-CSL complex. Similarly to GSI, 
SAHM1 produced a transcriptional signature of 
NOTCH gene repression in human and murine T-ALL 
cells. Direct blockade of NOTCH-CSL transcriptional 
complex reduced NOTCH-specific anti- proliferative 
effects in human T-ALL cell lines and in a 
bioluminescent murine model of T-ALL.117 

While this approach holds the premises to be more 
specific for Notch compared to GSIs, which also affect 
the cleavage of different cellular substrates, its clinical 
translation is hampered by the lack of 
pharmacokinetics and pharmacodynamics studies. 

Recently Cellestia Biotech AG developed CB-103 a 
small molecule protein-protein interaction (PPI) 
inhibitor able to target assembly of the Notch 
transcription complex in the cell nucleus leading to 
down-regulation of Notch target genes (c-MYC, 
CCND1, HES1) and inhibition of Notch signaling 
independently of Notch mechanisms of activation. This 
pan-Notch inhibitor has shown preclinical activity in a 
variety of solid tumors and leukemia models. In 
preclinical studies CB-103 inhibited the proliferation of 

various cancer cell lines including T-ALL with known 
NOTCH1 mutational status (RPMI-8402 and KOPT-
K1) compared to the GSI 4929097. Both ICN1, 
transmembrane NOTCH1 and full-length decrease 
upon CB-103 treatment consistent with a mechanism of 
transcriptional inhibition.118 Spriano and colleagues 
extended testing CB-103 in a collection of 61 B and T 
cell lymphoma cell lines. CB-103 presented a median 
IC50 above 20 µM across the whole panel of 
lymphoma cell lines (range from 400 nM to > 20 µM), 
without significant differences among lymphoma 
subtypes.119 Sensitive lines (IC50 < 10 µM) presented a 
gene expression signature significantly enriched with 
genes involved in the epithelial-mesenchymal 
transition, a Notch-related process.119 A multicenter 
open-label, non randomised phase I-II clinical trial 
(CB-103-C-101) is ongoing enrolling patients with 
advanced, refractory or metastatic solid tumors and 
hematological malignancies for whom no standard 
therapy exists.120 Notch mutational status or expression 
is not key inclusion criteria of the study but it stands 
among the exploratory analysis suggesting that, as in 
other previous studies, responses in Notch mutated 
cases may be few. 

 
Conclusions. In the last two decades, we have seen 
significant improvements in T-ALL, CLL and MCL 
survival. However, a significant number of patients 
relapse or rapidly became resistant to available 
therapeutic options. Thus, the development of a Notch 
targeted approach appears a rational strategy to 
modulate a pathway on which these cancer cells rely on 
to survive. Despite γ-secretase inhibitors experienced 
several roadblocks in their development we are 
achieving a better characterization of disease's 
pathways that will facilitate the development of mutant 
selective of context-dependent inhibitors for these 
aggressive tumors. Furthermore, the development of 
Notch isoform selective small molecules along with re-
defined therapeutic schedule will overcome the hurdle 
associated with the off-target toxicities seen with the 
chronic inhibition of wild type NOTCH1 and NOTCH2. 
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