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People with Down syndrome (DS) virtually all develop intellectual disability (ID) of varying

degree of severity, and also have a high risk of early Alzheimer’s disease (AD). ID prior to

the onset of dementia, and its relationship to the onset of dementia in DS is a complex

phenomenon influenced by many factors, and scarcely understood. Unraveling the

causative factors and modulators of these processes remains a challenge, with potential

to be informative for both ID and AD, for the development of early biomarkers and/or

therapeutic approaches. We review the potential relative and inter-connected roles of

the chromosome 21 gene for amyloid precursor protein (APP), in both pathological

conditions. Rare non-DS people with duplication of APP (dupAPP) get familial early onset

AD (FEOAD) with virtually 100% penetrance and prominent cerebrovascular pathology,

but don’t suffer from ID before dementia onset. All of these features appear to be radically

different in DS. On the other hand, rare individuals with partial trisomy 21 (T21) (with APP,

but not DS-critical region in trisomy) have been described having ID. Likewise, partial

T21 DS (without APP trisomy) show a range of ID, but no AD pathology. We review the

multi-faceted roles of APP that might affect cognitive functioning. Given the fact that both

Aβ secretion and synaptic maturation/plasticity are dependent on neuronal activity, we

explore how this conflicting inter-dependency might affect cognitive pathogenesis in a

dynamic way in DS, throughout the lifespan of an individual.

Keywords: Down syndrome, vascular dementia, neuron activity-dependent, cognitive dysfunction, amyloid

beta-peptides, amyloid beta-protein precursor

INTRODUCTION

Virtually all people with Down syndrome (DS) show some degree of intellectual disability (ID), due
to many factors, including a certain degree of cognitive dysfunction caused by the pathobiology of
trisomy 21 (T21) (Epstein, 2002; Head et al., 2012). On the other hand, T21 is the most common
known genetic cause of obligatory development of pathological hallmarks of AD in the brain tissue

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnbeh.2015.00299
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbeh.2015.00299&domain=pdf&date_stamp=2015-12-01
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:d.nizetic@ntu.edu.sg
http://dx.doi.org/10.3389/fnbeh.2015.00299
http://journal.frontiersin.org/article/10.3389/fnbeh.2015.00299/abstract
http://loop.frontiersin.org/people/236097/overview
http://loop.frontiersin.org/people/9556/overview


Nizetic et al. Multi-Faceted APP Down Syndrome Pathomechanisms

(Mann, 1988a; Lott and Head, 2005). This happens extremely
early in virtually all people with DS (in the 30-s) (Mann,
1988a,b). The cause of this is apparently an extra copy of APP
(amyloid precursor protein gene located on chromosome 21),
as one individual with DS at age 74 (with no dementia, and no
amyloid pathology in the brain) has been described who was born
with partial chromosome 21 trisomy that did not include APP
(Prasher et al., 1998). In rare families of non-DS (euploid) people,
APP micro-duplications (dupAPP) are responsible for Familial
Early Onset Alzheimer’s Disease (FEOAD), with virtually 100%
penetrance by age 60 and a median onset age of clinical dementia
of 41–51, and dupAPP has so far never been seen in any human
unlinked to FEOAD (Rovelet-Lecrux et al., 2006, 2007; Sleegers
et al., 2006; Kasuga et al., 2009; Thonberg et al., 2011; Cohn-
Hokke et al., 2012; McNaughton et al., 2012; Wallon et al., 2012).
In adults with DS, the average age at onset of dementia varies
greatly, with ∼25% starting extremely early (in early thirties),
but a good 25–50% having a much delayed onset (compared to
dupAPP), or not developing dementia at all by age >60 (Holland
et al., 1998; Sekijima et al., 1998; Tyrrell et al., 2001; Coppus et al.,
2006; McCarron et al., 2014). Also, cerebrovascular pathology,
mainly intra-cerebral hemorrhage is a prominent symptom of
dupAPP (McCarron et al., 1998; Rovelet-Lecrux et al., 2006;
Sleegers et al., 2006; Kasuga et al., 2009; McNaughton et al., 2012;
Wallon et al., 2012), whereas it is rarely seen in DS (Belza and
Urich, 1986). This is in spite of abundant deposits of amyloid
in blood vessels (congophilic angiopathy) in both conditions
(see below). On the other hand, people with dupAPP largely
have a normal development, intellectual and social functioning
(families) prior to dementia, in contrast to people with DS.

This indicates that mechanisms are in action in DS individuals
(that dupAPP individuals don’t have), that cause ID, can

TABLE 1 | Effects of the trisomy of APP and other segments of human chromosome 21 on development of intellectual disability (independently of

dementia), and on presence of early clinical dementia.

Human genotype/

Mouse model

T R I S OM Y OF: Intellectual disability

independent of dementia

Early Clinical

dementia <age55

References

APP “DS-critical Other parts

Region” of HSA21

Down syndrome (DS) Yes Yes Yes Yes ∼60% Summarized in Wiseman et al., 2015

DS-partial trisomy Yes Yes Yes Yes ? Summarized in Korbel et al., 2009

DS-partial trisomy No Yes Yes Yes No Prasher et al., 1998

Non-DS-partial trisomy Yes No Yes (large) Yes ? Park et al., 1987; Korbel et al., 2009

Dup-APP (majority) Yes No Yes (limited) No >99% Rovelet-Lecrux et al., 2006, 2007;

Kasuga et al., 2009; Thonberg et al.,

2011; Cohn-Hokke et al., 2012;

McNaughton et al., 2012; Wallon et al.,

2012

Dup-APP-only Yes No No No >99% Sleegers et al., 2006

Ts65Dn Yes Yes Yes Yes* Not applicable Reeves et al., 1995

Ts1Rhr No Yes No Yes* Not applicable Belichenko et al., 2009

Tc1 No Yes Yes Yes* Not applicable O’Doherty et al., 2005; Morice et al.,

2008

“?”, published data are missing. “*”, mouse phenotypes equivalent of human ID, such as learning, memory, electrophysiological, and behavioral defects. Mouse models of trisomy 21

alone do not reproduce Alzheimers pathology in the brain, or signs of progressive neurodegenerative phenotypes (therefore “Not applicable” entry).

accelerate clinical onset of dementia, as well as factors that
can delay onset or protect from overt dementia and associated
intra-cerebral hemorrhage.

While dupAPP patients, by definition, are seen in families
exhibiting FEOAD, this implies that this is a self-selected group
of people that largely lack ID prior to dementia. On the other
hand, rare individuals with partial T21 (with APP, but not DS-
critical chr21 region in trisomy) have been described having I.Q.
ranging from ∼30 to <80, prior to dementia-prone age (Korbel
et al., 2009; summarized in Table 1). This could be caused by an
overdosed action of APP, but equally other genes included in the
partial trisomy, mostly located in the “gene poor” proximal half
of chromosome 21 (Groet et al., 1998). We review potential roles
for APP, that go beyond the AD paradigm, and could contribute
to the modulation of ID.

BEYOND ALZHEIMER’S: MULTIPLE ROLES
OF APP POTENTIALLY AFFECTING
COGNITIVE DYSFUNCTION IN DS
(SUMMARIZED IN TABLE 2)

T21 causes synaptic plasticity defects and dendritic spine
abnormalities in human brains (Marin-Padilla, 1976; Ferrer and
Gullotta, 1990) as early as 19 weeks in utero (Weitzdoerfer et al.,
2001). This pathology can be modeled using mouse models
of DS (Haas et al., 2013). Dendritic spines and their plasticity
are also the site of important pathology in neurodevelopmental
conditions such as Rett and FraX syndromes (Troca-Marín et al.,
2012; Chang et al., 2013). Their loss contributes to pathogenesis
of AD and PD (McGowan et al., 2006; Schulz-Schaeffer, 2010),
though specific morphological differences and causes are likely
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TABLE 2 | An overview of a variety of processes affected by an increased dose of APP protein and/or its derivative Aβ peptides, that may contribute in DS

to pathogenesis of Alzheimer’s dementia or cognitive impairment (I.D.), or both.

Process affected APP Aβ peptides References

Dendritic spines destruction No Yes McGowan et al., 2006; Shrestha et al., 2006

Synapse loss No Yes Kamenetz et al., 2003; McGowan et al., 2006; Scheff et al., 2006; Shrestha et al., 2006

GABA-ergic short-term plasticity dysfunction Yes No Yang et al., 2009

Astrocytic glutamate release Yes Yes Talantova et al., 2013

Extra-synaptic NMDA receptor activation Yes Yes Innocent et al., 2012; Talantova et al., 2013

Receptor-mediated synaptotoxicity No Yes Benilova and De Strooper, 2013

Its levels are increased by synaptic activity No Yes Cirrito et al., 2005; Sullivan et al., 2013; Cheng et al., 2014

Adult hippocampal neurogenesis Yes No Wang et al., 2014b

Retrograde neurotrophin signaling Yes No Salehi et al., 2006

Cholinergic forebrain neuronal degeneration Yes No Salehi et al., 2006

Increased levels and re-distribution of

phosphorylated Tau

Yes Yes Israel et al., 2012; Shi et al., 2012; Moore et al., 2015

Cerebral amyloid angiopathy Yes Yes Belza and Urich, 1986; McCarron et al., 1998; Rovelet-Lecrux et al., 2006, 2007;

Kasuga et al., 2009; Cohn-Hokke et al., 2012; McNaughton et al., 2012; Wallon et al.,

2012; Nicolas et al., 2015

Intra-cerebral hemorrhage Yes No McCarron et al., 1998; Rovelet-Lecrux et al., 2006, 2007; Kasuga et al., 2009;

Cohn-Hokke et al., 2012; McNaughton et al., 2012; Wallon et al., 2012

List of references is not exhaustive for all processes, publications best illustrating the point were selected.

unique to each condition. Generation and deposition of beta-
amyloid peptides (Aβ40 and Aβ42) is linked with destruction of
dendritic spines and synaptic loss in AD (McGowan et al., 2006;
Shrestha et al., 2006). APP protein (Kamenetz et al., 2003), as
well as other chromosome-21 encoded gene products, may have
important functions in synaptic biology (Wang et al., 2013).

Down’s syndrome causes overexpression of miR-155, a
chromosome 21–encoded microRNA that negatively regulates
C/EBPb, thereby reducing sorting nexin 27 (SNX27) expression
and resulting in synaptic dysfunction (Wang et al., 2013). SNX27
is a novel activity-dependent signaling molecule that has the
ability to decode the Ras signal and transduce the plasticity
stimuli to the delivery of postsynaptic AMPA receptors (Loo
et al., 2014). So, SNX27 signaling is also activity-dependent: the
more neuronal activity, the bigger chances of seeing pathology
due to inability to raise sufficient SNX27 levels. On the other
hand, SNX27 acts as a γ-secretase interaction partner to promote
dissociation of the γ-secretase complex, thus decreasing its
proteolytic activity, thereby reducing the generation of all Aβ

peptides (Wang et al., 2014a). The effects of the apparent
reduction of SNX27 in DS would therefore be expected to
further increase Aβ levels, (by lessening the dissociation of
the γ-secretase complex), and therefore worsen AD-pathology.
However, the end results of this on AD pathogenesis are far
from simple, and need to be carefully further investigated. While
inhibition of γ-secretase activity might reduce the levels of
neurotoxic Aβ42, intriguingly, very recent results on hiPSC-
derived neurons show that chemical inhibition of γ-secretase
activity in T21 neurons dramatically increased levels of Tau,
the principal constituent of neurofibrillary tangles. This could
actually have pro-dementia effects (Moore et al., 2015). The
picture is even more intriguing, as the same study found that
addition of a γ-secretasemodulator (GSM), E2012, decreased Tau

levels in T21 neurons (that showed an otherwise increased Tau
levels; Moore et al., 2015).

Synaptic dysfunction is an early feature of AD, likely much
before significant Aβ deposition (Arendt, 2009). There is a
line of thought that AD neurodegenerative processes begin
by alterations in synapse function/structure leading to synapse
loss, prior to significant neuronal loss. Consistent with this,
disturbance in synaptic integrity is detected in patients with
mild cognitive impairment (MCI), which is sometimes perceived
as an early stage of AD (Scheff et al., 2006). Loss of synaptic
markers is a predictor of disease progression in AD (Selkoe,
2002). Aβ, generated from proteolytic processing of APP, has
been shown to disrupt synapses (Kamenetz et al., 2003; Scheff
et al., 2006; Shrestha et al., 2006) and, conversely, synaptic activity
is an important factor regulating Aβ levels (Cirrito et al., 2005;
Sullivan et al., 2013; Cheng et al., 2014). Aβ was also found
to induce astrocytic glutamate release, extra-synaptic NMDA
receptor activation, and synaptic loss (Talantova et al., 2013).

APP and Aβ have other, direct and indirect roles in
functioning of synapses. Overexpression of APP affects Cav1.2
L-type calcium channel levels and through this influence
GABAergic short-term plasticity (Yang et al., 2009). APP may
contribute to postsynaptic mechanisms via the regulation of the
surface trafficking of excitatory N-methyl-D-aspartate (NMDA)
receptors (Innocent et al., 2012). Aβ was also shown binding to
a number of receptors embedded in neuronal plasma membrane,
(such as PrP, EphB2, FcγRIIb, and PirB), potentially contributing
to receptor-mediated synaptotoxic pathways (Benilova and De
Strooper, 2013).

There are also compelling evidence for alterations in synaptic
function/plasticity in DS mouse models. For instance, altered
excitatory/inhibitory balance is known to modify synaptic
plasticity in DS mouse models (Kleschevnikov et al., 2004;
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Souchet et al., 2014). Importantly, increased APP expression in
mouse models of DS has other deleterious effects that could be
linked with neurodevelopmental milestone delays (and resulting
ID): APP controls adult hippocampal neurogenesis, maintaining
the tone of action of inhibitory GABAergic interneurons (Wang
et al., 2014b). Interestingly, in the Ts65Dn partial trisomy
16 mice, defects in retrograde neurotrophin signaling and
cholinergic forebrain neuronal degeneration are specifically
related to extra APP gene dosage (Salehi et al., 2006). Similarly,
endosomal abnormalities in the form of enlarged organelles
which are characteristic changes in brains of both AD and
DS individuals and also a consequence of increased APP
expression (Cataldo et al., 2003). Whether these alterations are
due to elevated APP or Aβ, or both, is not clear although
there are suggestions from cultured neurons that endosomal
dysfunction may be Aβ-independent (Jiang et al., 2010).
Also, in lymphoblastoid cell lines carrying amyloid precursor
protein (APP) microduplications causing autosomal dominant
EOAD, enlarged endosomes were absent, suggesting that APP
overexpression alone is not involved in the modification of early
endosomes, but overexpression of other chromosome 21 genes
plays an important role (Cossec et al., 2012). Finally, APP whole
protein was also shown binding to Aβ, adding to the complexity
of the potentially pathological interactions (Lorenzo et al., 2000).

WHY ARE VASCULAR AND MIXED
DEMENTIA NOT PREVALENT IN DS?

Mixed dementia (MD)—defined as the coexistence of
Alzheimer’s disease (AD) and cerebrovascular disease (CVD)
(Rockwood, 2003) has been identified as one of themost common
subtypes of dementia by autopsy-based epidemiological studies
(Skoog et al., 1993; Snowdon et al., 1997). The presence and
degree of CVD modulates the cognitive picture of AD (Dong
et al., 2013). Neuropathological studies have shown that infarcts
increase the odds of dementia in patients with equivalent AD
burden by adding to the deleterious effects of AD pathology
(Schneider et al., 2007). While most common in hypertensive
individuals, intracerebral hemorrhage has been reported in
20–50% of APP-Dup cases (Rovelet-Lecrux et al., 2006, 2007;
Kasuga et al., 2009; Cohn-Hokke et al., 2012; McNaughton
et al., 2012; Wallon et al., 2012), whereas individuals with DS
are generally protected from this pathology. Reasons for this
protection in DS individuals are unknown, but are potentially
very important. Both dupAPP and DS show severe cerebral
amyloid angiopathy (CAA) (Belza and Urich, 1986; McCarron
et al., 1998; Rovelet-Lecrux et al., 2006, 2007; Kasuga et al.,
2009; Cohn-Hokke et al., 2012; McNaughton et al., 2012; Wallon
et al., 2012) which renders blood vessels more susceptible to
vessel wall breakdown and subsequent hemorrhage. It remains
to be answered whether more general disturbances of vascular
physiology seen in DS (but not in dupAPP) have anything to
do with the apparent protection from vascular dementia and
higher frequency of cerebral hemorrhages. Several effects caused
by T21 have been described that could affect vascular biology
(Vis et al., 2009; Draheim et al., 2010). T21 has a powerful

effect on inhibition of angiogenesis, and a reduced response to
pro-angiogenic cytokines, such as VEGF-A (Arron et al., 2006).
This biological feature of T21 is one of the explanations for
the reduced incidence of solid tissue tumors in DS (Baek et al.,
2009; Yang and Reeves, 2011; Nizetic and Groet, 2012). This is
attributed to at least 7 genes on HSA21, and full mechanisms
are not completely understood (Zorick et al., 2001; Ryeom et al.,
2003; Arron et al., 2006; Baek et al., 2009; Reynolds et al., 2010;
Yang and Reeves, 2011; Nizetic and Groet, 2012).

As regards atherosclerotic cardiovascular disease (Vis et al.,
2009), although abnormalities in lipid metabolism, which are
associated with high risk of premature atherosclerosis in the
general population (increased triglycerides, decreased HDL),
are frequently seen in patients with DS (Dörner et al., 1984;
Bocconi et al., 1997; Corsi et al., 2005), and despite reduced
physical activity and high rates of obesity (de Winter et al., 2012),
atherosclerosis and coronary artery disease related mortality is
surprisingly low (Baird and Sadovnick, 1988; Corsi et al., 2005;
Lott and Head, 2005), a finding that led some authors to conclude
that DS may represent an atheroma-free model of disease
(Murdoch et al., 1977). Interestingly, hyper-triglyceridaemia,
increased obesity and low exercise rates are common in adults
with DS (Haas et al., 2013), and high cholesterol levels have
been associated with risk of developing dementia (Chang et al.,
2013). However, some cardiovascular risk factors, including
hypertension, atherosclerosis, and smoking (McGowan et al.,
2006; Troca-Marín et al., 2012) that are thought to contribute
to the development of dementia in the general population
(Schulz-Schaeffer, 2010), are lower among adults with DS.

Other DS-specific biological features may also play a
role. While DS neurons show a severe down-regulation of
mitochondrial function (Busciglio and Yankner, 1995; Roat
et al., 2007; Murray et al., 2015), multiple studies indicate
that reducing mitochondrial function can protect against aging
and age-associated diseases (Trifunovic and Ventura, 2014). DS
cells demonstrate adaptive down-regulation of mitochondrial
function for survival under increased ROS conditions (Helguera
et al., 2013).

IS INTENSIFIED NEURONAL ACTIVITY
GOOD OR BAD FOR LIFE-LONG DS
COGNITIVE FUNCTIONING?

Recent work on mouse models has shown that hyperactivity of
GABAergic interneurons in mouse models of DS over-inhibits
hippocampal cortical excitatory neurons (Fernandez et al., 2007;
Kleschevnikov et al., 2011). This has resulted in the first clinical
trials in adults with DS for the improvement of cognitive
functions, for the cognitive enhancement with GABA-α5 inverse
agonists (Martínez-Cué et al., 2014). So, increased activity of one
type of neurons is causing a decreased activity of another type of
neurons in DS.

However, by increasing the neuronal activity of hippocampal
cortical excitatory neurons, in theory, we also increase Aβ

production and release. In fact, it has been demonstrated that
both Aβ secretion, and synaptic plasticity are dependent on
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neuronal activity (Kamenetz et al., 2003; Cirrito et al., 2005; Scheff
et al., 2006; Shrestha et al., 2006; Cheng et al., 2014; Lundgren
et al., 2014). It remains unclear though whether inhibitory
neurons have as much APP as excitatory neurons, or, whether
over activity of inhibitory vs. excitatory neurons drive more Aβ

generation. A proteolytic fragment (p25) of the cdk5-activator
is generated as a function of neuronal activity, and it regulates
synaptic plasticity and Aβ-induced cognitive impairment (Seo
et al., 2014). Aβ-generation, endosomal trafficking and secretion
(Wu et al., 2011; Sullivan et al., 2013; Lundgren et al., 2014)
and Aβ-dependent Tau translocation to excitatory synapses
(Frandemiche et al., 2014) are all neuronal activity-dependent.
On the other hand, synaptic plasticity and synaptic maturation
have also been shown to be neuronal activity-dependent
processes (Fukazawa et al., 2003; Segal, 2005, 2010; Bosch and
Hayashi, 2012; Heimer-McGinn et al., 2013; Ramiro-Cortés and
Israely, 2013).

This seemingly controversial roles of neuronal activity level
in DS pathology have also repercussions when it comes
to therapeutic management approaches: sleep deprivation
contributes to increased Aβ generation/secretion (Kang et al.,
2009) as well as reduced clearance (Xie et al., 2013), and sleep
deprivation in DS was shown to affect cognitive function (Brooks
et al., 2015). On the other hand, deep brain stimulation was
proposed as one of the intervention approaches to ameliorate
cognitive dysfunction in AD (Boggio et al., 2011). More research

is needed in this direction, as clearly opposing consequences
could be reached, if the approaches are not better understood,
and accordingly fine-tuned.

In conclusion, there are clearly many open questions on the
inter-relation between pathogenic processes that affect neuronal
development, synaptic plasticity, neuronal aging and longevity,
and AD in DS. We have not had the space or scope in this mini-
review to mention the potential modulating action of all other
chromosome 21 genes that might influence this process, besides
APP. Much more research is needed using high-resolution
dissection of individual chr21 gene contributions using mouse
models and human iPSC modeling. Such efforts should be
coordinated and inter-disciplinary, including clinical dementia
and cognitive assessments, and imaging studies.
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