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A B S T R A C T   

The disease caused by viral pneumonia called severe acute respiratory syndrome coronavirus type-2 (SARS-CoV- 
2) declared by the World Health Organization is a global pandemic that the world has witnessed since the last 
Ebola epidemic, SARS and MERS viruses. Many chemical compounds with antiviral activity are currently un
dergoing clinical investigation in order to find treatments for SARS-CoV-2 infected patients. On-going drug-drug 
interaction examinations on new, existing, and repurposed antiviral drugs are yet to provide adequate safety, 
toxicological, and effective monitoring protocols. This review presents an overview of direct and indirect anti
viral drugs, antibiotics, and immune-stimulants used in the management of SARS-CoV-2. It also seeks to outline 
the recent development of drugs with anti-coronavirus effects; their mono and combination therapy in managing 
the disease vis-à-vis their biological sources and chemistry. Co-administration of these drugs and their in
teractions were discussed to provide significant insight into how adequate monitoring of patients towards 
effective health management could be achieved.   

1. Introduction 

Since time immemorial, there has been a periodic recurrence of viral 
outbreaks at both epidemic and pandemic levels. In the recent past were 
severe acute respiratory syndrome coronavirus (SARS-CoV), middle east 
respiratory syndrome coronavirus (MERS-CoV), Ebola, and Lassa virus 
to mention the least. In December 2019, a history of virus outbreak 

repeated itself through the emergence of a novel coronavirus disease 
(2019-nCoV) called severe acute respiratory syndrome coronavirus 
(SARS-CoV-2) which was first discovered in Wuhan, Hubei Province of 
the People’s Republic of China. The virus has been reportedly trans
mitted from animal to man and causing severe respiratory disorders 
[1,2]. The spread of this virus has caused global health challenges and 
huge economic losses by which reason the World Health Organization 
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declared it a pandemic and threat to human existence. The virulence of 
the disease was initially not understood at the emergence until the 
increasing rate of spread of the virus with 80 cases of death and more 
than 4,000 cases confirmed in 5 days [3]. Scientific investigations 
showed that the newly discovered coronavirus has some definitive 
similarities with bat-linked genomes that were discovered in late 2002 
and 2012 (reported as Severe Acute Respiratory Syndrome (SARS-CoV) 
and Middle East Respiratory Syndrome (MERS-CoV) respectively), 
transmitted to human from civet cats and dromedary camels respec
tively [4]. To forestall the transmission, measures taken by the Chinese 
Government include immediate shutdown and restriction of movement 
placed on dwellers at the host centres of the disease even during the 
famous Chinese Annual Spring Festival in China. 

The Chinese health authorities examined case fatality indices of 
pneumonia among the victims in Wuhan city and an in-depth protein 
sequencing, eukaryotic cell culturing and characterization of air-way 
secreted fluid called Bronchoalveolar Lavage (BAL) revealed a unique 
Beta-coronavirus with close to 79% and 50% respective structural sim
ilarities with SARS-CoV 2002 and MERS-CoV 2012 [5]. Based on the 
established practice of virus naming, the World Health Organization 
(WHO) and the International Committee on Virus Taxonomy renamed 
this novel strain of 2019-nCoV to SARS-CoV-2 to portray the phyloge
netic origins of the virus [6–8]. This review seeks to outline the recent 
development of drugs with anti-coronavirus effects; their mono and 
combination therapy in managing the disease vis-à-vis their biological 
sources and chemistry. Co-administration of these drugs and their in
teractions were discussed to provide significant insight for adequate 
monitoring of patients towards effective health management. 

2. Review methodology 

This review focuses on reported curative antiviral drugs, broad- 
spectrum antibiotics and their chemistry, active components from 
botanical sources as well as possible clinical trials and safety informa
tion. Post- SARS-CoV-2 health-related issues that may arise due to drug 
toxicity and interaction were discussed with precautionary measures 
suggested. Scientific articles and reports were sourced across many high 
impact journals and filtered with relevant keywords on drug agents for 
COVID-19. 

The World Health Organization situation reports on COVID-19, 
PubMed, NCBI, Research Gate COVID-19, and Google search filters as 
well as other scientific databases on SARS-CoV-2 related information 
were carefully accessed towards the identification of the current me
dicinal agents that are being used in the treatment and management of 
the virus. Publications and scientific related articles that are under 
preprints, peer review, editorial comments, letters, and personal opin
ions were employed accordingly as stated in the reference section. Also, 
chemical structures were drawn using Chem-Draw Ultra 8.0 (Cambridge 
Soft, 100 Cambridge Park Drive, Cambridge, MA 02140) [9] 

3. Active medicinal components and SARS-CoV-2 

Herein, we discussed some direct and indirect antivirals, immuno- 
stimulants, antibiotics, natural medicinal agents, and other repurposed 
viable agents both traditional and orthodox with a natural and synthetic 
basis that are currently being investigated for novel coronavirus treat
ment. Some of these compounds are currently being subjected to clinical 
trials and have demonstrated preliminary activity against the virus. 
Notably, they have been reported in the 6th edition of Guidelines for the 
Prevention, Diagnosis, and Treatment of Novel Coronavirus-induced 
Pneumonia issued by the National Health Commission (NHC) of the 
People’s Republic of China for tentative treatment of coronavirus in
fections. These compounds include Ribavirin, Lopinavir-ritonavir, 
Chloroquine, Favipiravir, and Arbidol [10]. Other drugs that are still 
undergoing clinical trials with promising activity include Remdesivir, 
Atazanavir, Presatovir, Carmofur, Emetine dihydrochloride, 

Omacetaxince (Homoharringtonine), Azithromycin Ivermectin, Colchi
cine, TMPRSS2, and Interferon α, were also discussed. The clinical fea
tures of these drugs and their mechanisms of action/target, EC50, and 
CC50 were reviewed and summarized in Table 1. 

3.1. Ribavirin 

This is an FDA approved compound usually referred to as synthetic 
guanosine analogue with antiviral potential (Fig. 1a). It is used as a 
blend with other antiviral drugs and in most cases with interferon-alpha 
(IFN-a) for the treatment of several viral infections such as chronic 
hepatitis C virus, viral hemorrhagic fever, and respiratory syncytial virus 
[11]. Ribavirin was first commercialized in the early 1980s for the 
treatment of respiratory syncytial virus in children which makes it a 
premier and standard antiviral agent over the newly developed drugs. 
Aside from being regarded as a broad-spectrum antiviral agent against 
DNA and RNA, which can obscure the production of viral messenger 
RNA binding RNA-dependent RNA polymerase (RpRd). It is also a pro
drug that metabolizes into nucleoside analogues blocking viral RNA and 
viral mRNA capping [12]. Ribavirin was found to be effective against 
Crimean-Congo hemorrhagic fever, Hantavirus infection, Lassa fever, 
and Venezuelan hemorrhagic fever. Meanwhile, promising results had 
emanated previously about the blend of ribavirin with Interferon-alpha 
for the treatment of MERS-CoV [13]. Conflicting data have equally been 
reported for patients with MERS-CoV infection that were treated with a 
blend of ribavirin and two forms of interferon-a; IFN-a 2b and IFN-b1 
[14]. It can affect haemoglobin (Hb) counts of the red blood cells 
which is an undesirable side effect in patients with respiratory disorders; 
a feature that reduces its potential as a potent antiviral agent against 
coronavirus infection. However, during the SARS-CoV outbreak in 2003, 
few countries including China and Canada successfully administered 
high doses of a blend of ribavirin with antibiotics and hormone against 
the virus [15]. A possible combination of ribavirin with lopinavir- 
ritonavir has proven to be potent against SARS-CoV-2 [16]. 

3.2. Favipiravir 

This is a newly discovered RNA-dependent RNA polymerase (RdRp) 
inhibitor similar to ribavirin earlier discussed (Fig. 1b). Apart from its 
anti-influenza viral activity, clinical experiments have revealed that it is 
capable of blocking the replication of flavi-, alpha-, filo-, bunya-, arena-, 
noro-, and other RNA viruses [17]. Favipiravir when in cells is trans
formed into an active phospho-ribosylated (F-RTP), a form that is 
recognized by viral RNA polymerase as a substrate thus inhibiting its 
activity in patients [18]. This further suggests the possible antiviral ef
ficiency of Favipiravir against SARS-CoV-2 to which end the Clinical 
Medical Research Centre of the National Infectious Diseases in collab
oration with Third People’s Hospital of Shenzhen conducted a clinical 
trial on 14th February 2020 and obtained promising results. The pre
liminary results showed that the antiviral efficacy of Favipiravir is more 
than that of Lopinavir-ritonavir blend [19]. 

3.3. Arbidol 

Arbidol, known as “Umifenovir” (Fig. 1c) is an active antiviral agent 
that has greatly been used for the treatment of the influenza virus. For 
decades, it has been an effective agent, with no reported side effect, 
commonly administered in China and Russia to prevent severe pneu
monia and cytokine dysregulation associated with viral infections [20]. 
It is a broad-spectrum antiviral agent with both in-vitro and in-vivo 
inhibitory potentials against various infectious diseases such as influ
enza, hepatitis B virus (HBV), hepatitis C virus (HCV), Hantaan virus, 
and other pathogenic human respiratory viruses. Aside from enhancing 
the immune response of host cells, Arbidol actively inhibits the binding 
of viral cell walls with the membrane of target cells, thus preventing its 
entry [21]. Arbidol has now been nominated as a first-aid therapy 
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against novel coronavirus and studies are ongoing towards further 
optimization [22–24]. 

3.4. Lopinavir-ritonavir 

This is a medication usually administered in combination with other 
antiviral drugs such as ribavirin for treating Human Immunodeficiency 
Virus HIV [25]. It (Fig. 1d) belongs to a class of protease inhibitors 
capable of targeting SARS-CoV non-structural protein 3Clpro [16]. Chu 
et al. [26] discovered that lopinavir-ritonavir combination therapy with 
ribavirin demonstrated anti-SARS-CoV activity in-vitro and also in clin
ical studies when used to treat patients under a non-randomized clinical 
trial. Less SARS patients died after receiving a dose of the combination 
compared with those in the control group who received doses of blends 
of ribavirin and Corticosteroids. When MERS-CoV emerged, intensive 
investigations into potential antiviral compounds identified lopinavir as 
active against the virus in vitro [27]. Its drug-drug therapy does not 
come without a minor side effect of diarrhoea. Nevertheless, it has been 
recommended as an effective anti-SARS-CoV-2 agent in China [16]. 
Further investigations are ongoing by some Chinese researchers and
clinicians into the therapeutic efficacy of Lopinavir-ritonavir. 

3.5. Remdesivir 

Remdesivir is one of the most promising antiviral drugs tested for the 
treatment of coronavirus infection. It is a phosphoramidite prodrug of 
adenosine nucleotide [28] with a broad-spectrum in-vitro antiviral ac
tivity against a wide range of RNA viruses like Ebola virus, respiratory 

syncytial virus, Nipah virus, Hendra virus, Marburg virus, pathogenic 
viruses such as MERS-CoV and SARS-CoV and bat CoV strains [29,30]. 
Although it is a nucleotide analogue, Remdesivir has shown to inhibit 
viral RNA replication, prematurely terminate viral RNA transcription by 
targeting viral RNA-dependent RNA polymerase, and evade viral exo
ribonuclease proofreading [31]. To date, pharmacokinetic and clinical 
detail on Remdesivir is still obscure and critical investigations are 
ongoing. Markedly, concerns of antiviral resistance against its usage 
have been studied [31]. Very recently, the antiviral activity of Remde
sivir was examined at an early stage after virus entry into Vero E6 cells 
detailing its mechanism of action as a nucleotide [32]. The EC90 results 
were observed to be 1.76 μM, suggesting its potency against the virus. In 
a mouse model study on SARS-CoV-2 pathogenesis, prophylactic and 
therapeutic activity [32] observed that early administration of the drug 
reduced lung viral load by an order of magnitude greater than 2 on day 4 
or 5 post-infection, restrained the disease and improved respiratory 
function. More so, in a tissue culture model, a biologically important in- 
vitro model of pulmonary infection, Remdesivir displayed low half- 
maximal effective concentrations (EC50s) of 0.069 and 0.074 μM for 
SARS-CoV and MERS-COV respectively which revealed its effectiveness 
against a wide range of highly divergent coronaviruses like the endemic 
CoVs hCoV-OC43 and hCoV-229E within the sub-micromolar EC50 
[29,33]. In another animal model examination, a rhesus monkey model 
on the Ebola virus, 10 mg/kg dose administered daily for consecutive 12 
days inhibits the Ebola virus replication and protects all infected animals 
against infection [34]. Based on the successful clinical experience of 
Remdesivir therapy on Ebola virus patient [35] as well as on the first 
SARS-CoV-2 confirmed case in Washington, United States of America 

Fig. 1. (a-j): Chemical structures of some reported SARS-COV-2 Drug.  
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(with a negative swab at day 1 after treatment) has suggested that 
Remdesivir is a promising antiviral therapy for COVID-19 treatment. 
The molecular mass of Remdesivir is 602.6 g/mol with a chemical for
mula of C27H35O8P (Fig. 1e). 

3.6. Atazanavir 

This is another anti-retroviral FDA approved medication commonly 
used for HIV treatment and prevention. Atazanavir is distinguished from 
other protease inhibitors in that it can only be administered one daily 
rather than requiring multiple doses per day and has lesser effects on the 
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patient’s lipid profile [36,37]. As an azapeptide HIV-1 protease inhibi
tor, atazanavir binds to the protease active site and inhibits the enzyme 
activity. Owing to its antiviral activity [38] released a drug-target 
interaction deep learning model (denoted as MT-DTI model) result of 
atazanavir showing an inhibitory potency Kd of 94.94 nM against SARS- 
CoV-2 3C-like protease. This protease enzyme is also found in corona
viruses due to its cleavage potentials to the coronavirus polyprotein at 
different conserved sites. Atazanavir (Fig. 1f) has a molecular weight of 
704 g/mol. 

3.7. Carmofur 

Carmofur is a promising candidate drug that has shown to inhibit 
SARS-CoV-2 main protease (Mpro) enzymes responsible for many 
coronaviruses with a half-maximal effective concentration (EC50) of 
24.30 μM and a half-maximal inhibitory concentration (IC50) of 1.82 
μM, showing its ability to inhibit viral replication in cells [39]. It is a 
derivative of fluorouracil, an antineoplastic agent that has demonstrated 
clinical benefit as a cancer therapy but reported to induce leukoence
phalopathy. Carmofur (Fig. 1g) with the general formula of 
C11H16FN3O3S and a mass number of 257 g/mol, is an orally adminis
tered anticancer drug, verified by FDA and potent for usage in the 
treatment of breast, colorectal and other types of solid cancer [40]. It is 
less toxic, inhibiting human acid ceramidase (AC), and has been utilized 
clinically for several years [41]. An in-vitro study has affirmed the po
tency of carmofur in terminating AC activities and the spread of cancer 
cells with a median effective concentration of 2965 nM [42]. Further 
studies revealed that the inhibition of fatty acid amide hydrolase 
(FAAH) and N-acylethanolamine acid amidase (NAAA) by carmofur as 
well as its therapeutic activity against several inflammation-related 
diseases makes it a potential therapeutic candidate in the treatment of 
SARS-CoV-2 infections [43]. This was further corroborated by a recent 
investigation, which confirmed the efficacy of carmofur in inhibiting 
SARS-CoV-2 main protease and broader effectiveness against the virus 
via an interaction between the crystal structure of the virus main pro
tease and carmofur which could modify the catalytic (Cys145) proper
ties of SARS-CoV-2 [40]. 

3.8. Presatovir 

Presatovir is an off-label drug currently undergoing trials for its ac
tivity against coronavirus disease owing to its activity against the res
piratory syncytial virus (RSV), a causative agent of lower respiratory 
tract infections. Presatovir is regarded as a candidate RSV fusion (F) 

protein inhibitor due to the pyrazolo[1,5-a] pyrimidine series of com
pounds containing a piperidine ring at 2-position of the pyrazolo[1,5-a] 
pyrimidine scaffold [44]. It has a general formula C24 H30ClN7O3S and a 
mass number of 532 g/mol (Fig. 1h). 

3.9. Chloroquine and hydroxychloroquine 

Chloroquine, a synthetic succedaneum of the quinine alkaloid iso
lated from Cinchona tree bark. It is a well-known antimalarial drug that 
was introduced into medicine in the 1940s (Fig. 2). It is a widely used 
antimalarial agent that was discovered to possess a broad-spectrum 
antiviral capacity [45]. Chloroquine, having a long history, is consid
ered safe to inhibit parasitaemia levels in mosquitoes. Besides, it is 
widely used for the treatment of patients with malaria cases with mild 
and transitory side-effects. To date, many people currently use these two 
drugs; Chloroquine (CQ) and Hydroxychloroquine (HCQ). A derivative 
of CQ and HCQ which is usually administered orally to treat malaria can 
also be applied to treat symptoms of rheumatoid arthritis, systemic and 
discoid lupus erythematosus, pemphigus, lichen planus, sarcoidosis, 
scleroderma polymyositis, and porphyria cutanea tarda. Chloroquine 
was found also to be an effective antiviral agent that inhibits SARS-CoV 
infection and spread [14]. CQ and HCQ are both off-label drugs and have 
been proposed as a promising antiviral therapy for the treatment of 
COVID-19 patients especially in severe condition [46]. To assess the 
efficacy of CQ and HCQ in coronavirus infected patients, many 
compelling in-vitro and in-vivo studies, including clinical trials in 
different animal cells, viruses, and infected humans have been con
ducted [47–49]. Significantly, over eighty clinical trials of CQ and HCQ 
as well in their combination were reported worldwide. CQ alters the 
terminal glycosylation of the angiotensin-converting enzyme 2 (ACE2) 
receptor thereby suppressing SARS-CoV-2 S-protein binding and 
significantly reduces the viral replication by interfering with the fusion 
process of the virus [32]. In an in-vitro experiment conducted to inves
tigate the elicit antiviral activity of CQ against SARS-CoV-2, a low 
micromolar dose of it inhibits the virus with half-maximal effective 
concentration (EC50) of 1.13 µM and a half-cytotoxic concentration 
(CC50) greater than 100 µM [32]. Several researchers across countries 
such as China, USA, Germany, UK, and many others have stepped up 
further investigations into the optimization of CQ as one of the most 
effective antiviral drugs to treat SARS-CoV-2. The results obtained from 
more than 100 patients demonstrated CQ as superior to inhibit exacer
bation of pneumonia, improve lung imaging findings, promote virus- 
negative conversion, and shorten the disease course [50]. Another 
research investigation has demonstrated the potential CQ and HCQ as a 

Fig. 2. Cinchonia spp, botanical source, and some isolated chemical compounds.  
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target regimen and effective antiviral therapy for COVID-19 treatment. 
CQ acts by increasing endosomal pH, preventing virus-cell fusion, 
altering protein degradation pathways through acidic hydrolases in the 
lysosomes, macromolecule synthesis in the endosomes, and post- 
translational modifications in the Golgi apparatus [51]. 

In a physiologically-based model in-vitro study of CQ and HCQ on 
SARS-CoV-2 Vero cells of some infected patients, an oral loading dose of 
400 mg twice daily at day 1 followed by an oral maintenance dose of 
200 mg twice daily for 4 days was recommended [52]. The results of the 
authors further displayed half-maximal effective concentration (EC50s) 
of 0.72% and 5.47% μM for HCQ and CQ respectively. Additionally, it 
has been reported that the effect of HCQ on COVID-19 patients could be 
significantly improved with azithromycin [53]. At variance, a report 
document detailed that a long-term and combined usage of CQ or HCQ 
with any other drugs (such as azithromycin) induce QTc interval pro
longation besides other severe side-effects like arrhythmogenic and 
cardiac problems, QRS widening, and negative entropy. CQ and HCQ are 
notable for inhibiting the P-glycoprotein transport system (in gut 
luminal and blood-brain barrier endothelial cells), which in turn in
crease cyclosporine and digoxin levels and ultimately to a more severe 
complicated result. Since the mode of actions of CQ and HCQ are 
identical, their activity on the virus may probably be the same. In a 
multinational registry analysis conducted on SARS-CoV-2 patients from 
671 hospitals in six continents, who were placed on CQ, HCQ, the 
combination of antibiotics or without combination as a macrolide, there 
was a strong indication that CQ and HCQ when used alone or with an
tibiotics as drug regimens were associated with an increased frequency 
of ventricular arrhythmias and mortality rates in hospital among SARS- 
CoV-2 patients [54]. Although, these should not negate the ongoing 
HCQ clinical trials in managing the COVID-19. Adequate safety evalu
ation is therefore required before the recommendation of CQ and HCQ 
as candidate therapies for COVID-19 management. 

3.10. Emetine dihydrochloride 

Emetine dihydrochloride, principally from ipecac root, has been used 
extensively as an anti-protozoan approved drug for amoebiasis treat
ment (Fig. 3). It blocks ribosomal protein synthesis by inhibiting the 
movement of ribosomes along mRNA and inhibits DNA replication in 

early S-phase [55]. Owing to its antiviral activity against both RNA and 
DNA viruses, Khandelwal et al. [56] reported that emetine demonstrated 
a significant antiviral activity capable of fighting against four serotypes 
of dengue virus and inhibiting viral infection. Very recently, in an in- 
vitro model study, emetine was observed to inhibit MERS-CoV and 
HCoV-OC43 with EC50 of 0.16 and 0.34 μM respectively within a sub- 
micromolar range [57]. In another in-vitro study carried out to investi
gate the antiviral activity of several chemical compounds against SARS- 
CoV-2 in Vero E6 cells, emetine demonstrated the lowest half-maximal 
effective concentrations (EC50) of 0.46 μM, showing its ability to 
inhibit coronavirus replication. The authors further detailed that a 
synergistic administration of emetine (0.195 μM) and Remesdivir (at 
6.25 μM) may result in 64.9% viral inhibition, supporting that combi
nation therapy may help to reduce (EC50) of the compound below the 
therapeutic plasma concentrations and provide clinical benefit [58]. 
SARS-CoV-2 in Vero E6 cell with the compound demonstrated a half- 
maximal effective concentration (EC50) of 2.55 μM showing its po
tency against the virus [58]. 

3.11. Teicoplanin and other glycoprotein drugs (Dalbavancin, 
oritavancin, and telavancin) 

Teicoplanin was previously known as Teichomycin A2 because it was 
co-purified together with moenomycin-like teichomycin A1 that was 
isolated from a soil sample in India in 1978 [59–61]. It acts as a 
glycopeptide that binds with the D-ala-D-ala terminus of the lipid (II) in 
the peptidoglycan to cause bacterial cell deaths and is being used in 
many nations to combat infections and multiple drug antibiotics resis
tance pathogens such as Staphylococcus aureus [60]. The complexity of 
Teicoplanin is that it is a mixture of different derivatives of closely 
related compounds and possibly be differentiated based on their length, 
the aliphatic chains, and its possible mechanism. The chemistry, 
biosynthesis alongside the gene-phylogenetic studies has been discussed 
[61–64]. Teicoplanin is an antibiotic (Fig. 1i) that is capable of inhib
iting methicillin-resistant pathogens and is currently being used in the 
management and treatment of SARS-CoV-2 patients in the world. The 
mechanism revealed that teicoplanin inhibits the host cell’s cathepsin L 
and cathepsin B and is attached to the viral glycoprotein thereby 
unfolding the receptor-binding domain subsequently released in the 

Fig. 3. Carapichea ipecacuanha, botanical source, and some isolated chemical compounds.  
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cytoplasm of the host cells. These glycopeptides have previously shown 
inhibiting action on some human viruses in the coronavirus family 
including Ebola, MERS-CoV, influenza, hepatitis C virus, HIV, and also 
on SARS-CoV-2 virus [65,66]. Similar studies also indicated the potent 
role of teicoplanin and its derivatives (vancomycin, dalbavancin, ori
tavancin, and telavancin) as novel inhibitors of cathepsin L-dependent 
viruses even in Coronaviridae family [67–69]. It was reported that tei
coplanin inhibited SARS-CoV-2 in a dose-dependent manner when 
tested on HIV-luc/2019-nCoV-S pseudovirus and the inhibitory con
centration of 1.66 uM which is potent to suppress the entry of the 
SARSCoV-2 virus in different types of cells alongside with some -gram- 
positive bacterial infection [70]. Teicoplanin has a safe history and 
advantage as an antibacterial regimen. It is usually administered intra
muscularly or by intravenous injection. Based on previous clinical 
studies carried out on 1300 patients [71], teicoplanin showed about 90 
percent effective rates and compatibility for adult, children and the 
elderly when administered as a mono- or combined antibacterial ther
apy. Although, lower rates were achieved among patients with fever, 
diabetes, malignant diseases and other immune-compromised disorders 
with possible nephron and ototoxicity. Teicoplanin can be used in the 
prevention and treatment of serious infections caused by gram-positive 
bacteria [72]. It has been reported that a combination of teicoplanin and 
ciprofloxacin is more effective in relieving respiratory tract infections 
[59]. However, adequate monitoring and clinical observations must be 
ensured when prescribing teicoplanin with patients who have a history 
of vancomycin hypersensitivity. 

3.12. Azithromycin 

Among several potential drugs tested against SARS-CoV-2, Azi
thromycin is a broad-spectrum antibiotics macrolide that is currently in 
use for the management of infected patients in many countries based on 
an open-label non-randomized clinical trial [53,73]. It is a well-known 
brand and a 15-membered ring macrolide (azalide) antibiotic (Fig. 4). 
This drug 9-deoxy-9a-aza-9a-methyl-9a-homoerythomycin 
(C38H72N2O12) is different from Erythromycin with the presence of a 
methyl-substituted nitrogen atom in the macrolide ring with PKA values 

of 8.1 and 8.8 respectively [74]. Azithromycin is a unique broad- 
spectrum antibiotic owing to its rapid and effective tissue and serum 
penetration in addition to its potency against gram-positive and gram- 
negative bacteria. Azithromycin has found application in the treat
ment of fungal infections, respiratory tract infections, viral infections, 
inflammations and many other immunomodulatory disorders [75–77]. 
Many ongoing clinical trials are also seeing the potentials of azi
thromycin combined with chloroquine in managing SARS- CoV-2 while 
some reports have expressed concerns over prolonged QTc and safety of 
administration among other underlying side effects as diabetes, heart- 
related diseases, mental illnesses among others. [78–84] The adminis
tration of azithromycin on different patients showed no significant ev
idence that it cures COVID-19 but could only suppress bacterial 
infections in the host. As earlier pointed out that in combination with 
chloroquine, azithromycin causes a significant improvement in patients 
with malaria without any indication of risk due to QTc prolongation 
above that of chloroquine. [85–87] The addition of zinc sulphate 
alongside hydroxychloroquine and azithromycin played an important 
role in the increased number of SARS-CoV-2 patients being discharged 
therefore zinc sulphate can also be used as prophylaxis [88]. 

In Morocco, it was reported that concomitant administration of 
hydroxychloroquine and azithromycin increased the number of cured 
SARS-CoV-2 patients and decreased mortality rates [89]. Azithromycin 
was also reported to be compatible with breastfeeding coronavirus 
nursing mothers and during pregnancy but with caution and adequate 
monitoring [90]. Notably, treatment with azithromycin combined with 
hydroxychloroquine showed a more prolonged QTc than treatment with 
only azithromycin [91]. An insight into the pharmacokinetics of 
hydroxychloroquine and azithromycin combination therapy explains 
the effect of this combination as a function of their accumulation on the 
lysosomal cells in the local concentration via ion-trapping mediation. 
The need for further clinical studies to possibly unravel the safety and 
risk benefits is therefore essential [92]. Furthermore, Bayesian appli
cation with statistical analysis on the effects of combining hydroxy
chloroquine and azithromycin also yielded viral load reduction [93]. 
Azithromycin and bee derived products (such as honey) were suggested 
especially among high-risk SARS-CoV-2 frontline health workers as 

Fig. 4. Chemical structure of Azithromycin from Erythromycin A.  
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prophylactic treatment; further investigations into some of the com
pounds in the bee products are suggested [94]. 

3.13. Ivermectin 

Ivermectin is an anti-parasitic broad-spectrum drug that was re
ported to inhibit the interaction between HIV-1 replicates [95]. Chem
ically, the compound reveals two subsets: the 1st subset possesses an 
olefinic bond at C-22 while the 2nd subset bond is hydrated with a hy
droxyl (–OH) group at position 23 known as 22, 23-dihydro derivative of 
avermectin B1 which is a macrolide lactone produced by actinomycetes 
Streptomyces avermitilis [96] (Fig. 5). Utilizations of ivermectin are 
numerous and potent to combat other viruses that have been fully 
documented [97–100]. This broad-spectrum activity on viruses is due to 
the importin alpha/beta-1 during infection [101,102]. Quest for drugs 
to combat this novel coronavirus revealed a possible role for ivermectin 
and importin alpha/beta-1 during infection as a signal-dependent 
nucleocytoplasmic shuttling of the SARs-CoV nucleocapsid protein 
mediated nuclear import [103–106]. In Australia, the antiviral activity 
of ivermectin on SARS-CoV-2 infected cells in an in-vitro study revealed a 
93 percent reduction in the viral RNA present in the supernatant and 
99.80 percent reduction in cell-associated with viral RNA. It was 
observed that ivermectin treatment led to a rapid reduction in viral RNA 
load by about 5000-fold in 48 hrs [104]. The pharmacokinetic 
perspective of this drug was analysed based on the pharmacokinetic data 
from clinically relevant and excessive dosing studies available; It was 
indicated that the SARS-CoV-2 inhibitory concentrations are not likely 
to be attainable in humans and that a single dosage is practically inap
propriate because of the infected cells which were exposed at different 
concentrations negate the pharmacokinetics findings of some previously 
used doses pooled in the treatment regimen of ivermectin [107] and 
therefore suggests a need for further clinical trials to determine the best 

level of inhibitory concentration. It was reported that the combination of 
ivermectin and hydroxychloroquine could work synergistically with 
adequate clinical monitoring when administered [108]. In a screening of 
1,408 patients gathered from 3 continents and carefully matched with 
age, gender/ethnicity, comorbidities, and illness severity score group 
consideration; it was concluded that administration of ivermectin on 
COVID-19 patients decreased death rates and reduced the length of 
hospital admission with the hope that an ivermectin drug used for 
filarial worm treatment (a neglected tropical disease) would be potent 
enough to combat the current SARS-CoV-2 alongside with clinical trials 
on the standard practices [109]. However, some researchers suspected 
possible toxicity with the use of ivermectin but recommended careful 
consideration of risk-benefit ratios and clinical trials to fully understand 
the pharmacokinetics and safety of administration [110,111]. It was 
demonstrated that both ivermectin and chloroquine are capable to 
inhibit replication of the SARS-CoV-2 in-vitro with a suggestion that a 
combination of these drugs could be effective especially in malaria- 
endemic regions where chloroquine is still an effective drug to combat 
Plasmodium vivax blood-stage therapeutic [112]. 

3.14. Colchicine, (-) -N-5,6,7,9-tetrahydro 1, 2, 3, 10- tetra methoxy-9- 
oxybenzone-7-yl (s)- acetamide 

This is an iso-quinoline alkaloid originated from Colchicum autumnale 
belonging to the family of Liliaceae [113] (Fig. 6). Traditionally, it has 
been used in gout management, Mediterranean fever, liver cirrhosis, 
chronic myelocytic leukaemia, hepatic disorders, cardiovascular dis
eases, and also in potential anticancer drugs [114,115]. The biosynthesis 
of colchicine involves mainly phenylalanine and tyrosine. It is a very 
toxic antitumor drug and has been reported in patients with kidney and 
liver failure, however, derivatives such as dem-colchicine, trimethyl- 
colchicine acid methyl-ester, 2-dimethyl thiocolchicine, 3-dimethyl 

Fig. 5. Streptomyces avermitilis, bacterial source, Ivermectin, and some isolated chemical compounds.  
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thio-colchicine and the biosynthetic colchicine’s which are less toxic are 
used as anti-leukaemia agents [116,117]. Colchicine has anti- 
inflammatory effects on the IL-1 and IL–6 axes which further prolong 
neutrophils and macrophages actions as well as the multiple cellular 
actions in the assembly of the nucleotide-binding domain and leucine- 
rich repeat protein inflammasome [118]. It is a non-selective inhibitor 
of Nucleotide Oligomerization Domain)-like receptor protein 3 (NLRP3) 
inflammasome that plays a huge role in anti-inflammatory diseases and 
binds to unpolymerized tubulin heterodimers, forming a stable complex 
that can effectively inhibit microtubule dynamics upon binding to mi
crotubules ends [118,119]. In addition to this, colchicine plays an 
important role in managing patients with SARS-CoV-2 especially pa
tients with myocardial infarction related cases even at acute and chronic 
phase periods [120]. Colchicine was recommended possibly on its 
clinical trial to see if it could assist in the clinical management of SARS- 
CoV-2 patients and reduce the inflammation caused by the virus [121]. 
According to [122], severe acute respiratory infections can cause pul
monary and systemic inflammation among SARS-CoV-2 patients and 
could lead to cardiac injury, heart failure, and respiratory complica
tions. Significant evidence was reported that colchicine could amelio
rate the effect of inflammation and hyper inflammation activity on 
SARS-CoV-2 patients and that it could be used as a supporting therapy 
with possible clinical trials suggested [123]. In another study, there was 
a significant finding on the physicochemical properties, chemical 
properties, and the mechanism of action and the conclusion that it may 
not be beneficial to patients since it has effects of increasing cytosolic pH 
and by implication might increase the rate of acute respiratory distress 
syndrome and multiple organ failure among SARS-CoV-2 patients [124]. 
In Israel, experimental studies were conducted using real-world data, a 
conclusion was reached that colchicine could be utilized based on the 
NLRP3 inflammasome which can be activated and triggered by different 
SARS-CoV-2 proteins and therefore could lead to severe adult respira
tory distress syndrome. [125]. Colchicine clinical trials should be done 
carefully among patients with the underlying heart and other myocar
dial disorders towards saving more lives. 

3.15. Omacetaxine (Homoharringtonine) 

Homoharringtonine is a traditional antiviral compound that is 

effective for reducing viral load at about 0.05 or 0.2 mg/kg doses, 
inhibiting vesicular stomatitis virus at 50 nM, new castle virus at 100 
nM, and porcine epidemic diarrhoea virus at 150 nM [126]. It is a 
Cephalotaxus fortunei derived plant alkaloid (Fig. 7) with antitumor ac
tivity capable of inhibiting the first cycle of the elongation phase of 
eukaryotic translation [127,128]. The semi-synthetic form of homo
rringtonine is called Omacetaxine [73,129] which is responsible for the 
treatment of chronic myeloid leukaemia refractory to tyrosine kinase 
inhibitors [130]. The anti-SARS-CoV-2 effect of homoharringtonine was 
recently examined while it has been reported to inhibit the virus with 
EC50 value 2.10 µM [58]. A maximal plasma concentration of 36 ng/mL 
(0.066 µM) obtained on day 11 from a pharmacokinetic study conducted 
by Nemunaitis et al., [131] with 1.25 mg/m2 omaxacetine administered 
subcutaneously every 12 h (twice daily) on patients with solid tumours 
and hematologic malignancies revealed a much lower EC50 than the 
concentration against SARS-CoV-2 virus in-vitro. 

3.16. Transmembrane Protease Serine2 (TMPRSS2) inhibitor 

Camostat Mesylate, Flumadin, Nafamostat, Trasylol which are 
Transmembrane Protease Serine-2 (TMPRSS2), and other synthetic in
hibitors used in managing prostate cancer have been expressed in the 
epithelial cells of specific tissues including those in the autodigestive 
tract [128]. Previous reports revealed that the Coronaviridae family 
including influenza virus have also utilized TMPRSS2 for viral entry via 
the hemagglutinin protein (HA) attached to angiotensin-converting 
enzyme (ACE2) being expressed on respiratory epithelial cells 
[132–136]. Hoffmann et al. [137] conducted an in-vitro study using 
Camostat mesylate, a protease inhibitor and observed a partial inhibi
tion at the entry stage of the SARS-CoV-2 virus in the epithelial lung 
cells. This suggests that protease inhibitors could combat the novel 2019 
coronavirus. Furthermore, the authors argued that Nafamostat mesylate 
offered more antiviral protection than camostat mesylate (Foipan) 
which is in use in Japan to treat SARS-CoV-2 infected patients. They also 
proposed that Nafamostat mesylate should be subjected to clinical in
vestigations to evaluate its curative activity and strength to inhibit 
SARS-CoV-2 and further recommended that camostat mesylate, Nafa
mostat, and bromhexine hydrochloride (BHH) be considered for inhi
bition of TMPRSS2 in the control of COVID-19 [138]. Interestingly, in a 

Fig. 6. Colchicum spp, botanical source, and some isolated chemical compounds.  
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Table 1 
Summary of some clinical features involving drugs reviewed in the present work against SARS-COV-2.  

Drugs Mechanisms of Action/ 
Targets 

Some clinical features EC50 (µM) CC50 

(µM) 
References 

aClinical Trial 
ID 

Interventions Control Study Design (Phase/ 
Location /Enrolment No.) 

Summarized Outcomes 

Combined Therapies          
Lopinavir-Ritonavir Lopinavir and ritonavir 

areprotease inhibitors, 
which block viral 
replication, Ritonavir is 
a CYP3A inhibitor 
which functions 
primarily to reduce the 
metabolism of lopinavir, 
thereby boosting 
lopinavir levels. 

NCT04343768 Hydroxychloroquine +
Lopinavir/Ritonavir +
Interferon Beta-1A (in 
first group) and +
Interferon Beta-1B (in 
second group) 

Hydroxychloroquine 
+ Lopinavir/Ritonavir 

Randomized (Completed/ 
Iran /60) 

No results on clinical 
outcomes with the full 
protocol as provided by 
WHO and National 
clinical trial on outcome 
measures but the phases 
completed. 

26.63  [26,58,149]  

Ribavirin Ribavirin, a guanosine 
analogue inhibits viral 
RNA polymerase and 
mRNA capping. 

NCT04276688 Lopinavir/ritonavir 400 
mg/100 mg twice daily 
for 14 days + Ribavirin 
400 mg twice daily for 
14 days + Interferon 
Beta-1B 0.25 mg 
subcutaneous injection 
alternate day for 3 days 

Lopinavir/ritonavir 
400 mg/100 mg twice 
daily for 14 days 

Randomized (Completed/ 
HongKong/127) 

Three combinations 
were safe and superior 
to Lopinavir–Ritonavir 
alone and shortening 
virus shedding, 
alleviating symptoms, 
and facilitating 
discharge of patients 
with mild to moderate 
COVID-19 

109.50 >400 [150,32,151]  

Arbidol Arbidol inhibits by 
interfering with 
multiple steps of the 
virus replication cycle. 
The stages of SARS-CoV- 
2 replication targeted by 
arbidol is during the 
virus entry process, the 
post-entry stages, or the 
entire process of 
infection (Full-time). 
Arbidol efficiently 
blocked both viral entry 
and post-entry stages. 

NCT04476719 Atafenovir 200 mg 
KAPSUL (Capsules 
containing 207.009 mg 
Umifenovir 
hydrochloride 
monohydrate 
equivalent to 200 mg 
Umifenovir 
hydrochloride. 

Arbidol 100 mg 
KAPSUL (Capsules 
containing 103.504 mg 
Umifenovir 
hydrochloride 
monohydrate 
equivalent to 100 mg 
Umifenovir 
hydrochloride 

Open-label, Randomized, 
Single oral dose, two- 
period, cross over. (Phase 
1/Turkey /18) 

To assess the 
bioequivalence of 
atafenovir 200 mg 
Kapsul In comparison 
with Arbidol 100 mg 
Kapsul in healthy male 
subjects under fasting 
conditions alongside 
with ethical protocols 
and strong confidence 
intervals evaluation. 

4.11 31.79 [32]  

Direct antiviral (Monotherapy) 
Favipiravir RNA-dependent RNA 

polymerase (RdRp) 
inhibitor. Blocking the 
replication of other RNA 
viruses. Activated into 
its phosphoribosylated 
form (favipiravir-RTP) 
in cells, which then 
inhibits viral RNA 
polymerase activity 

NCT04336904 Day 1: 1800 mg, BID; 
Day 2 – 14: 600 mg, TID 

Placebo Dosage: Day 1: 
1800 mg, BID; Day 2 
and thereafter: 600 
mg, TID, for a 
maximum of 14 days. 

Multi-centre, randomized, 
double-blind, placebo- 
controlled (1:1) Phase 3 
(Italy/100) 

This is a multi-centre, 
randomized, double- 
blind, placebo- 
controlled (1:1) clinical 
study to explore the 
efficacy and safety of 
Favipiravir in the 
treatment of adult 
subjects with COVID-19- 
moderate type. 

61.88 >400 [18,150]  

Remdesivir Remdesivir is a 
nucleotide analogue 
with the triphosphate 

NCT04292899 Standard of care with 
and without mechanical 
ventilation +

Standard of care Randomized completed 
(USA/4891) 

The magnitude of 
benefit cannot be 
determined because 

0.77 >100 [151,152] 

(continued on next page) 
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Table 1 (continued ) 

Drugs Mechanisms of Action/ 
Targets 

Some clinical features EC50 (µM) CC50 

(µM) 
References 

aClinical Trial 
ID 

Interventions Control Study Design (Phase/ 
Location /Enrolment No.) 

Summarized Outcomes 

form i.e., RDV-TP being 
used as a substrate for 
many viral RNA- 
dependent RNA 
polymerase (RdRp) 
complexes. RDV-TP has 
been reported to inhibit 
the viral RNA synthesis 
via a specific 
mechanism of delayed 
chain termination for 
coronaviruses including 
SARS-CoV-2 RdRp. It 
has been observed that 
RDV-TP specifically 
resembles Adenosine 
triphosphate (ATP) 
molecule and competes 
with the nucleotide 
during the viral RNA 
synthesis. 

Remdesivir 
Administered as an IV 
for 5 and 10 days 
separately (RDV 200 mg 
Day 1 and 100 mg from 
Day 2–5 or 2–10 
according to the 
grouping) 

there was no placebo 
control, however, the 
most common adverse 
events noticed were 
nausea worsening 
respiratory failure, 
elevated alanine 
aminotransferase level, 
and constipation.  

Atazanavir Atazanavir is of high 
interest because of its 
bioavailability within 
the respiratory tract. 
ATV could dock in the 
active site of SARS-CoV- 
2 Mpro, with greater 
strength even than 
Lopinavir. ATV inhibits 
SARS-CoV-2 replication, 
alone or in combination 
with ritonavir (RTV) in 
Vero cells, human 
pulmonary epithelial 
cell line, and primary 
monocytes, impairing 
virus-induced 
enhancement of IL-6 
and TNF-α levels. 

NCT04452565 NA-831 (60 mg orally 
twice a day for one day, 
followed by 30 mg once 
a day for four 
consecutive days (Five 
days in total)) and 
Atazanavir (400 mg 
orally twice a day for 
one day, followed by 
200 mg daily for four 
consecutive days (five 
days total)) 

NA-831 60 mg orally 
twice a day for one 
day, followed by 30 mg 
once a day for four 
consecutive days (Five 
days in total) 

Randomized Controlled 
Phase 2/3 (USA/525) 

Currently recruiting in 
the Phase 2/3 trial to 
evaluate four treatment 
strategies for non- 
critically ill hospitalized 
participants(not 
requiring ICU admission 
and/or mechanical 
ventilation)with SARS 
CoV-2 infection, in 
which participants will 
receive NA-831 or 
Atazanavir with or 
without 
Dexamethasone.   

[153]  

Indirect antiviral 
Hydroxychloroquine 

(HCQ) 
Hydroxychloroquine 
exhibits antiviral 
potency by inhibiting 
virus entry into host 
cells. The pathway can 
be related to post- 
translation alteration of 
newly synthesized 
proteins via 
glycosylation inhibition 

NCT04328285 HCQ 200 mg: 2 tablets 
on the evening of Day 1 
and 2 tablets on the 
morning at Day 2 and 1 
tablet once daily 
afterwards 

Placebo of HCQ, 2 
tablets on the evening 
on Day 1, and 2 tablets 
on the morning at Day 
2 and 1 tablet once 
daily afterwards. 

Randomized, double- 
blinded, placebo- 
controlled. Phase 3 
(France/ 600) 

In a placebo-controlled 
trial, lopinavir is being 
compared to 
hydroxychloroquine, 
which is used to treat 
malaria, rheumatoid 
arthritis, and lupus 
erythematosus, as a 
preventative treatment 
for COVID-19 in exposed 

0.72  [52,154] 

(continued on next page) 
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Table 1 (continued ) 

Drugs Mechanisms of Action/ 
Targets 

Some clinical features EC50 (µM) CC50 

(µM) 
References 

aClinical Trial 
ID 

Interventions Control Study Design (Phase/ 
Location /Enrolment No.) 

Summarized Outcomes 

health-care workers 
with the primary 
outcome being the 
occurrence of the 
infection 
(NCT04328285)  

Omacetaxine 
(Homoharringtonine) 

No clear mechanism of 
action recorded against 
SARS-CoV-2 but its 
actions in other viruses 
implicates ribosomal 
bond to prevent protein 
translation 

N/A N/A N/A N/A Clinical investigation is 
required to ascertain its 
mechanism of action 
and the ideal dose 
against SARS-Co-2 

2.10 59.75 [58,73,127]  

Emetine dihydrochloride Prevention of DNA and 
RNA replication in Vero 
E6 cells.  

A broad-spectrum 
antiviral drug with in 
vitro activity against 
MERS-CoV at an EC50 of 
0.34 µM 

Used in combination 
with Remdesivir and 
the nucleoside 
analogue GS-5734 to 
exhibit synergistic 
inhibitory effect 
against SARS-CoV-2 
replication  

Use for the treatment of 
generality of viral 
infection. 

0.50 (Reduction 
in viral RNA) 
0.46 (Reduction 
in infectious 
viruses) 

56.46 [58,155]  

Presatovir Inhibition of fusion 
intercellular mediated 
by the F protein 

NCT02135614   Randomize, double-blind, 
placebo-controlled studies 
Phase 2b clinical trial 

Used against the 
respiratory syncytial 
virus (RSV) resistance 
development and 
treatment   

[156]  

Chloroquine (CQ) Chloroquine as 
Hydroxychloroquine 
earlier described 
exhibits its antiviral 
potency equally by 
inhibiting virus entry 
into host cells. The 
pathway can be related 
to post-translation 
alteration of newly 
synthesized proteins via 
glycosylation inhibition 
Chloroquine is also 
proposed to inhibit the 
glycosylation of ACE2 
receptor chains, thus 
limiting ligand 
recognition of these 
receptors, rendering the 
viral spike protein 
unable to mediate cell 
entry. 

NCT04342650 CQ 450 mg twice daily 
(3 tablets of 150 mg, 
every 12 h) on day 1, 
followed by CQ 450 mg 
once daily (3 tablets of 
150 mg) from D2 to D5. 
Oral administration. 

150 mg placebo tablets 
(oral) 

Randomized completed 
(Brazil/152) 

The preliminary findings 
from the Clinical trial 
suggest that a higher 
dosage of CQ in COVID- 
19 should be carefully 
administered because of 
safety concerns 
regarding QTc 
prolongation and its 
potential safety hazards 

1.13 >100 [151,154,157,158]  

Antibiotics (combined therapies) 
Azithromycin NCT04329832 N/A 2.12  [53,86,158] 

(continued on next page) 
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Table 1 (continued ) 

Drugs Mechanisms of Action/ 
Targets 

Some clinical features EC50 (µM) CC50 

(µM) 
References 

aClinical Trial 
ID 

Interventions Control Study Design (Phase/ 
Location /Enrolment No.) 

Summarized Outcomes 

Azithromycin in 
combination therapy 
with 
hydroxychloroquine 
Inhibits endosomal 
acidification via early 
endosomal pathway 

Azithromycin 500 mg 
on day 1 plus 250 mg 
daily on days 2–5 
(maybe administered 
intravenously per 
clinician preference). If 
the patient has already 
received azithromycin 
before randomization 
(no more than 2 days), 
the prior doses will 
count toward the 5-day 
total. 

Randomized Phase 2 
(USA/85) 

A formalized protocol 
for trials with Bayesian 
statistical evidence 
approached currently 
ongoing. Statistical 
approach contributes to 
the network of meta- 
analyses of therapeutics 
of COVID-19  

Ivermectin The hypothesized 
mechanism of action is 
through inhibiting 
IMPα/β1-mediated 
nuclear import of viral 
proteins by dissociation 
of the heterodimer 
which is the same for 
other RNA viruses. 

NCT04343092 Ivermectin 12 mg 
/weekly) +
Hydroxychloroquine 
400 mg/daily +
azithromycin 500 mg 
daily (Ivermectin 0.2 
mg /kg (single dose at 
once = 2 tablets of 6 
mg/weekly) 

N/A Pilot Randomized 
completed (Iraq/100) 

This study showed that 
adding IVM to HCQ and 
AZT had a better cure 
rate and shorter time to 
stay in the hospital 
compared with controls 
but it was relatively safe 
without observable 
safety signals. results are 
needed to be validated 
in a larger prospective 
follow up study   

[104] 

Colchicine Microtubule 
polymerization 
inhibitor by binding 
with the beta-tubulin 
subunit to prevent it 
from assembling 
(Tubulin-colchicine 
complex). Also, it 
inhibits Monosodium 
urate (MSU), as well as 
the inhibitory effect on 
neutrophil functions. 

NCT04392141 Oral administration of 
Colchicine + Herbal 
Phenolic Monoterpene 
Fractions 

N/A Randomized Phase 2 
(Iran/200) 

No significant results yet 
but it’s an ongoing oral 
administration with 
some herbal phenolic 
monoterpene fractions 
will be added to 
standard treatment in 
patients with COVID-19.   

[159]  

Immuno-stimulants 
Transmembrane Protease 

Serine2 (TMPRSS2) 
inhibitor 

The inhibitors block 
viral activity by 
preventing TMPRSS2′s 
action on S protein 
processing (inhibit 
SARs-CoV-2 entry into 
the host cell). 

NCT04509999 Bicalutamide 150 mg 
oral tablet daily at 1:1 
randomization for up to 
4 weeks 

Standard of care and 
placebo 

Randomized Phase 3 
(USA/100) 

The study is an ongoing 
clinical trial that 
proposes to test 
bicalutamide at 150 mg 
oral daily dosing in a 
double-blind placebo- 
controlled randomized 
trial in male patients 
with early symptomatic 
COVID-19 disease   

[160]  

Interferon (IFNs) Type I and III IFNs are 
broad-spectrum 
antivirals both direct 

NCT04389645 IP-10 in CDS protocol. 
Dynamic IP-10 
measurements in 

N/A ObservationalCompleted 
(Israel/52) 

The longitudinal and 
real-time IP-10 
measurements could   

[161–163] 

(continued on next page) 
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Table 1 (continued ) 

Drugs Mechanisms of Action/ 
Targets 

Some clinical features EC50 (µM) CC50 

(µM) 
References 

aClinical Trial 
ID 

Interventions Control Study Design (Phase/ 
Location /Enrolment No.) 

Summarized Outcomes 

inhibitory effects on 
viral replication in the 
upper airway, reducing 
viral spread to the lungs 
and transmission, and 
supporting an immune 
response to clear virus 
infection. 

hospitalized COVID-19 
positive patients 

help with personalizing 
immunomodulatory 
treatment regimens for 
COVID-19 patients and 
may support better 
patient outcomes.  

Teicoplanin and other 
glycoprotein drugs 
(Dalbavancin, 
oritavancin, and 
telavancin) 

Teicoplanin exhibits 
antiviral activity in the 
early stage of the viral 
life cycle of viruses such 
as Ebola virus, MERS- 
CoV, and SARS-CoV via 
inhibition of the low-pH 
cleavage of the viral 
spike protein by host 
cell’s cathepsin L and 
cathepsin B in the late 
endosomes thereby 
preventing the release 
of viral RNA and 
replication. 

NCT04492501 Assessing efficacy and 
safety of standard 
treatment including 
steroids, Remedisvir, 
Tocilizumab, 
mesenchymal stem cell 
therapy therapeutic 
plasma exchange in 
addition to standard 
treatment as well in 
combination with 
convalescent Plasma 
with other 
investigational 
treatments inlined with 
standard treatment 
Operational Definitions 

Interventional 
retrospective case- 
control, single centre- 
based cohort study 

An open-label Phase II 
Non-randomized 
(Pakistan/600) 

Investigators will use 
different investigational 
treatment as mono or in 
combination to see 
mortality and morbidity 
benefit based on the 
limited evidence 
available so far. These 
investigational 
modalities include 
Therapeutic plasma 
exchange (TPE), 
Convalescent Plasma 
(CP), Remdesivir, 
Tocilizumab, and 
Mesenchymal stem cell 
(MSC) therapy in 
addition to standard 
supportive treatment. 

8.78 
concentration 
reached for a 
daily dose of 
400 mg which 
is higher than 
1.66 μM to 
inhibit 50% of 
viruses (IC50) 
in vitro  

[159,163] 

BID = twice in a day; TID = thrice in a day; IV = intravenous injection. 
EC50 = half-maximal Effective concentration; CC50 = half-maximal cytotoxic concentration; N/A = Not applicable. 

a Database of U.S. National Library of Medicine (clinicaltrials.gov).[161–163] 
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large cohort study especially on African-American SARS-CoV-2 male 
patients diagnosed with Diabetes mellitus and Asthma using their sputum 
cells, the result showed that there was a higher expression of ACE2 and 
TMPRSS2 in diabetics patients with lower expression of ACE2 and 
TMPRSS2 in asthmatic patients. This suggests further investigation into 
the effective regimen among people with diabetes and asthma COVID-19 
patients with effective monitoring including its role in the lung, renal, 
heart, and neurones of patients with SARS-CoV-2 [139–141]. Bestle 
et al. [142] found out that TMPRSS2, as well as FURIN protease enzymes 
which are abundant in the respiratory tract, could activate their surface 
glycoprotein and this suggests that they are potential drugs in the 
treatment of SARS-CoV-2. 

3.17. Interferon (IFNs) 

Interferon- a and b are naturally broad-spectrum antiviral active 
agents (Fig. 1j). The administration of IFNs can be used as prophylaxis as 
well as early therapy based on the principle of “supplement to 
compensate”. Type-1 IFNs suppress chronic hepatitis B and C viral in
fections. The antiviral effect of interferon b (IFN- b) is still unknown 
however, it has an immune-modulating activity of improving the con
ditions of marmosets infected with MERS-CoV [143,144]. To assess the 
efficacy of interferon on SARS-CoV-2, several reports have demonstrated 
the antiviral effect with lambda Interferon (IFN-γ), a Type III interferon 
sharing low homology with Type-1 IFNs and IL-10, which has shown 
more potency against a variety of viruses including SARS-CoV and 
MERS-CoV [145]. IFN-γ therapy was recently proposed to possess an 
antiviral immune-modulating activity for reducing viral load and hyper- 
inflammation; it also prevents mass tissue damage in the lung. Besides, a 
pegylated IFNb-γ which is readily in existence as the only therapeutic 
agent has also been shown to possess an effective safety profile in human 
[146]. 

4. Projection and human health risk 

It was noticed that there are different dosage regimens, drug com
bination trials, and skill-based experience treatment by clinicians on 
different patients with an underlying medical health history. This sug
gests complications in many developing and low-income countries with 
little or no quality standard health coverage in managing the post-SARS- 
CoV-2 health crisis. There is a need for more research and investigations 
into the lead drugs that could cure and manage the confirmed cases with 
the expectation of producing an effective and accessible vaccine to 
curtail the virus spread. Also, adequate monitoring of dosage regimen 
and drug combination, as well as ethical consideration, should be 

ensured while dealing with COVID-19 potential experimental drugs. 
Although, it is a pandemic situation, human rights to life including 
choice of drugs, allergy, pains and other difficult challenges and quality 
laboratory investigations before clinical trials should be considered. Safe 
health record-keeping, monitoring, toxicity check, dosage formulation, 
dug-drug interaction, mechanism of action, and side effect are para
mount especially as post-COVID health-related management is con
cerned. However, it was advised that couples should avoid pregnancy 
during the pandemic and in-vitro fertilization should be carefully 
examined to prevent the potential threat to developing embryos [147] in 
spite no evidence of SARS-CoV-2 virus in semen of males recovering 
from the novel coronavirus after 30 days of diagnosis [148]. This also 
suggests quality and adequate examination of new-born babies during 
this pandemic to ensure they are not carriers of the COVID-19 virus. 
Furthermore, unprotected sexual related activities should be cautioned 
while it is hoped there would be scientific investigations into the pro
tective measures during sexual intercourse. 

Governments and health organizations should continually ensure 
access to a clean environment, clean water, quality life, housing, and 
basic amenities to meet the Global Health Security Agenda (GHSA), 
which could help alleviate some potential human health risks, especially 
among developing countries. 

5. Conclusion and recommendations 

This review has highlighted reported curative antiviral drugs and 
broad-spectrum antibiotics (both traditional and orthodox) used in the 
treatment of SARS-CoV-2; their chemistry, botanical sources, and active 
components as well as possible clinical trials and safety information. 
However, there is still a need for continued investigation of herbal 
medicines and isolation of compounds that could completely inhibit the 
virus. A full understanding of their mechanisms of action which would 
help in drug development needs to be known. Further in-depth studies 
on vaccines and molecular investigations into potential RNA targets 
should be a crucial priority. Best practices for virus prevention which 
include observing personal hygiene, following health guidelines by a 
way of physical distancing, and social responsibility among people are 
important in alleviating the coronavirus spread. 

6. Funding* 

This review article did not receive any grant from funding agencies. 

Fig. 7. Cephalotaxus fortune, botanical source, and some isolated chemical compounds.  

J.A. Bolarin et al.                                                                                                                                                                                                                               



International Immunopharmacology 90 (2021) 107228

16

7. Authors’ contribution* 

All authors contributed equally and approved the final version of the 
manuscript. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

We acknowledge the painstaking efforts of the anonymous reviewers 
toward the enhanced improvement of this work. 

References 

[1] P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, 
C.-L. Huang, H.-D. Chen, J. Chen, Y. Luo, H. Guo, R.-D. Jiang, M.-Q. Liu, Y. Chen, 
X.-R. Shen, X.i. Wang, X.-S. Zheng, K. Zhao, Q.-J. Chen, F. Deng, L.-L. Liu, B. Yan, 
F.-X. Zhan, Y.-Y. Wang, G.-F. Xiao, Z.-L. Shi, A pneumonia outbreak associated 
with a new coronavirus of probable bat origin, Nature 579 (7798) (2020) 
270–273, https://doi.org/10.1038/s41586-020-2012-7. 

[2] World Health Organization. Coronavirus disease (COVID-2019) situation reports. 
Available from: https://www.who.int/emergencies/diseases/novel-coron 
avirus-2019/situation-reports 30th April 2020. 

[3] NHC,2020 [https://health.nhcgov.com/yourenvironment/publichealth/coronavi 
rus/nhc-coronavirus-news/]. 

[4] World Health Organization. Middle East respiratory syndrome coronavirus 
(MERS-CoV). Available from: https://www.who.int/newsroom/factsh 
eets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov) (Accessed 
2019). 

[5] R. Lu, X. Zhao, J. Li, P. Niu, B.o. Yang, H. Wu, W. Wang, H. Song, B. Huang, N. 
a. Zhu, Y. Bi, X. Ma, F. Zhan, L. Wang, T. Hu, H. Zhou, Z. Hu, W. Zhou, L.i. Zhao, 
J. Chen, Y. Meng, J.i. Wang, Y. Lin, J. Yuan, Z. Xie, J. Ma, W.J. Liu, D. Wang, 
W. Xu, E.C. Holmes, G.F. Gao, G. Wu, W. Chen, W. Shi, W. Tan, Genomic 
characterisation and epidemiology of 2019 novel coronavirus: implications for 
virus origins and receptor binding, The Lancet 395 (10224) (2020) 565–574, 
https://doi.org/10.1016/S0140-6736(20)30251-8. 

[6] A.E. Gorbalenya, S.C. Baker, R.S. Babic, R.J. de Groot, C. Drosten, A.A. Gulyaeva, 
et al., Severe acute respiratory syndrome-related coronavirus: the species and its 
viruses a statement of the Coronavirus Study Group, BioRxiv (2020), https://doi. 
org/10.1101/2020.02.07.937862. 

[7] L.M. Jarvis, Drug firms mobilize to combat the coronavirus outbreak, C&EN 98 
(2020) 5. 

[8] Nature News. Coronavirus latest: death toll passes 2,000. Available from: https 
://www.nature.com/articles/d41586-020-00154-w (accessed on 20th Feb 2020). 

[9] ChemDraw Ultra 9.0. CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 
02140. www. cambridgesoft.com. See Web site for pricing options. 

[10] NHC, 2020 [https://health.nhcgov.com/yourenvironment/publichealth/coro 
navirus/nhc-coronavirus-news/]. 

[11] M. Laguno, J. Murillas, J.L. Blanco, E. Martínez, R. Miquel, J.M. Sánchez-Tapias, 
X. Bargallo, A. García-Criado, E.d. Lazzari, M. Larrousse, A. León, M. Loncá, 
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