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Abstract
The pH-activated E/Z isomerization of a series of hydrazone-based systems having different functional groups as part of the rotor

(R = COMe, CN, Me, H), was studied. The switching efficiency of these systems was compared to that of a hydrazone-based mole-

cular switch (R = COOEt) whose E/Z isomerization is fully reversible. It was found that the nature of the R group is critical for effi-

cient switching to occur; the R group should be a moderate H-bond acceptor in order to (i) provide enough driving force for the

rotor to move upon protonation, and (ii) stabilize the obtained Z configuration, to achieve full conversion.
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Findings
Nature is full of elegant examples of perfectly designed bio-

logical motors and machines [1] that perform delicate and

precise tasks. Primitive as they may be, numerous artificial

molecular machines [2-6] have been developed that strive to

mimic their biological counterparts as far as function is

concerned. As part of these efforts, a variety of molecular

systems have been developed that can perform different types

of motion (e.g., translation, rotation) in response to chemical

[7-9], electrochemical [10-13], and photochemical stimuli [14-

18]. One of the benefits of artificial molecular switches and

machines is that their output can be controlled or fine-tuned by

altering their components [19-21]. A relevant example in this

context is Feringa’s overcrowded alkene-based light-driven

rotary switches that can be induced to rotate at different rates by

replacing a naphthyl group in the upper-half of the molecule

(i.e., the rotor) with a less sterically hindered benzothiophenyl

group [20].

Previously, we have shown that hydrazone-based rotary

switches can change their configuration (i.e., E/Z isomerization)

as a function of pH [22-24], or upon the addition of a Lewis

acid (i.e., Zn2+) [25]. The simplest hydrazone switch (PPH-1,

Scheme 1) for example, exists mainly as its E isomer (PPH-1-

E) in solution, as illustrated by the E/Z isomer ratio of 93:7 in

CD3CN. Protonation of PPH-1-E with acid results in an inter-

mediate PPH-1-E-H+ ,  which quickly isomerizes to
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Scheme 1: The acid-activated switching process of PPH-1.

Scheme 2: The hydrazone-based molecular systems that were analysed in this paper, each having different rotors. The stable isomer(s) in solution
and their protonation products are shown.

PPH-1-Z-H+, which is the more stable isomer. During this

process, an E/Z isomerization takes place, which can be fully

reversed by the addition of base to the solution.

In order to fine tune the properties of the hydrazone switches,

we studied the effect of different R groups in the rotor part

(Scheme 2) on the switching cycle. The target hydrazones were
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synthesized either by the direct condensation of phenyl-

hydrazine with the corresponding aldehyde (PPH-2) or ketone

(PPH-3), or by Japp–Klingemann reaction (PPH-4, PPH-5)

[26]. The NMR spectroscopy and mass spectrometry characteri-

zations show results consistent with the previously reported data

[26].

In certain cases it has been shown that intramolecularly

H-bonded hydrazones exist predominantly as the kinetically

stable Z isomer in solution [27-29]. We were expecting that the

intramolecular H-bonds in PPH-2 and PPH-3 would drive them

to adopt the Z configuration in solution as well, leading to a

low-field-lying NH signal (12–16 ppm) [22-24]. However, this

is not the case with PPH-2. The hydrazone N–H proton in

PPH-2 resonates at 8.95 ppm, which clearly shows that it is not

H-bonded to the pyridyl nitrogen, indicating that the E configur-

ation is the predominant isomer in solution (CD3CN). The addi-

tion of trifluoroacetic acid (TFA) only results in a general

downfield shift of the aromatic and the hydrazone N–H proton

signals as a result of protonation, which reaches saturation with

3 equiv of TFA. Unlike in PPH-1, signals from other species

are not observed during the course of protonation, suggesting

that the protonation of PPH-2 with TFA is a fast equilibrium,

and that, as expected, it does not cause any isomerization.

Similar to PPH-2, the 1H NMR spectrum of PPH-3 shows a

signal for the hydrazone N–H proton at 8.24 ppm indicating that

it too is in the E configuration. The protonation of PPH-3 with

TFA is a fast equilibrium as well, without any indication of

rotary motion (i.e., isomerization).

On the other hand, PPH-4, in which R is a strong electron-with-

drawing group (–CN) shows two sets of signals in the 1H NMR

spectrum (CD3CN), indicating that two isomers, having a 4:1

ratio, coexist in solution. The major isomer shows a hydrazone

N–H signal at 9.60 ppm, indicating that it is the Z isomer, in

which an intramolecular H-bond is not present. On the other

hand, the hydrazone N–H signal of the minor isomer resonates

at 15.12 ppm, which is characteristic of H-bonded N–H signals,

suggesting that the minor isomer is actually the E configuration.

Such an unusual E/Z isomer ratio was reported before for

similar systems, and it was attributed to kinetic stability of the Z

isomer, in addition to solvent effects [27-29]. The titration of

PPH-4 with TFA only affects the major isomer (Z), while the

minor isomer (E) remains intact even in the presence of

10 equiv of TFA. The changes in the 1H NMR spectrum of

PPH-4-Z are similar to those of PPH-2 and PPH-3, except for

the fact that it requires an excess of TFA (ca. 10 equiv) for the

protonation to reach saturation. This observation can be attrib-

uted to the strong electron-withdrawing nature of the CN group,

which drastically decreases the basicity of the pyridyl nitrogen.

Furthermore, since the pyridyl nitrogen in PPH-4-E is

H-bonded to the hydrazone N–H, the basicity of PPH-4-E

becomes even lower, which explains why PPH-4-E does not

become protonated even in the presence of 10 equiv of TFA.

Structurally, PPH-5 is the closest to PPH-1, that is, instead of

an acyl ester group, PPH-5 has an acetyl residue as the R group.

The 1H NMR spectrum of PPH-5 in CD3CN shows only one

set of signals, and a sharp singlet at 14.54 ppm for the hydra-

zone N–H proton, indicating that it is H-bonded to the pyridyl

nitrogen. Since the acetyl group is a less effective H-bond

acceptor than ethyl ester, it is reasonable that PPH-5 exists

exclusively in the E form in solution. When TFA is added to the

solution, a second set of signals arises, which grows as the

amount of acid increases. The protonation of the pyridyl ring

results in the downfield shift of the aromatic signals, except for

proton H1, which shifts from 8.92 to 8.70 ppm as it is no longer

affected by the H-bond [22-24]. Moreover, the hydrazone N–H

signal shifts to a higher field (13.22 ppm) in congruence with

what is observed in PPH-1 [24]. These changes are consistent

with those observed during the acid-activated switching of

PPH-1, suggesting that PPH-5 switches from the E to the Z

configuration upon protonation. However, the switching process

of PPH-5 is relatively inefficient as there is still ca. 44% of

PPH-5-E remaining in solution even when 30 equiv of TFA is

added.

In order to rationalize the different behaviour of the structurally

similar switches, PPH-1 and PPH-5, a quantitative evaluation

of the thermodynamic process is necessary. Taking a look at the

acid-activated switching process of PPH-1 (Scheme 1), we can

formulate the following equations for the acid-induced E/Z

isomerization:

(1)

(2)

(3)

where KP is the equilibrium constant of the protonation step, KI

is the equilibrium constant for the rotation process, and KS is

the overall equilibrium constant for the switching reaction. The

pKa of PPH-1 is actually log10KP, so KS also equals

. From the above equations, it becomes clear

that KS can be used as an index to evaluate the feasibility of the
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switching process in hydrazone-based switches; the larger the

KS value, the easier the switching process. In the case of PPH-1

versus PPH-5, since the acetyl group is a stronger electron-

withdrawing group than the ester group, the basicity (pKa) of

the pyridyl group in PPH-1 will be higher than in PPH-5.

Moreover, the ester group is a better H-bond acceptor than the

acetyl group, which means that the protonated Z configuration

of PPH-1 is more stable than that of PPH-5, resulting in a

larger KI for PPH-1. Thus, it can be qualitatively deduced that

PPH-1 has a larger KS than PPH-5, suggesting that PPH-1 is a

more ideal system to be used as a molecular switch. This

analysis is clearly in line with the acid switching experiments

that show that PPH-1 can be fully switched, whereas PPH-5

cannot.

Conclusion
In summary, we have synthesized four hydrazone-based

systems having different R groups as part of the rotor section.

The role of the R group was assessed vis-à-vis the switching of

the system, and it was found that for the switch to operate effec-

tively it is crucial that (1) the R group be able to offer a second

H-bond-accepting site in order to provide enough driving force

for the rotor to move; and (2) the R group be a moderate

H-bond acceptor, otherwise the isomer generated will not be

stable enough to enable full conversion (isomerization).

Supporting Information
Supporting Information File 1
Experimental section and acid titration of the hydrazone

compounds.
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