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Abstract

The performance of information processing systems, from artificial neural networks to natural neuronal ensembles, depends
heavily on the underlying system architecture. In this study, we compare the performance of parallel and layered network
architectures during sequential tasks that require both acquisition and retention of information, thereby identifying
tradeoffs between learning and memory processes. During the task of supervised, sequential function approximation,
networks produce and adapt representations of external information. Performance is evaluated by statistically analyzing the
error in these representations while varying the initial network state, the structure of the external information, and the time
given to learn the information. We link performance to complexity in network architecture by characterizing local error
landscape curvature. We find that variations in error landscape structure give rise to tradeoffs in performance; these include
the ability of the network to maximize accuracy versus minimize inaccuracy and produce specific versus generalizable
representations of information. Parallel networks generate smooth error landscapes with deep, narrow minima, enabling
them to find highly specific representations given sufficient time. While accurate, however, these representations are
difficult to generalize. In contrast, layered networks generate rough error landscapes with a variety of local minima, allowing
them to quickly find coarse representations. Although less accurate, these representations are easily adaptable. The
presence of measurable performance tradeoffs in both layered and parallel networks has implications for understanding the
behavior of a wide variety of natural and artificial learning systems.
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Introduction

Learning, the assimilation of new information, and memory, the

retention of old information, are competing processes; the first

requires flexibility and the second stability in the presence of

external stimuli. Varying structural complexity could uncover

tradeoffs between flexibility and stability, particularly when

comparing the functional performance of structurally distinct

learning systems. We use neural networks as model learning

systems to explore these tradeoffs in system architectures inspired

by both biology and computer science, considering layered

structures like those found in cortical lamina [1] and parallel

structures such as those used for clustering [2], image processing

[3], and forecasting [4]. We find inherent tradeoffs in network

performance, most notably between acquisition versus retention of

information and between the ability of the network to maximize

success versus minimize failure during sequential learning and

memory tasks. Identifying tradeoffs in performance that arise from

complexity in architecture is crucial for understanding the

relationship between structure and function in both natural and

artificial learning systems.

Natural neuronal systems display a complex combination of

serial and parallel [5] structural motifs which enable the

performance of disparate functions [6–9]. For example, layered

[1] and hierarchical [10] architectures theoretically important for

sustained limited activity [11] have been consistently identified

over a range of spatial scales in primate cortical systems [12].

Neurons themselves are organized into layers, or ‘‘lamina,’’ and

both intra-laminar [13] and inter-laminar [14] connectivity

differentially impact function. Similarly, information processing

systems developed by technological innovation rather than natural

evolution have structures designed to match their functionality.

For example, the topological complexity of very large integrated

circuits scales with the function to be performed [15]. Likewise, the

internal structure of artificial neural networks can be carefully

constructed [16] to enable these systems to learn a variety of

complex relationships. While parallel, rather than serial, structures

are appealing in artificial neural networks because of their

efficiency and speed, variations in structure may provide

additional benefits or drawbacks during the performance of

sequential tasks.

The dependence of functional performance on structural

architecture can be systematically examined within the framework

of neural networks, where the complexity of both the network

architecture and the external information can be precisely varied.

In this study, we evaluate the representations of information

produced by feedforward neural networks during supervised,

sequential tasks that require both acquisition and retention of

information. Our approach is quite different from studies in which

large, dense networks are given an extended period of time to
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produce highly accurate representations of information (e.g.

[17,18]). Instead, we investigate the links between structure and

function by performing a statistical analysis of the error in the

representations produced by small networks during short training

sessions, thereby identifying mechanisms that underlie tradeoffs in

performance. Our work therefore has important implications for

understanding the behavior of larger, more complicated systems in

which statistical studies of performance would be impossible.

In the remainder of the paper, we discuss the extent to which

network architectures differ in their ability to both learn and

retain information. We first describe the network model and

architectures considered in this study. We then quantify the best,

worst, and average performance achieved by each network

during sequential tasks that vary in both their duration and

complexity. We consider the adaptability of these networks to

variable initial states, thereby probing the structure of functional

error landscapes. Finally, we explore how landscape variations

that arise from structural complexity lead to differences in

performance.

Models

Sequential Learning Approach
Our approach differs from traditional machine learning studies

in that our goal is not to design the optimal network system for

performing a specific task. Rather, we identify tradeoffs in network

performance across a range of architectures that share a common

algorithmic framework. In this context, the term ‘‘architecture’’

refers specifically to the structural organization of network

connections and not, as is found in engineering studies, to the

broader set of constraints governing the interactions of network

components.

In evaluating network performance, we use techniques relevant

to both artificial and biological systems. Artificial network systems

often favor high accuracy and consistency during a single task,

regardless of the time required to achieve such a solution. In

biological systems, however, speed and generalizability are often

more important that absolute accuracy when dynamically

adapting to a variety of tasks. To probe features such as network

accuracy, consistency, speed, and adaptability, we examine the

representations of information produced by neural networks

during competing learning and memory tasks.

We choose to study learning and memory within the biologically-

motivated framework of feedforward, backpropagation (FFBP)

artificial neural networks that perform the task of supervised, one-

dimensional function approximation. The training process, which

consists of adjusting internal connection strengths to minimize the

network error on a set of external data points, can be mapped to

motion within a continuous error landscape. Within this context,

‘‘learning’’ refers to the ability of the network to successfully

navigate this landscape and produce an accurate functional

representation of a set of data points, while ‘‘memory’’ refers to

the ability to store a representation of previously-learned informa-

tion. Additional details of this framework are described in the

following subsection.

To simultaneously study learning and memory processes,

information must be presented to the network sequentially.

‘‘Catastrophic forgetting,’’ in which a network learns new

information at the cost of forgetting old information, is a

longstanding problem in sequential training of neural networks

and has been addressed with several types of rehearsal methods

[19–21]. Standard rehearsal involves training the network with

both the original and new information during sequential training

sessions. We use a more biologically motivated approach, the

pseudorehearsal method [22], in which the network trains with a

representation of the original information. Pseudorehearsal has been

shown to prevent catastrophic forgetting in both feedforward and

recurrent networks and does not require extensive storage of

examples [22,23].

In training FFBP networks, local minima and plateaus within

the error landscape can prevent the network from finding a global

optimum [24,25]. While considered disadvantageous in machine

learning studies, the existence of local minima may provide

benefits during the training process, particularly in biological

systems for which highly accurate global optimums may be

unnecessary or undesirable. Additionally, FFBP networks can

suffer from overfitting, a problem in which the creation of highly

specific representations of information hinders the ability of the

network to generalize to new situations [26]. While also

considered disadvantageous, failure to generalize has important

biological consequences and has been linked to neurological

development disorders such as Autism [27]. Instead of attempting

to eliminate these sensitivities, we seek to understand the

architectural basis for differences in landscape features and

examine their impact on representational capabilities such as

specificity and generalizability.

Neural Network Model
The construction of our network model is consistent with

standard FFBP neural network models [26]. We consider the five

distinct architectures shown in Figure 1(a), all of which obey

identical training rules. Each network has 12 hidden nodes

arranged into h layers of ‘ nodes per layer. Nodes in adjacent

layers are connected via variable, unidirectional weights. The

‘‘fan’’ and ‘‘stacked’’ networks are both fully connected and have

the same total number of connections. The connectivities of the

‘‘intermediate’’ networks, which have slightly greater numbers of

connections, were chosen in order to roughly maintain the same

total number of adjustable parameters per network, Np, noted in

Figure 1(a).

Each node has a sigmoid transfer function s(x)~1=(1ze({x))
with a variable threshold h. The output y of each node is

a function of the weighted sum of its inputs xp, given by

y~s(
P

p~1 vpxp{h), where vp gives the weight of the pth input

Author Summary

Information processing systems, such as natural biological
networks and artificial computational networks, exhibit a
strong interdependence between structural organization
and functional performance. However, the extent to which
variations in structure impact performance is not well
understood, particularly in systems whose functionality
must be simultaneously flexible and stable. By statistically
analyzing the behavior of network systems during flexible
learning and stable memory processes, we quantify the
impact of structural variations on the ability of the network
to learn, modify, and retain representations of information.
Across a range of architectures drawn from both natural
and artificial systems, we show that these networks face
tradeoffs between the ability to learn and retain informa-
tion, and the observed behavior varies depending on the
initial network state and the time given to process
information. Furthermore, we analyze the difficulty with
which different network architectures produce accurate
versus generalizable representations of information, there-
by identifying the structural mechanisms that give rise to
functional tradeoffs between learning and memory.
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connection. Representing the threshold as h~v0x0, where x0~1
for all nodes, allows us to organize all adjustable parameters into a

single, Np-dimensional weight vector ~vv.

During training, each network is presented with a training

pattern of Nd pairs of input xd and target yd values, denoted (~xx,~yy).
We restrict the input x space to the range (0,1), and the sigmoid

transfer function restricts the output y space to the range (0,1).
The set of variable weights ~vv is iteratively updated via the Polak-

Ribiere conjugate gradient descent method with an adaptive step

size [28–30] in order to minimize the output error E(~vv). We use

online training, for which E(~vv) is the sum of squared errors

between the network output y(~vv) and target output y calculated

after all Nd points are presented to the network:

E(~vv)~
1

2

XNd

d~1

yd (~vv){ydð Þ2: ð1Þ

Task Implementation
Each network shown in Figure 1(a) is trained over two sequential

sessions. In describing parameter choices for each training session, we

use U(a,b) to denote a continuous uniform probability distribution

Figure 1. Network architectures and training task. (a) Network architectures considered in this study. Indicated below each network are the
number of hidden layers h and nodes per layer ‘, the total number of adjustable parameters Np , and the name by which we refer to the network. (b)
Illustration of the sequential learning task described in the text applied to the fan network. Each step of the task includes a concise description of the
procedure and the choice of network weights and training data.
doi:10.1371/journal.pcbi.1002063.g001
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over the interval (a,b). The steps of the sequential training process are

shown schematically in Figure 1(b) and are described below:

First Training Session
Step 1.1 - Initialize. Network weights are randomly chosen

from U({5,5). We refer to this state of the network as the

‘‘randomly initialized state’’.

Step 1.2 - Train. The network trains on six ‘‘original’’ points

(~xx(o),~yy(o)) whose values remain fixed for all simulations. The

original points are chosen to be evenly spaced in x (~xx(o)~(:1,
:26,:42,:58,:74,:9)) and random in y (~yy(o)~(:55,:92,:53,:78,:33,
:49)). Similar behavior is observed for different choices, including

permutations, of the specific values used here (see Figure S3). The

original points represent the information we wish the network to

remember during subsequent training. The network is given 105

iterations to generate a functional representation fo of (~xx(o),~yy(o))
(see second panel of Figure 1(b) and Figures 2(a) and 2(b)), and

training ceases if the error plateaus (DEv10{5 for 1000

iterations). We refer to this situation as allowing ‘‘unlimited’’

training time because in practice, the network finds a solution

before reaching the maximum number of iterations.

Second Training Session
Step 2.1 - Sample. The set of weights that produce fo forms

the starting point for the second training session. We refer to this

state of the network as the ‘‘sampled state’’ in order to distinguish

it from the randomly initialized state chosen prior to the first

training session. In this state, the network randomly samples a pool

of 1000 buffer points (x(b),y(b)) from fo (see third panel of

Figure 1(b)). This is accomplished by (i) randomly choosing input

x(b) values from U(0,1) and (ii) computing the corresponding

output yb~fo(x(b)) values using the set of network weights that

produce fo. Subsets of buffer points, which lie along the functional

representation fo of the original points, are used in the following

step to simulate memory rehearsal.

Step 2.2 - Re-train. The network re-trains on six new points

(~xx(n),~yy(n)) and six buffer points (~xx(b),~yy(b)) (see fourth panel of

Figure 1(b)). New points are chosen by randomly selecting six

independent x(n) and y(n) values from U(0,1). Buffer points are

chosen by randomly selecting, with uniform probability, six

(x(b),y(b)) pairs from the pool of the buffer points generated in

Step 2.1. Training on the same number of new and buffer points

places equal emphasis on learning and memory rehearsal. Because

the new points are randomly chosen and poorly constrained, we

repeat the second training session 1000 times to generate a

distribution of solutions ffng (see Figures 2(a) and 2(b)). Both the

new and buffer points vary from session to session, but the buffer

points are always sampled from the same original function fo. We

restrict the training time of each session to 500 iterations, thereby

giving the network ‘‘limited’’ time to learn.

Figure 2. Network solutions and error distributions. Panels (a) and (b) show solutions produced respectively by the fan and stacked
networks, indicating for each network the approximation fo (solid curve) of the original points (point markers) and a subset of approximations
ffng (dashed curves) of the new and buffer points. In this realization, the fan network fits the original points with a high order polynomial,
while the stacked network produces a largely linear fit. Subsequent approximations ffng retain these features of fo . Panels (c) and (d)
respectively show the CDFs of fE(o)

n g and fE(n)
n g, with the average value of each distribution marked by a filled circle. (c) The fan network

achieves a lower minimum but higher maximum error on the original points than does the stacked network, resulting in a wider distribution
with a higher average error. (d) Both networks produce low minimum errors on the new points, but the fan network again produces higher
average and maximum errors than does the stacked network. These results are qualitatively similar given larger networks (Figure S1) and
different sets of original points (Figure S3).
doi:10.1371/journal.pcbi.1002063.g002
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Notation. We use the super and subscripts ‘‘o’’ and ‘‘n’’ to

refer respectively to the ‘‘original’’ and ‘‘new’’ points, (~xx(o),~yy(o))
and (~xx(n),~yy(n)), and functional approximations, fo and fn. Each

function fo produces a single error value E(o)
o measured with

respect to (~xx(o),~yy(o)). Each set of functions ffng produces two sets

of error values, fE(o)
n g and fE(n)

n g, measured with respect to

(~xx(o),~yy(o)) and (~xx(n),~yy(n)), respectively.

Results

Tradeoffs in Learning and Memory Tasks
We train the five networks shown in Figure 1(a), first considering

the differences between the boundary fan (parallel) and stacked

(layered) networks. Given the large number of adjustable

parameters Np relative to the small number of training points

Nd , we expect all five networks to fit the points with high accuracy.

Instead, the networks show significant differences in performance

both within individual training sessions and measured statistically

over many sessions. These results, discussed in detail below, show

the same qualitative features for larger networks (Figures S1 and

S2) and for different sets of original points (Figures S3 and S4).

Fan and stacked architectures. Examples of the solutions

fo and ffng produced by the fan and stacked networks are shown

in Figures 2(a) and 2(b). Each set ffng is characterized by errors

fE(o)
n g and fE(n)

n g, which measure the ability of the network to

retain and learn information, respectively. The cumulative

distribution functions (CDFs) of these errors are shown in

Figures 2(c) and 2(d), where the CDF gives the probability that

the network produces an error greater than E for any value of E.

The fan and stacked networks produce qualitatively different

types of solutions fo and ffng. While the specific functional form of

fo depends on the randomly initialized network state (see the

following section), the fo solutions shown here have errors that are

representative of the average network performance over a range of

randomly initialized states. The stacked solution fo averages over

the variation in the original points (Figure 2(b)). In contrast, the fan

solution fo accurately fits all six original points with a high order

polynomial (Figure 2(a)). In both networks, subsequent solutions

ffng retain the features of fo. Because the sigmoid transfer function

(see Methods) is identical for all nodes, the differences between the

fan and stacked solutions arise solely from variations in network

architecture. As the sigmoid function maps an infinite input space

to a finite output space bounded between 0 and 1, successive

applications of sigmoids produced by serial (stacked) computations

tend to result in linear or step function outputs, while a sum of

sigmoids produced by parallel (fan) computations tends to result in

highly variable outputs.

The interference between the two training sessions results in the

deviation of ffng from fo, which tends to increase fE(o)
n g relative to

E(o)
o . We find that in its best case, the stacked network shows no

deviation in fE(o)
n g from E(o)

o . In contrast, the fan network shows a

minimum deviation of 130% and a higher deviation on average

compared to the stacked network. This deviation measures the

ability of the network to retain the original representation fo,

regardless of how erroneous that representation may be. Although

the stacked network generates a higher error representation of the

original points during the first training session, it can more

accurately retain this representation when presented with new

points.

The minimum and maximum values of fE(o)
n g measure the best

success and worst failure of the network in retaining old

information while avoiding interference from new information.

While the bounded output space limits the maximum error, linear

solutions tend to further restrict these bounds. As a result, the

stacked network has a lower maximum error at the cost of having

a higher minimum error, as shown in Figure 2(c). In contrast, the

fan network can retain the original information more accurately

by achieving a lower minimum error, but it can also fail more

catastrophically with a higher maximum error.

Similar features are observed in the distributions of fE(n)
n g

shown in Figure 2(d). The minimum and maximum values of

fE(n)
n g measure the best success and worst failure of the network in

learning new information while attempting to retain old

information. While both networks achieve low minimum error

at their best, the fan network produces a much larger maximum

error than does the stacked network. In addition to achieving more

extreme best and worst cases, the fan network also has higher

average error values SfE(o)
n gT and SfE(n)

n gT.

Intermediate architectures: Tradeoffs in learning and

memory. We extend this analysis to the intermediate architec-

ftures shown in Figure 1(a), organizing the results based on the

degree of network serialization h=‘ (a purely geometrical factor).

Tradeoffs in performance are observed across the range of

architectures. For example, in Figure 3(a), we see a tradeoff

between the minimum and maximum values of fE(o)
n g. As h=‘

increases, the network does not fail as badly in its worst case but

also does not succeed as well in its best case. Figure 3(b) shows that

increasing h=‘ decreases the maximum error in both fE(o)
n g and

fE(n)
n g, indicating that the stacked architecture is best suited for

minimizing failure in both learning and memory. Figure 3(c) shows

that increasing h=‘ decreases both the average solution variance

Sf(Dfn)2gT and the average errors SfE(n)
n gT and SfE(o)

n gT. While

we might naively expect that high solution variance (fan) would

indicate a flexible network able to accurately fit nonlinear data, we

instead find that high variance leads to high average error. In

contrast, low variance, linear solutions (stacked) tend to minimize

average error.

Furthermore, we find a tradeoff in performance between the

first and second sessions, shown in Figure 3(d). Increasing h=‘

worsens performance during the first session by increasing E(o)
o but

improves average performance during the second session by

decreasing both SfE(n)
n gT and SfE(o)

n gT, suggesting a tradeoff

between the accuracy and generalizability of network solutions.

The fan network, which produces a very accurate, specific

representation of the original points, shows a much higher average

error when it tries to generalize this representation. In contrast, the

coarser representation produced by the stacked network is better

able to incorporate new information.

Adaptation to Variable Learning Conditions
Both natural and artificial systems can be found in a variety of

states when presented with new information. The success in

learning this information may depend both on the initial state of

the system and on the learning conditions. We explore these

possible dependencies by varying both the randomly initialized

network state and the training conditions.

Variable initialized states. Because the conjugate gradient

descent algorithm (see Methods) is deterministic, the randomly

initialized state determines fo, which then influences subsequent

solutions ffng.
To study the influence of random initialization on fo, we train

all five networks on the original points with 500 sets of randomly

chosen weights, allowing ‘‘unlimited’’ training time. Each network

produces a set of 500 functions ffog with error values fE(o)
o g.

The CDF of fE(o)
o g, shown in Figure 4(a), reveals that the fan

network consistently finds zero error solutions, while all other

networks find solutions with a wide range of error values. The

networks can collectively produce both zero error and high error

Learning and Memory in Neural Networks
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solutions and do so with probabilities that respectively decrease

and increase as h=‘ increases. The discontinuities in the stacked

error distribution may indicate that the error landscape is

composed of localized sets of minima with distinct depths. In

comparison, the intermediate distributions show greater continuity

in error, suggesting the presence of a larger number of connected

minima with variable depths.

The distributions are more heavily weighted toward high error

as h=‘ increases, thereby increasing the average error SfE(o)
o gT.

For a given architecture, the average number of training iterations

decreases with increasing solution error, indicating an inherent

tradeoff between speed and accuracy. While able to produce

solutions with the same degree of accuracy as the fan network, the

intermediate and stacked networks can also quickly produce coarse

solutions. However, the intermediate networks require fewer

iterations than the stacked network to reach solutions of similar

error, suggesting that the presence of additional connections may

facilitate faster performance.

If we inspect the solutions produced by each network, we find

that low, medium, and high error solutions correspond respec-

tively to fitting all, some, or none of the points with a high order

polynomial and fitting the remaining points with a horizontal line.

Figure 4. Network performance under variable learning conditions. CDFs of fE(o)
o g are shown given (a) unlimited and (b) limited training

time for the five networks shown in Figure 1(a). (a) The fan network consistently finds zero error solutions, while all other networks find solutions with
a range of error values. (b) Intermediate networks find lower error solutions than do the fan and stacked networks (upper inset). Increasing h=‘
significantly decreases the both the maximum error and the frequency of high error solutions (lower inset). In both (a) and (b), increasing h=‘
increases SfE(o)

o gT (filled circles).
doi:10.1371/journal.pcbi.1002063.g004

Figure 3. Tradeoffs in network learning and memory. Best, worst, and average network performance is measured with respect to solutions fo

and ffng produced by the five networks shown in Figure 1(a). With respect to solutions ffng produced during the second training session, increasing
h=‘ (a) decreases the maximum value of fE(o)

n g at the cost of increasing its minimum value, (b) decreases the maximum error in both fE(n)
n g and

fE(o)
n g, and (c) decreases the average solution variance Sf(Dfn)2gT and the average errors SfE(n)

n gT and SfE(o)
n gT. (d) Increasing h=‘ increases E(o)

o

achieved during the first session but decreases SfE(n)
n gT and SfE(o)

n gT achieved during the second session. These results are qualitatively similar
given larger networks (Figure S2) and different sets of original points (Figure S4).
doi:10.1371/journal.pcbi.1002063.g003
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To emphasize differences in network performance, the solutions fo

used to generate the results shown in Figures 2 and 3 were chosen

because their error was representative of the distribution averages

shown in Figure 4(a).

Temporal constraints. In natural systems, the time allowed

to gather information from the environment is often limited,

and a highly specific representation of information may not be

desirable or even attainable. To investigate the effect of temporal

constraints, we train the five networks on the original points with

5000 sets of randomly chosen weights, now terminating training

after 100 iterations. The increased number of randomly initialized

states allows us to better resolve the edges of the error distributions

shown in Figure 4(b).

Once training time is limited, all distributions shift toward

higher error values, again revealing a tradeoff between speed

and accuracy. As before, SfE(o)
o gT increases as h=‘ increases.

Discontinuities in the distributions are also removed, indicating

that the networks do not have sufficient time to consistently find

distinct sets of minima.

The dynamic range of performance decreases as h=‘ increases,

resulting in significant differences between the edges of each

distribution. At the rightmost edge, both the frequency of high

error solutions and the maximum error value increase as h=‘
increases. The stacked network shows an abrupt cutoff near the

minimum error achieved by fitting the original points with a

horizontal line. All other distributions extend beyond this value. In

contrast to the case of unlimited training time, the fan network

shows the least consistency in performance and produces several

catastrophic errors, thereby revealing the greatest sensitivity to

changes in training time. At the leftmost edge of the distributions,

the intermediate networks find lower minimum error values than

do the fan and stacked networks. This is similar to the behavior

observed with unlimited training time, where the intermediate

networks found comparable solutions to the fan and stacked

extremes in fewer iterations. It may therefore be interesting in the

future to verify the dependence of performance on the number of

network connections.

Dependence on Error Landscape Structure
Given unlimited training time, the distributions in Figure 4(a)

mark the error of local minima found within the error landscape of

each network. Each minimum can be characterized by the degree

of local landscape curvature, where directions of high curvature

specify combinations of weight adjustments that produce large

changes in error. We adopt the terminology used in previous

studies and refer to directions with high and low curvature as stiff

and sloppy, respectively [31,32]. Stiff and sloppy directions are

found by diagonalizing the error Hessian Hpq~L2E=LvpLvq

evaluated at the set of weights that produces the local error

minimum. For computational efficiency, we use the approximate

Levenberg-Marquardt (LM) Hessian [33], defined as:

L2E

LvpLvq

&
XND

d~1

Lr
(o)
d

Lvp

Lr
(o)
d

Lvq

, ð2Þ

where r
(o)
d ~(yd (~vv){y

(o)
d ) is the residual of the dth original point.

The LM Hessian is a good approximation to H when the error

of local minima, and thus the residual r
(o)
d , is small and the

additional Hessian term r
(o)
d L2r

(o)
d =LvpLvq can be neglected. For a

given model and data set, the LM Hessian agrees well with the

stiffest eigenvectors of H and is equivalent to H when the model

perfectly fits the data. In addition, it has a known number of

exactly zero eigenvalues equal to the difference in the number of

model parameters Np and the number of data points Nd [31,32].

We diagonalize the LM Hessian about each of the 500 minima

with the error values fE(o)
o g shown in Figure 4(a). Each error

minimum produces a set of Np eigenvalues l and normalized

eigenvectors~jj, which give the degrees and directions of stiffness in

weight space.

As an illustrative example of landscape features observed along

these relevant directions, Figures 5(a) and 5(b) show the projection

of the error landscape onto the two stiffest eigenvector directions
~jj(1) and ~jj(2) centered on zero error minima produced by the fan

and stacked networks, respectively.

The fan landscape shows a single deep basin surrounded by

smoothly varying peaks. In contrast, the stacked landscape is

rugged, showing a deep valley with several minima separated by

small barriers. While these minima appear to be distinct, they may

be connected by higher dimensional pathways that cannot be seen

in this reduced space.

Participation of network connections. The ability of a

network to move along relevant eigenvector directions may depend

on the number of weights that must be significantly adjusted, or

equivalently the localization of eigenvector components. To quantify

the degree of localization of the pth eigenvector ~jj(p), we calculate

its participation ratio r(p)~
P

q (j(p)
q )4 [34], where individual

eigenvector components j(p)
q correspond to specific weights vq in

the network. r(p) is a dimensionless quantity that ranges between a

completely delocalized minimum of 1=NP, for which all components

have equal weight 1=
ffiffiffiffiffiffiffi
NP

p
, and a completely localized maximum of

1, for which a single component carries unit weight.

For the set of minima with error values fE(o)
o g, we quantify

fr(1)g and fl(1)g of the stiffest eigenvectors f~jj(1)g, as combina-

tions of weight changes specified by these eigenvector direc-

tions produce the largest changes in error. The covariances

CE,r~Cov(E(o)
o ,r(1)) and CE,l~Cov(E(o)

o ,l(1)) in these quantities

are shown by the ellipses centered about their average values in

Figures 6(a) and 6(b), respectively.

Figure 6 highlights the variability in basin structure within and

between the networks. As h=‘ increases, both the average and

variance in fE(o)
o g, fr(1)g, and fl(1)g increase. Higher variance

leads to lower confidence in predicting the success of the network,

but it also suggests that the network has more options when

exploring its error landscape.

The orientations of the covariance ellipses in Figures 6(a) and

6(b) provide information regarding the relationships between E(o)
o ,

r(1), and l(1). The semi-major axis of each CE,r ellipse in

Figure 6(a) lies along the trend swept out by the average values of

fE(o)
o g and fr(1)g, suggesting a general, positive correlation

between E(o)
o and r(1). While the average values of fE(o)

o g and

fl(1)g would suggest that these quantities are also positively

correlated, Figure 6(b) shows that for a given value of h=‘, larger

values of E(o)
o correspond to smaller values of l(1). These results

reveal general characteristics of error landscape structure; higher

error minima (larger E(o)
o ) tend to be shallower (smaller l(1)) and

require the adjustment of fewer weights (larger r(1)).

Landscape characteristics and successful learning. Var-

iations in landscape structure provide insight into the way in

which each network searches for solutions. In particular, fan

solutions are characterized by low error and participation ratio,

indicating that the fan network must adjust nearly all of its

weights in order to navigate zero error basins. In contrast, stacked

solutions span a range of error values. The corresponding basins

are characterized by a variety of eigenvalues and participation

ratios, indicating that the stacked network can navigate many

Learning and Memory in Neural Networks
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types of basins by adjusting variable numbers of weights. Larger

participation ratios correspond to higher error and lower

eigenvalues, suggesting that the stacked network can navigate

shallow, high error basins by adjusting only a few of its

connections. Narrow, low error basins, found by both the fan

and stacked networks, require fine tuning of a larger number of

connections.

In combination, landscape characteristics help explain the

results shown in Figures 3 and 4. Given unlimited training time,

landscape variability is disadvantageous and can prevent a

network from finding a low error minimum. Once time is

limited, landscape variability can be advantageous in preventing

failure by providing the network with high error, shallow basins

that can be navigated with the adjustment of relatively few

connections. If limited training time is coupled with extremely

noisy information, landscapes with high error basins can be

advantageous by decreasing average error relative to landscapes

with no easily reachable basins. Because our sequential sessions

combined both limited and unlimited training time and both

clean and noisy data, we see an additional tradeoff between the

two sessions. Unlimited training time and well constrained data

favor the fan over the stacked network in minimizing average

error, while limited time and noisy data favor the stacked network

over the fan.

Discussion

In this study, we investigated the tradeoffs in learning

and memory performance that arise from structural complex-

ity. Importantly, none of the architectures considered here

simultaneously mastered both learning and memory tasks,

which suggests that systems whose function depends on such

simultaneous success might require architectures that are

complex combinations of both parallel and serial structures.

Indeed, this inherent sensitivity of function to underlying

architecture may help to explain the high degree of variability

evident in architectural motifs of large-scale biological and

technical systems. For instance, in natural neuronal networks,

cortical connection patterns display a variety of architectural

complexities at varying spatial scales. Examples of fan

architectures are found in hub-and-spoke motifs, which form

an important part of the small-world architecture [35–37], as

well as in the decomposition of cortical network architectures

into subnetworks or modules which may simultaneously process

differential information [10,38–41]. Moreover, stacked archi-

tectures are evident within cortical lamina [1], within the

hierarchical organization displayed in the sequential ordering

of the visual system [42], and within the nested modularity of

large-scale cortical connectivity [10,41,43]. Similarly, artificial

neural networks display complex combinations of fan and

stacked motifs including modularity [44], hierarchy [45], and

small-worldness [46,47].

Parallel versus Layered Architectures
Given the wealth of structural motifs present in real world

systems, it is of interest to first isolate the tradeoffs in performance

associated with small parallel and layered network structures

which together form the complex architectural landscape of larger

systems and thereby constrain their overall performance. Here we

found that the deep, narrow basins within the error landscape

enabled the fan network to produce very accurate solutions.

Figure 5. Network error landscapes. Error E(o)
o is projected onto the two stiffest eigenvector directions~jj(1) and~jj(2) about minima produced by

the (a) fan and (b) stacked network given unlimited training time. The two minima were chosen for comparison because they have the same number
and similar magnitude of nonzero eigenvalues, although similar behavior was observed for alternative minima. The insets show zoomed in views of
the contour plots about their central minima. (a) The projection of the fan landscape shows a single deep minimum surrounded by smooth peaks. (b)
In contrast, the projection of the stacked landscape shows a long, deep valley of several local putative minima separated by low barriers. The
surrounding landscape is much bumpier than that of the fan network.
doi:10.1371/journal.pcbi.1002063.g005
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However, the difficulty of simultaneously adjusting many network

connections in order to escape deep basins may have hindered the

ability of the fan network to adapt, a result that helps explain the

susceptibility of parallel networks to the problems of overfitting

and failure to generalize [26]. In contrast, higher variability in the

width and depth of local minima enabled the stacked network to

quickly find coarse but generalizable solutions through the

adjustment of a smaller fraction of weights. In combination, these

results support the hypothesis that the number and width of local

landscape minima may increase with increasing number of hidden

layers [4], and we suggest that this variability helps explain why

layered networks may require fewer computational units and may

better generalize than parallel networks [49,50]. However, the

impact of structural variations on functional tradeoffs, for example

between specificity and generalizability, extends beyond artificial

network studies and is crucial for understanding the interaction of

learning processes in large scale models of the brain [51]. While

parallel architectures are often preferred in artificial network

studies due to their consistency and accuracy [48,50], our results

highlight the advantages of layered architectures when perfor-

mance criteria favor generalizability and minimization of failure.

Intermediate Architectures
Building on the intuition gained from the two benchmark

extremes – fan and stacked – we further assessed the characteristics

of intermediate networks, which can be used to more directly

probe the expected behavior of structurally complex composite

systems. In particular, our intermediate structures were composed

of several adjacent stacked networks and therefore shared

principal features of both parallel and layered systems. Addition-

ally, these networks had slightly larger numbers of connections

than the fan and stacked networks.

Due to these structural differences, the depth of local minima

within the intermediate landscapes displayed more variation than

fan minima but more continuity than stacked minima. As

landscape variability was linked to improved generalization

capabilities, a continuous range of basin depths may have enabled

the more successful balance between flexible learning and stable

memory observed in the intermediate networks. This performance

supports the hypothesis that short path lengths (similar to the

serialization h=‘ [52]) and low connection densities may facilitate

simultaneous performance of information segregation (memory

retention) and integration (generalization) within natural neuronal

systems [53]. These competing processes are also maintained in

natural neuronal systems and neural circuit models through

homeostatic plasticity mechanisms such as synaptic scaling [54,55]

and redistribution [56,57], in addition to the rehearsal methods

employed here [19–23]. Even in the absence of such homeostatic

plasticity mechanisms, we found that the architectural combina-

tion of parallel and layered connectivity helped foster a balance

between learning and memory.

Variable Learning Conditions and Network Efficiency
We extended our analysis from the case of unlimited training

time, which revealed information about error landscape

structure, to the biologically-motivated case of limited training

time. Comparison of these two cases revealed a tradeoff in

performance between training speed and solution accuracy. In

the absence of temporal constraints, the production of highly

accurate representations required longer training times. Similar-

ly, temporal constraints led to larger solution errors. This tradeoff

between speed and accuracy has been observed in cortical

networks, where emphasis on performance speed during

perceptual learning tasks increased the baseline activity but

Figure 6. Properties of network error landscapes. Covariances between (a) fr(1)g and fE(o)
o g and between (b) fl(1)g and fE(o)

o g are shown for
error landscape minima produced by the five networks shown in Figure 1(a). For each network, the values of fE(o)

o g are taken from the distributions
shown in Figure 4(a). Covariances, indicated by ellipses, are centered about their average values, indicated by markers. The semimajor axis of each
ellipse marks the direction of maximum covariance. Increasing h=‘ increases both the average and variance in all three quantities. For a given
network, larger values of E(o)

o generally correspond to smaller values of l(1) and larger values of r(1) .
doi:10.1371/journal.pcbi.1002063.g006
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decreased the transient task-related activity of neurons within the

decision-making regions of the human brain [58,59]. Here we

found that network architecture played a significant role in the

manifestation of this tradeoff, and the presence of additional

hidden layers helped minimize network susceptibility to changes

in training time. In particular, the fan network demonstrated the

greatest change in performance under temporal constraints,

showing a decrease in consistency coupled with occasional

catastrophic error values. In contrast, the intermediate and

stacked networks improved consistency and minimized inaccu-

racy once training time was limited.

Upon closer inspection, we found that the intermediate

networks produced solutions with increased speed given unlimited

time and with increased potential for accuracy when time was

limited as compared to the fan and stacked extremes. The

presence of additional connections may have influenced the

number of iterations required to find a solution, or similarly the

minimum error found with a fixed number of iterations. While the

graph measure of path length is known to influence network

efficiency [52], these results imply that the number of networks

connections may additionally enable the network to quickly find

an accurate solution.

In addition to static variations in connectivity, dynamic

structural changes such as synapse formation [60] can facilitate

learning and memory processes. The converse case of network

degradation, or disruptions to structural connectivity, is also

known to have widespread consequences in functional properties

of the brain [61–63]. A more detailed study of the relation-

fship between connection number and robustness could provide

additional insight into the effects of synapse formation and

degradation on functional performance. Our analysis of error

landscape features revealed that different architectures showed

variable localization properties in the eigenvectors associated with

local error minima, and we therefore expect robustness to depend

on both the architecture and the location of growth or damage

within the network.

Methodological Considerations
We found that parallel networks suffered from the creation of

excessively detailed representations of information, an ‘‘over-

fitting’’ problem that is often addressed through the use of cross-

validation [64] and weight regularization [65] techniques. As one

goal of this study was to uncover the structural basis for differences

in representational capabilities, it was crucial to understand

network behavior in the absence of task-specific cross-validation

schemes. Additionally, as the number of parameters was roughly

constant across all network structures (and identical for the fan and

stacked networks), we were able to draw comparisons across

network architectures in the absence of additional weight regula-

rization constraints.

While parallel network models have commonly been used in

machine learning studies, multi-layer ‘‘deep’’ networks have

recently gained interest due to their potential ability to compactly

represent (using fewer computational units and parameters)

highly variable functions [49,50]. The ‘‘deep belief’’ framework

has been successful for training large, multi-layered networks, and

training methods often couple unsupervised, layer-wise (greedy)

training with supervised fine-tuning [66]. Recent studies of deep

belief networks found that classification performance improved

with the addition of layers [48]. In addition, it was suggested that

a reduction in the number of hidden layers would require an

exponential increase in the number of hidden units in order to

achieve similar network performance [50]. These results

emphasize the capabilities of layered networks and provide an

additional framework in which to explore structure-function

tradeoffs.

Although biologically-motivated, the FFBP framework includes

several simplifying assumptions that could be modified to include

additional, realistic complexity. First, we assumed that only the

connection weights, analogous to synaptic strengths, were variable.

Real neurons also exhibit changes in intrinsic dynamics [67] that

interact with network architecture to constrain functionality in the

brain [68]. Accounting for such relationships could be particularly

relevant, for example, in the study of neuron response profiles

within different cortical layers [13]. Second, we assumed that

signals passed between nodes had no temporal structure,

analogous to representing steady state neuron firing rates.

Temporally varying signals could be included to study the

dependence of dynamic properties, such as synchronization [68–

70] and signal propagation [71], on structural organization [72].

Lastly, we assumed feedforward connectivity. The addition of

recurrent connections could be used to study the relationship

between recurrent structure and oscillatory functions such as

cortical sleep rhythms [73] and oscillation couplings relevant for

associative learning and memory [74]. In each of these directions,

we anticipate that underlying structural complexity will continue

to impact performance through functional tradeoffs.

Conclusion
In summary, different network architectures produce error

landscapes with distinguishable characteristics, such as the height

and width of local minima, which in turn determine performance

features such as speed, accuracy, and adaptability. Inherent

tradeoffs, observed across a range of architectures, arise as a

consequence of the underlying error landscape structure. The

presence of local landscape minima enable greater speed, more

generalizable solutions, and minimization of catastrophic failure.

However, these successes come at the cost of decreased accuracy.

Understanding how both the landscape characteristics and the

resulting performance features vary across a range of architectures

is crucial for both understanding and guiding the design of more

complex biological and technical systems.

Supporting Information

Figure S1 Network solutions and error distributions
produced by larger networks. Panels (a) and (b) show

solutions produced respectively by larger versions of the fan (1618)

and stacked (962) networks, indicating for each network the

approximation fo (solid curve) of the original points (point markers)

and a subset of approximations ffng (dashed curves) of the new

and buffer points. Panels (c) and (d) respectively show the CDFs of

fE(o)
n g and fE(n)

n g. All results are qualitatively similar to those

obtained using smaller networks (Figure 2).

(EPS)

Figure S2 Tradeoffs in network learning and memory
observed in larger networks. Best, worst, and average

network performance is measured with respect to solutions fo

and ffng produced by networks of size h6‘= 1618, 269, 366,

663, 962. Panels (a) and (b) show the maximum values in fE(o)
n g

versus (a) the minimum values in fE(o)
n g and (b) the maximum

values in fE(n)
n g. Panels (c) and (d) show the the average errors

SfE(n)
n gT and SfE(o)

n gT versus (c) the average solution variance

Sf(Dfn)2gT and (d) the original error E(o)
o . All results are

qualitatively similar to those obtained using smaller networks

(Figure 3).

(EPS)
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Figure S3 Network solutions and error distributions
produced using a permuted training function. During the

first training session, all networks were trained using the same

random permutation of the original point values quoted in the

main text. Panels (a) and (b) show solutions produced respectively

by the fan and stacked networks, indicating for each network the

approximation fo (solid curve) of the permuted set of original

points (point markers) and a subset of approximations ffng (dashed

curves) of the new and buffer points. Panels (c) and (d) respectively

show the CDFs of fE(o)
n g and fE(n)

n g. All results show the same

qualitative features as those produced using the unpermuted set of

original points (Figure 2).

(EPS)

Figure S4 Tradeoffs in network learning and memory
observed with a permuted training function. Best, worst,

and average network performance is measured with respect to

solutions fo and ffng, where fo was generated using a random

permutation of the original point values quoted in the main text.

Panels (a) and (b) show the maximum values in fE(o)
n g versus (a)

the minimum values in fE(o)
n g and (b) the maximum values in

fE(n)
n g. Panels (c) and (d) show the the average errors SfE(n)

n gT and

SfE(o)
n gT versus (c) the average solution variance Sf(Dfn)2gT and

(d) the original error E(o)
o . All results are qualitatively similar to

those obtained using the unpermuted set of original points

(Figure 3).

(EPS)
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