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Abstract

Background: The emergence of drug resistance to the existing antibacterial and anti-HIV-1 therapeutics has posed an urgent med-
ical need to develop new molecules. We describe in this regard, a series of novel N’-arylidene-4-hydroxy-2-oxo-1,2-dihydroquinoline-
3-carbohydrazide derivatives with anti-HIV-1 and antibacterial activities were designed and synthesized in this study.
Methods: The synthesized compounds were evaluated for the blocking of both the IN ST process and cell-based HIV-1 replication.
The synthesized compounds were also examined for in vitro antibacterial activities using the minimum inhibitory concentration
(MIC) assay.
Results: The results revealed the moderate antibacterial activity of the synthesized compounds. Moreover, no significant integrase
inhibitory and anti-HIV-1 activities were observed for the synthesized compounds at concentrations < 100µM.
Conclusions: According to the docking analyses, the orientation of the designed scaffold in the active site of integrase is similar
to the other inhibitors of the HIV integrase and can be regarded as an acceptable template for further structural modification to
improve potencies.
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1. Background

Infectious diseases induced by viruses and bacteria
have been a major challenge to the health systems world-
wide; hence, the generation of drug-resistant viral strains
to the present antibacterial and antiviral drugs has posed
an essential need for discovering and developing new ef-
fective inhibitors for viral and bacterial pathogens (1, 2).

Human immunodeficiency virus type 1 (HIV-1) has chal-
lenged the health and global economies worldwide (3). The
World Health Organization (WHO) estimates that above 38
million people are infected with HIV, and 33 million in-
fected patients would die even after the availability of the
potential drugs in the market (4). However, there is a de-
mand for new drugs with a new structure and a mecha-
nism of action. In general, four main categories of drugs
can be used in the HIV treatment, including protease in-
hibitors (PIs), nucleoside reverse transcriptase inhibitors
(NRTIs), non-nucleoside reverse transcriptase inhibitors
(NNRTIs), and integrase strand transfer inhibitors (INSTIs)

(5). Although many therapeutics have been developed for
the HIV treatment, discovering new types is of great impor-
tance due to the emergence of drug-resistant HIV-1 mutant
strains, toxicity, and costs.

The HIV-1 integrase plays a critical role in the HIV-1
replication, and its function is to catalyze the integration
process. Integration operation includes two steps enti-
tled 3’-processing and strand transfer (ST) (6). First, a din-
ucleotide from each 3’-end of the viral cDNA is removed
by IN (3’-processing), and the 3’-ends of the viral DNA are
then integrated into the human DNA (strand transfer) (7).
The integration reaction fully depends on two Mg2+ ions
in the IN active site and interacts with three acidic amino
acids (Asp64/Asp116/Glu152). Accordingly, the chelation of
the Mg2+ cofactors can prevent enzyme ligation function
(8). Many INSTIs with the metal chelation potential have
been developed and reported (9, 10). Relevant research has
resulted into the identification of four FDA-approved IN-
STIs inhibitors: Raltegravir, elvitegravir, dolutegravir, and
bictegravir (Figure 1) (11-14). All INSTIs possess a planar
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Figure 1. Chemical structure of FDA-approved INSTIs inhibitors (Raltegravir 1, Elvitegravir 2, Dolutegravir 3, and Bictegravir 4)

chelating moiety interacting with Mg2+ ions and an aro-
matic group orienting into a hydrophobic pocket (15).

medicinal chemists and pharmacologists have re-
cently addressed quinolines and their various substituted
functionalities in many studies. Quinoline derivatives pos-
sess a variety of biological properties, including anti-HIV,
antibacterial, antiviral, anti-inflammatory, anticancer, an-
tihypertensive, analgesic, and miscellaneous properties
(16). The 4-hydroxy-2-oxo-1,2-dihydroquinoline scaffold is
one of the quinoline derivatives with HIV IN inhibitory
and antibacterial activities, exemplified by compounds
5 and 6, respectively. Sechi et al. reported that Com-
pound 5 inhibited both strand transfer activities and the
3′-processing of IN with IC50 = 16± 6 and IC50 = 40± 3µM,
respectively (Figure 2) (17). Compound 6 showed promis-
ing antibacterial activities (18). Accordingly, a 4-hydroxy-
2-oxo-1,2-dihydroquinoline scaffold was selected to de-
sign new anti-HIV-1 and antibacterial compounds. Previ-
ously, we developed some 4-hydroxyquinoline and pyri-
dopyrimidine derivatives containing a carbohydrazide-
type framework which led to promising anti-HIV agents
(19, 20). In this research, new compounds were de-
signed by changing the amide of a 4-hydroxy-2-oxo-

1,2-dihydroquinoline core with the bioisoster carbohy-
drazide. Furthermore, an arylidene fragment was at-
tached to the central core to improve anti-HIV-1 activities.
Accordingly, a series of N’-arylidene-4-hydroxy-2-oxo-1,2-
dihydroquinoline-3-carbohydrazide derivatives were de-
signed, synthesized, and tested for the cell-based anti-HIV-
1 replication assay. The compounds were also examined
for their in vitro antibacterial potencies against the several
bacterial strains inducing opportunistic infections in HIV
patients. Further, a docking study was conducted to ana-
lyze how the newly synthesized chemicals interact with the
catalytic domain of HIV-1 IN.

2. Methods

2.1. General

All chemicals and solvents in this project were pur-
chased from Merck AG and Aldrich Chemical. Thomas-
Hoover capillary apparatus was used to determine melt-
ing points. Infrared spectra were obtained using a Perkin
Elmer Model 1420 spectrometer, and 1H-NMR spectra were
acquired by a Bruker FT-500 MHz instrument (Brucker
Biosciences, USA) with TMS as the internal standard.
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Figure 2. Structure of IN inhibitors and designed molecules

Chloroform-D and DMSO-D6 were used as solvents. Cou-
pling constant (J) values were measured in hertz (Hz), and
spin multiples are presented as s (singlet), d (doublet),
t (triplet), q (quartet), m (multiplet), and br (broad). A
6410Agilent LCMS triple quadrupole mass spectrometer
(LCMS) with an electrospray ionization (ESI) interface was
used to perform mass spectral measurements, and there
was a Costech 4010 elemental analyzer to perform the C,
H, and N elemental analyses. The microanalysis values of C
and H were within ± 0.4% of the theoretical values.

2.2. Synthesis of Ethyl 4-Hydroxy- 2-oxo- 1,2-dihydroquinoline- 3-
carboxylate (10)

Isatoic anhydride (9) (10 g, 61.5 mmol) and diethyl mal-
onate (49 mL, 300 mmol) were reacted in dry DMF (100
mL) and warmed at 85°C for 5 hours. TLC (thin-layer chro-
matography) was used to monitor the reaction comple-
tion. When the reaction was completed, the mixture was
cooled. The reaction mixture was added to a mixture of
ice and water; the obtained precipitate was filtered and
washed with water: Yield: 40%, pale brown powder, mp:
134°C; IR (KBr): 1750, 1730 (C=O), 2700-3200 (OH) cm-1; LC-MS
(ESI): m/z 234 [M+H]+.

2.3. Synthesis of 4-Hydroxy- 2-oxo- 1,2-dihydroquinoline- 3-
carbohydrazide (11)

Compound 10 (20 g, 55.7 mmol) was suspended in
ethanol (30 mL), to which hydrazine hydrate (10 mL, 33
mmol) was added and stirred under reflux for 2 hours.
When the reaction was completed, the white suspension

was filtered. The precipitate was washed with ethanol and
dried under a vacuum: Yield: 90%, white powder, mp:
152°C; IR (KBr): 1750, 1740 (C=O), 2800 (NH) cm-1; LC-MS (ESI):
m/z 220 [M+H]+.

2.4. General Procedure for the Synthesis of Compound 12a-o

A solution of Compound 11 (1 mmol) in absolute
ethanol (5 mL) was prepared, and one drop of 98% H2SO4

was then added to the solution. After that, the reaction con-
tinued by adding benzaldehyde derivatives (1.1 mmol) to
the mixture and refluxed for 2 hours. When the reaction
was completed (monitored with TLC), the reaction temper-
ature was lowered in an ice bath, and the obtained precip-
itates were filtered. After washing with cold ethanol, the
precipitate was crystallized in absolute ethanol (average
yield: 90%).

2.5. Benzylidene- 4-hydroxy- 2-oxo- 1,2-dihydroquinoline- 3-
carbohydrazide (12a)

mp: 225°C; IR (KBr): 1400 - 1600 (aromatic), 1645
(C=O),1659 (C=O), 2700 - 3200 (OH) cm-1; LCMS (ESI): m/z 306
[M-H]-; 1H-NMR (400 MHz, DMSO-d6): δ 7.32 (t, J = 8 Hz, 1H,
quinoline H7), 7.39 (d, J = 8 Hz, 1H, quinoline H8), 7.47 - 7.49 (
m, 3H, benzylidene H3 & H4 & H5), 7.72 (t, J = 8 Hz, 1H, quino-
line H6), 7.78 (m, 2H, benzylidene H2 & H6), 8.00 (d, J = 8 Hz,
1H, quinoline H5), 8.49 (s, 1H, = CH), 12.08 (s, 1H, NH), 13.33
(s, 1H, NH), 16.67 (s, 1H, OH); 13C-NMR (100 MHz, DMSO-d6): δ
96.43, 114.57, 116.45, 123.12, 124.47, 128.03, 129.34, 131.14, 134.22,
137.73, 139.32, 151.33, 162.84, 167.95, 173.25; Anal. Calcd. for
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C17H13N3O3: C, 66.44; H, 4.26; N, 13.67; Found: C, 66.48; H,
4.31; N, 13.60.

2.6. 2-Chlorobenzylidene- 4-hydroxy- 2-oxo- 1,2-
dihydroquinoline- 3-carbohydrazide (12b)

mp: 187°C; IR (KBr): 1400 - 1600 (aromatic), 1644 (C=O),
1669 (C=O), 2500 - 3300 (OH) cm-1; LCMS (ESI): m/z 340 [M-
1]-; 1H-NMR (400 MHz, DMSO-d6): δ 7.33 (m, 1H, quinoline
H7), 7.41 - 7.58 (m, 4H, quinoline H8 & 2-chlorobenzylidene
H3 & H4 & H5), 7.74 (t, J = 8 Hz, 1H, quinoline H6), 8.04
(m, 2H, quinoline H5 & 2-chlorobenzylidene H6), 8.70 (brs,
1H, = CH), 12.10 (s, 1H, NH), 13.42 (s, 1H, NH), 16.52 (s, 1H,
OH); 13C-NMR (100 MHz, DMSO-d6): δ 94.60, 116.60, 118.09,
123.54, 124.65, 129.13, 129.94, 131.68, 134.50, 139.30, 141.09,
142.17, 142.38, 157.31, 163.22, 167.94, 172.83; Anal. Calcd. for
C17H12ClN3O3: C, 59.75; H, 3.54; N, 12.30; Found: C, 59.71; H,
3.59; N, 12.33.

2.7. 3-Chlorobenzylidene- 4-hydroxy- 2-oxo- 1,2-
dihydroquinoline- 3-carbohydrazide (12c)

mp: 198°C; IR (KBr): 1400 - 1600 (aromatic), 1658
(C=O),1683 (C=O), 2500 - 3300 (OH) cm-1; LCMS (ESI): m/z
340 [M-H]-; 1H-NMR (400 MHz, DMSO-d6): δ 7.33 (t, J = 8Hz,
1H, quinoline H7), 7.40 (d, J = 8Hz, 1H, quinoline H8), 7.49
- 7.53 (m, 2H, quinoline H6 & 3-clorobenzylidene H5), 7.71
- 7.76 (m, 2H, 3-chlorobenzylidene H4 & H6), 7.81 (s, 1H, 3-
chlorobenzylidene H2), 8.01 (d, J = 8 Hz, 1H, quinoline H5),
8.49 (s, 1H, = CH), 12.11 (s, 1H, NH), 13.39 (s, 1H, NH), 16.54
(s, 1H, OH) ); 13C-NMR (100 MHz, DMSO-d6): δ 96.46, 114.52,
116.48, 123.19, 124.51, 126.58, 127.32, 130.76, 131.31, 134.10, 134.85,
136.44, 139.36, 149.78, 162.84, 168.12, 173.29; Anal. Calcd. for
C17H12ClN3O3: C, 59.75; H, 3.54; N, 12.30; Found: C, 59.72; H,
3.57; N, 12.27.

2.8. 4-Chlorobenzylidene- 4-hydroxy- 2-oxo- 1,2-
dihydroquinoline- 3-carbohydrazide (12d)

mp: 241°C; IR (KBr): 1400 - 1600 (aromatic), 1658 (C=O),
1683 (C=O), 2500 - 3300 (OH) cm-1; LCMS (ESI): m/z 340 [M-
H]-; 1H-NMR (400 MHz, DMSO-d6): δ 7.33 (t, J = 8 Hz, 1H,
quinoline H7), 7.39 (d, J = 8 Hz, 1H, quinoline H8), 7.54 (d, J =
8.4Hz, 2H, 4-chlorobenzylidene H3 & H5), 7.73 (t, J = 8 Hz, 1H,
quinoline H6), 7.79 (d, J = 8.4Hz, 2H, 4-chlorobenzylidene
H2 & H6), 8.00 (d, J = 8 Hz, 1H, quinoline H5), 8.49 (s, 1H,
= CH), 12.10 (s, 1H, NH), 13.36 (s, 1H, NH), 16.60 (s, 1H, OH);
13C-NMR (100 MHz, DMSO-d6): δ 96.44, 114.55, 116.47, 123.17,
124.49, 129.49, 129.63, 133.18, 134.82, 135.62, 139.35, 150.14,
162.84, 168.03, 173.27; Anal. Calcd. for C17H12ClN3O3: C, 59.75;
H, 3.54; N, 12.30; Found: C, 59.79; H, 3.60; N, 12.26.

2.9. 2-Fluorobenzylidene- 4-hydroxy- 2-oxo- 1,2-
dihydroquinoline- 3-carbohydrazide (12e)

mp: 195°C; IR (KBr): 1400 - 1600 (aromatic), 1647
(C=O), 1668 (C=O), 2660 - 3200 (OH) cm-1; LCMS (ESI):
m/z 326 [M+H]+; 1H-NMR (400 MHz, DMSO-d6): δ 7.31 -
7.36 (m, 3H, quinoline H7 & 2-fluorobenzylidene H3 &
H5), 7.40 (d, J = 8 Hz, 1H, quinoline H8), 7.51 - 7.57 (br
s, 1H, 2-fluorobenzylidene H6), 7.73 (t, J = 8.4 Hz, 1H, 2-
fluorobenzylidene H4), 7.95 (t, J = 8 Hz, 1H, quinoline H6),
8.01 (d, J = 8 Hz, 1H, quinoline H5), 8.60 (s, 1H, = CH), 12.09
(s, 1H, NH), 13.38 (s, 1H, NH), 16.56 (s, 1H, OH); 13C-NMR (100
MHz, DMSO-d6): δ 94.58, 116.90, 118.13, 123.64, 124.55, 129.23,
130.04, 131.78, 134.60, 139.35, 141.04, 142.07, 142.37, 151.31,
158.09, 163.12, 167.84, 172.93; Anal. Calcd. for C17H12FN3O3: C,
62.77; H, 3.72; N, 12.92; Found: C, 62.72; H, 3.68; N, 12.99.

2.10. 3-Fluorobenzylidene- 4-hydroxy- 2-oxo- 1,2-
dihydroquinoline- 3-carbohydrazide (12f)

mp: 237°C; IR (KBr): 1400 - 1600 (aromatic), 1648 (C=O),
1671 (C=O), 2800 - 3300 (OH) cm-1; LCMS (ESI): m/z 326
[M+H]+; 1H-NMR (400 MHz, DMSO-d6): δ 7.30 - 7.34 (m, 2H,
quinoline H7 & 3-fluorobenzylidene H6), 7.39 (d, J = 8.4 Hz,
1H, quinoline H8), 7.51 - 7.57 (m, 2H, 3-fluorobenzylidene H2

& H5), 7.62 (d, J = 7.6 Hz, 1H, 3-fluorobenzylidene H4), 7.73 (t,
J = 8.4 Hz, 1H, quinoline H6), 8.00 (d, J = 8.4 Hz, 1H, quinoline
H5), 8.60 (s, 1H, = CH), 12.09 (s, 1H, NH), 13.38 (s, 1H, NH), 16.56
(s, 1H, OH); 13C-NMR (100 MHz, DMSO-d6): δ 96.46, 113.88,
114.10, 114.52, 116.47, 117.79, 118.01, 123.18, 124.32, 124.50, 131.45,
131.53, 134.84, 136.70, 136.78, 139.35, 150.02, 161.57, 162.85,
163.99, 168.09, 173.28; Anal. Calcd. for C17H12FN3O3: C, 62.77;
H, 3.72; N, 12.92; Found: C, 62.83; H, 3.64; N, 12.88.

2.11. 4-Fluorobenzylidene- 4-hydroxy- 2-oxo- 1,2-
dihydroquinoline- 3-carbohydrazide (12g)

mp: 212°C; IR (KBr): 1400 - 1600 (aromatic), 1649
(C=O),1667 (C=O), 2200 - 3400 (OH) cm-1; LCMS (ESI): m/z 326
[M+H]+; 1H-NMR (400 MHz, DMSO-d6): δ 7.30 - 7.35 (m, 3H,
quinoline H7 & 4-fluorobenzylidene H2 & H6), 7.39 (d, J =
8.4 Hz, 1H, quinoline H8), 7.72 (t, J = 8.4 Hz, 1H, quinoline
H6), 7.83 - 7.86 (m, 2H, 4-fluorobenzylidene H3 & H5), 8.00
(d, J = 8.4 Hz, 1H, quinoline H5), 8.50 (s, 1H, = CH), 12.09 (s, 1H,
NH), 13.32 (s, 1H, NH), 16.65 (s, 1H, OH) ); 13C-NMR (100 MHz,
DMSO-d6) : δ 96.41, 114.56, 116.37, 116.46, 116.59, 123.14, 124.47,
130.22, 130.31, 130.86, 134.75, 139.32, 150.25, 162.68, 162.84,
165.15, 167.94, 173.24; Anal. Calcd. for C17H12FN3O3: C, 62.77;
H, 3.72; N, 12.92; Found: C, 62.71; H, 3.78; N, 12.96.

2.12. 4-Hydroxy-N’- (2-methylbenzylidene)- 2-oxo- 1,2-
dihydroquinoline- 3-carbohydrazide (12h)

mp: 203°C; IR (KBr): 1400 - 1600 (aromatic), 1632
(C=O),1658 (C=O), 2200 - 3200 (OH) cm-1; LCMS (ESI): m/z 322
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[M+H]+; 1H-NMR (400 MHz, DMSO-d6): δ 2.50 (s, 3H, CH3),
7.27 - 7.37 (m, 4H, quinoline H7 & 2-methylbenzylidene H3 &
H4 & H5), 7.40 (d, J = 8.4 Hz, 1H, 2- methylbenzylidene H6),
7.73 (d, J = 7.2 Hz, 1H, quinoline H8), 7.85 (t, J = 7.2 Hz, 1H,
quinoline H6), 8.01 (d, J = 7.2 Hz, 1H, quinoline H5), 8.67 (s,
1H, = CH), 12.04 (s, 1H, NH), 13.26 (s, 1H, NH), 16.77 (s, 1H, OH);
13C-NMR (100 MHz, DMSO-d6): δ 22.54, 94.65, 116.60, 118.09,
123.54, 124.60, 129.13, 129.83, 131.94, 134.38, 139.30, 141.09,
142.17, 142.50, 154.31, 163.12, 167.68, 172.94; Anal. Calcd. for
C18H15N3O3: C, 67.28; H, 4.71; N, 13.08; Found: C, 67.22; H, 4.76;
N, 13.01.

2.13. 4-Hydroxy-N’- (4-methylbenzylidene)- 2-oxo- 1,2-
dihydroquinoline- 3-carbohydrazide (12i)

mp: 181°C; IR (KBr): 1400 - 1600 (aromatic), 1662 (C=O),
2500 - 3300 (OH) cm-1; LCMS (ESI): m/z 322 [M+H]+; 1H-NMR
(400 MHz, DMSO-d6): δ 2.35 (s, 3H, CH3),7.28 (d, J = 8.4 Hz,
2H, 4-methylbenzylidene H3 & H5), 7.32 (t, J = 7.6 Hz, 1H,
quinoline H7), 7.39 (d, J = 7.6 Hz, 1H, quinoline H8), 7.67 (d,
J = 8.4 Hz, 2H, 4-methylbenzylidene H2 & H6), 7.72 (t, J = 7.6
Hz, 1H, quinoline H6), 8.00 (d, J = 7.6 Hz, 1H, quinoline H5),
8.44 (s, 1H, = CH), 12.07 (s, 1H, NH), 13.27 (s, 1H, NH), 16.73 (s,
1H, OH); 13C-NMR (100 MHz, DMSO-d6): δ 21.58, 96.41, 114.60,
116.45, 123.12, 124.47, 128.03, 129.95, 131.51, 134.72, 139.31, 141.11,
151.36, 162.84, 167.83, 173.23. Anal. Calcd. for C18H15N3O3: C,
67.28; H, 4.71; N, 13.08; Found: C, 67.33; H, 4.65; N, 13.15.

2.14. 4-Hydroxy-N’- (2-methoxybenzylidene)- 2-oxo- 1,2-
dihydroquinoline- 3-carbohydrazide (12j)

mp: 122°C; IR (KBr): 1400 - 1600 (aromatic), 1599
(C=O),1660 (C=O), 2700 - 3200 (OH) cm-1; LCMS (ESI): m/z
338 [M+H]+; 1H-NMR (400 MHz, DMSO-d6): δ 3.89 (s, 3H,
OCH3), 7.05 (t, J = 7.6 Hz, 1H, 2-methoxybenzylidene H5),
7.13 (t, J = 8 Hz, 1H, quinoline H7), 7.32 (d, J = 8 Hz, 1H,
quinoline H8), 7.40 (d, J = 7.6 Hz, 1H, 2-methoxybenzylidene
H6), 7.47 (t, J = 8 Hz, 1H, quinoline H6), 7.73 (t, J = 7.6 Hz,
1H, 2-methoxybenzylidene H4), 7.87 (d, J = 7.6 Hz, 1H, 2-
methoxybenzylidene H3), 8.00 (d, J = 8 Hz, 1H, quinoline
H5), 8.58 (s, 1H, = CH), 12.08 (s, 1H, NH), 13.33 (s, 1H, NH), 16.67
(s, 1H, OH); 13C-NMR (100 MHz, DMSO-d6): δ 56.24, 96.43,
111.44, 114.58, 116.45, 121.27, 121.94, 123.12, 124.46, 126.39, 132.84,
134.72, 139.30, 146.14, 158.57, 162.82, 167.79, 173.21; Anal. Calcd.
for C18H15N3O4: C, 64.09; H, 4.48; N, 12.46; Found: C, 64.03;
H, 4.44; N, 12.50.

2.15. 4-Hydroxy-N’- (3-methoxybenzylidene)- 2-oxo- 1,2-
dihydroquinoline- 3-carbohydrazide (12k)

mp: 190°C; IR (KBr): 1400 - 1600 (aromatic), 1641 (C=O),
1664 (C=O), 2600 - 3200 (OH) cm-1; LCMS (ESI): m/z 338
[M+H]+; 1H-NMR (400 MHz, DMSO-d6): δ 3.81 (s, 3H, OCH3),

7.02 (t, J = 8 Hz, 1H, quinoline H7), 7.29 - 7.41 (m, 5H, quino-
line H8 & 3-methoxybenzylidene H2 & H4 & H5 & H6),
7.71 (t, J = 8 Hz, 1H, quinoline H6), 7.99 (d, J = 8 Hz, 1H,
quinoline H5), 8.44 (s, 1H, = CH), 12.08 (s, 1H, NH), 13.33 (s,
1H, NH), 16.63 (s, 1H, OH); 13C-NMR (100 MHz, DMSO-d6): δ
55.64, 96.44, 112.24, 114.56, 116.45, 117.27, 120.86, 123.14, 124.47,
130.46, 134.75, 135.59, 139.32, 151.22, 159.95, 162.85, 167.93,
173.23; Anal. Calcd. for C18H15N3O4: C, 64.09; H, 4.48; N, 12.46;
Found: C, 64.04; H, 4.53; N, 12.51.

2.16. 4-Hydroxy-N’- (4-methoxybenzylidene)- 2-oxo- 1,2-
dihydroquinoline- 3-carbohydrazide (12l)

mp: 240°C; IR (KBr): 1400 - 1600 (aromatic), 1650
(C=O),1663 (C=O), 2500 - 3200 (OH) cm-1; LCMS (ESI): m/z
338 [M+H]+; 1H-NMR (400 MHz, DMSO-d6): δ 3.82 (s, 3H,
OCH3), 7.07 (d, J = 8.4 Hz, 2H, 4-methoxybenzylidene H3

& H5), 7.32 (t, J = 8 Hz, 1H, quinoline H7), 7.39 (d, J = 8
Hz, 1H, quinoline H8), 7.70 - 7.75 (m, 3H, quinoline H6 & 4-
methoxybenzylidene H2 & H6), 8.00 (d, J = 8Hz, 1H, quino-
line H5), 8.41 (s, 1H, = CH), 12.06 (s, 1H, NH), 13.24 (s, 1H,
NH), 16.80 (s, 1H, OH); 13C-NMR (100 MHz, DMSO-d6): δ
55.82, 96.39, 114.63, 114.86, 116.44, 123.10, 124.45, 126.72, 129.75,
134.67, 139.27, 151.17, 161.78, 162.85, 167.64, 172.20; Anal. Calcd.
for C18H15N3O4: C, 64.09; H, 4.48; N, 12.46; Found: C, 64.13; H,
4.44; N, 12.42.

2.17. 4-Hydroxy-N’- (2-hydroxybenzylidene)- 2-oxo- 1,2-
dihydroquinoline- 3-carbohydrazide (12m)

mp: 228°C; IR (KBr): 1400 - 1600 (aromatic), 1643 (C=O),
1663 (C=O), 2300 - 3300 (OH) cm-1; LCMS (ESI): m/z 322 [M-
H]-; 1H-NMR (400 MHz, DMSO-d6): δ 6.92 (m, 2H, quinoline
H7 & 2-hydroxybenzylidene H3), 7.29 - 7.36 (m, 2H, quino-
line H8 & 2-hydroxybenzylidene H5), 7.39 (d, J = 8 Hz, 1H,
quinoline H6), 7.58 (d, J = 7.6 Hz, 1H, 2-hydroxybenzylidene
H6),7.72 (t, J = 7.6 Hz, 1H, 2-hydroxybenzylidene H4), 7.99 (d,
J = 8Hz, 1H, quinoline H5), 8.68 (s, 1H, = CH), 11.00 (s, 1H, OH),
12.11 (s, 1H, NH), 13.36 (s, 1H, NH), 16.36 (s, 1H, OH). ); 13C-NMR
(100 MHz, DMSO-d6): δ 96.39, 114.47, 116.47, 116.93, 118.86,
119.95, 123.13, 124.47, 130.10, 132.56, 134.78, 139.36, 151.25,
158.07, 162.77, 167.51, 173.04; Anal. Calcd. for C17H13N3O4: C,
63.16; H, 4.05; N, 13.00; Found: C, 63.12; H, 4.12; N, 12.89.

2.18. 4-Hydroxy-N’- (4-hydroxybenzylidene)- 2-oxo- 1,2-
dihydroquinoline- 3-carbohydrazide (12n)

mp: 220°C; IR (KBr): 1400 - 1600 (aromatic), 1636
(C=O),1660 (C=O), 2600 - 3300 (OH) cm-1; LCMS (ESI): m/z
322 [M-H]-; 1H-NMR (400 MHz, DMSO-d6): δ 6.85 (d, J = 7.6
Hz, 2H, 4-hydroxybenzylidene H3 & H5), 7.31 (t, J = 8 Hz, 1H,
quinolone H7), 7.39 (d, J = 8 Hz, 1H, quinolone H8), 7.63 (d, J =
7.6 Hz, 2H, 4-hydroxybenzylidene H2 & H6), 7.71 (t, J = 8 Hz,
1H, quinoline H6), 7.99 (d, J = 8 Hz, 1H, quinoline H5), 8.44
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(s, 1H, = CH), 10.07 (s, 1H, OH), 12.04 (s, 1H, NH), 13.19 (s, 1H,
NH), 16.86 (s, 1H, OH); 13C-NMR (100 MHz, DMSO-d6): δ 96.35,
114.64, 116.20, 116.40, 122.99, 124.38, 125.14, 129.94, 134.52,
139.22, 151.39, 160.44, 162.82, 167.50, 173.14; Anal. Calcd. for
C17H13N3O4: C, 63.16; H, 4.05; N, 13.00; Found: C, 63.10; H, 4.11;
N, 13.04.

2.19. 4-Hydroxy-N’- (4-(methylthio) benzylidene)- 2-oxo- 1,2-
dihydroquinoline- 3 -carbohydrazide (12o)

mp: 231°C; IR (KBr): 1400 - 1600 (aromatic), 1611 (C=O),
1671 (C=O), 2500 - 3200 (OH) cm-1; LCMS (ESI): m/z 354
[M+H]+; 1H-NMR (400 MHz, DMSO-d6): δ 2.52 (s, 3H, SCH3),
7.31 - 7.36 (m, 3H, quinolone H7 & 4-methylthiobenzylidene
H3 & H5), 7.39 (d, J = 8Hz, 1H, quinolone H8), 7.71 (m, 3H,
quinolone H6 & 4-methylthiobenzylidene H2 & H6), 8.00
(d, J = 8 Hz, 1H, quinolone H5), 8.44 (s, 1H, = CH), 12.08 (s, 1H,
NH), 13.29 (s, 1H, NH), 16.72 (s, 1H, OH); 13C-NMR (100 MHz,
DMSO-d6): δ 14.61, 96.43, 114.60, 116.46, 123.14, 124.48, 125.99,
128.42, 130.52, 134.74, 139.31, 142.38, 150.98, 162.84, 167.79,
173.23; Anal. Calcd. for C18H15N3O3S: C, 61.18; H, 4.28; N, 11.89;
Found: C, 61.13; H, 4.31; N, 11.85.

2.20. Antibacterial Activity

The antibacterial activity of the compounds was eval-
uated by the broth microdilution method (21). The fol-
lowing strains were used in this study: Staphylococcus au-
reus PTCC 6538, Micrococcus luteus PTCC 9341 Bacillus cereus
PTCC 6633, Escherichia coli PTCC 8739, Salmonella Typhi PTCC
14028, and Pseudomonas aeruginosa PTCC 9027. All strains
were cultured in Soybean Casein Digest Agar (SCDA) and,
after 24 hours of incubation, were diluted by 0.5 McFarland
turbidity standards.

Different concentrations of the synthesized com-
pounds (10µL of each) were poured into the 96 well plates,
to which80 µL of Muller Hinton Broth (MHB) medium
and 10 µL of microbial suspensions were added. The final
concentration of the microbial suspensions in each well
was 1.5 × 107 cfu/mL. The plates were sealed to lower the
solvent evaporation and then incubated at 35°C for 24 h.
An ELISA reader spectrophotometer (TECAN-SP) was used
to read the optical density of the wells at 580 nm. The
inhibitory concentration (IC) in each well was measured
by the following equation:

(1)IC =
ODc− (ODa−ODb)

ODc

In this equation, ODa, ODb, and ODc determine the op-
tical density of the solutions containing microorganisms
and test compounds, only test compounds, and only mi-
croorganisms, respectively. Moreover, IC50 is defined as
the lowest concentration of the test compound, at which

the bacterial growth was disrupted. The standard antibi-
otics were ciprofloxacin and nalidixic acid. Each assay was
performed as duplicates.

2.21. Molecular Docking Study

Autodock Vina software was used to perform a molec-
ular modeling study (22). In this study, 3OYA was used
to analyze the binding mode of the compounds in the
IN active site. Autodock tools 1.5.6 from the MGL Tools
package were utilized to prepare the protein and ligands’
structures (23). First, the co-crystallized raltegravir and
water molecules were removed from the protein struc-
ture. Then Kollman charges were calculated, nonpolar hy-
drogens were removed, and AutoDock4 atom type was as-
signed to the protein structure. HyperChem 8.0 was used
to create and optimize the ligand molecule (24). The Grid
box with 20× 20× 20 dimensions was defined around the
crystallographic ligand, raltegravir, and regarded as the ac-
tive site. Autodock Vina was used to dock the molecule in
the active site and produce the bioactive conformations.

3. Results and Discussion

3.1. Chemistry

Figure 3 shows the synthesis path of the target com-
pounds (12a-o). Isatoic anhydride (9) was the starting ma-
terial for the reaction with diethyl malonate in dimethyl-
formamide (DMF) as a solvent. This process afforded
the expected ethyl 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-
carboxylate (10), whose reaction with hydrazine hydrate
provided the corresponding carbohydrazide intermediate
(11). Finally, the target compounds (12a-o) were obtained
during the reaction of the compound (11) with benzalde-
hyde derivatives in acceptable yields. IR, 1H-NMR, 13C-NMR
spectroscopy, and LC-MS were used to confirm the struc-
ture of all synthesized derivatives.

3.2. Anti-HIV-1 Activities

A series of N’-arylidene-4-hydroxy-2-oxo-1,2-
dihydroquinoline-3-carbohydrazide derivatives (12a-o)
were synthesized and evaluated in vitro regarding the
disruption of both IN ST process and the cell-based HIV-1
replication, according to the previously reported proce-
dures (25-28). The positive control was raltegravir. The
cytotoxicity of the synthesized compounds was also as-
sayed by a cell-based MTT method. The biological activity
of the compounds is represented as IN IC50, anti-HIV-1
EC50, and CC50 in Figure 4.

The results revealed that all tested compounds exhib-
ited no cytotoxicity at concentrations < 250 µM. Accord-
ingly, this scaffold would provide a safe template for the
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Figure 3. Reagents and conditions: (i) diethyl malonate, DMF, 85°C, 5 h; (ii) NH2NH2 .OH, ethanol, reflux, 2 h; (iii) benzaldehyde derivatives, H2SO4 , ethanol, reflux, 2 h.

anti-HIV-1 drug design. In integrase enzymatic assay, the
compounds displayed no significant inhibitory activity at
concentrations < 100 µM. Moreover, low antiviral activity
was observed in the cell-based anti-HIV-1 assay. This might
be due to poor permeability or physicochemical proper-
ties.

3.3. Antibacterial Activities

The final compounds (12a-o) were also tested for their
in vitro antibacterial activities toward three Gram-positive
bacterial species (namely S. aureus PTCC 6538, M. luteus
PTCC 9341, and B. cereus PTCC 6633) and three Gram-
negative bacterial species (namely E. coli PTCC 8739, S. Typhi
PTCC 14028, and P. aeruginosa PTCC 9027) using the min-
imum inhibitory concentration (MIC) assay. The positive
controls were ciprofloxacin and nalidixic acid; however,
10% dimethyl sulfoxide (DMSO) in water was used as the
negative controls. The negative control had no impact on
the antibacterial activity. The selected antibacterial effi-
cacy results of the tested compounds are presented in Ta-
ble 1.

The analysis of the antibacterial results revealed that
only compounds 12a, 12b, 12j, and 12n exhibited MIC < 100
µg/mL. Compound 12a with a phenyl group was potent
against S. aureus and E. coli with MIC = 78 µg/mL. Com-
pound 12n with a 4-hydroxyphenyl group had the same
MIC values (= 78 µg/mL) against S. aureus, B. cereus, E. coli,
and P. aeruginosa. Compound 12j with a 2-methoxyphenyl
group showed an acceptable activity (MIC = 78 µg/mL)
only against M. luteus. The best antibacterial activity
was demonstrated by the compound possessing a 2-
chlorophenyl group, 12b with MIC = 39µg/mL against S. au-
reus, E. coli, andP. aeruginosa. The estimated MIC values sug-
gest that the designed compounds can be used for further

development by structure modification to discover more
active molecules.

3.4. Molecular Modeling

In this study, N’-arylidene-4-hydroxy-2-oxo-1,2-
dihydroquinoline-3-carbohydrazide derivatives were
assumed as potential new IN inhibitors. The hypothesis
was then examined using a computational docking study.
In the docking study, the receptor was the prototype
foamy virus integrase (PFV-IN) structure encompassing
two Mg2+ ions and a double chain DNA at 2.65 Å resolution
(PDB:3OYA) (29, 30). The docking study was performed by a
flexible-ligand and rigid target docking experiment using
Autodock Vina software. It was then validated by redock-
ing the co-crystalized ligand, raltegravir, under the same
condition and superimposition on the co-crystallized lig-
and pose (RMSD = 0.001). Raltegravir revealed high-affinity
binding (-12.8 kcal/mol) to the IN active site.

Docking studies demonstrated that all docked com-
pounds occupied a nearly identical location in the inte-
grase active site. The affinity binding energy of com-
pounds ranged from -7.3 to -7.9 kcal/mol (Figure 4). Figure
5 shows the 2D and 3D alignment of one of the designed
compounds, i.e., 12g, in the active site. As presented in Fig-
ure 5, the hydroxy and carboxamide groups of Compound
12g interacted with the Mg2+ ion, as expected. Moreover,
the p-fluorophenyl group fit into a tight pocket created by
guanine 4 (DG4), cytosine 16 (DC16), and adenine 17 (DA17).

Moreover, Figure 6 shows that the binding pose of
Compound 12g is similar to that of Raltegravir. In general,
the binding mode of the docked compounds was similar
to raltegravir. However, the designed compounds showed
no significant anti-HIV activity, which may be due to unfa-
vorable physicochemical properties.
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Figure 4. Bioassay data for a series of compounds 12a–o, indicating IN IC50 value for strand transfer inhibitory, EC50 values for inhibition of HIV-1 activity, and CC50 values for
toxicity
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Table 1. Selected MIC (µg/mL) Results for Synthesized Compounds

Compounds
Gram-Positive Bacteria Gram-Negative Bacteria

Staphylococcus aureus Bacillus cereus Micrococcus luteus Escherichia coli Pseudomonas
aeruginosa

Salmonella Typhi

12a 78 > 1000 > 1000 78 156 312

12b 39 156 156 39 39 156

12c > 1000 > 1000 > 1000 > 1000 > 1000 > 1000

12d 625 > 1000 > 1000 > 1000 - > 1000

12e > 1000 > 1000 > 1000 > 1000 > 1000 > 1000

12f - 625 - - - -

12g > 1000 > 1000 > 1000 > 1000 > 1000 > 1000

12h 312 > 1000 > 1000 625 - -

12i > 1000 > 1000 > 1000 > 1000 - -

12j > 1000 156 39 > 1000 > 1000 -

12k 312 - - > 1000 - -

12l > 1000 > 1000 > 1000 > 1000 > 1000 > 1000

12m - - - > 1000 - -

12n 78 78 - 78 78 -

12o > 1000 > 1000 625 > 1000 625 > 1000

Ciprofloxacin 1.92 3.92 1.95 62.5

Nalidixic acid 3.92 1.95 3.92 15.62

DMSO - - - - - -

Figure 5. 2D and 3D alignment of best-docked pose of Compound 12g (violet) in PFV IN active site
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Figure 6. Overlay of Compound 12g (violet) on raltegravir (green) in PFV IN active site

3.5. Conclusions

A series of novel N’-arylidene-4-hydroxy-2-oxo-1,2-
dihydroquinoline-3-carbohydrazide derivatives were de-
signed and synthesized and were then evaluated in terms
of anti-HIV-1 and antibacterial activities. The designed
compounds revealed no significant anti-HIV-1 activity at
concentrations < 100µM. In an in vitro antibacterial assay
using the MIC method, the best activity was observed by
Compound 12b, which exhibited the MIC value of 39µg/mL
against S. aureus, E. coli, and P. aeruginosa. These findings
indicated that the 4-hydroxy-2-oxo-1,2-dihydroquinoline-3-
carbohydrazide scaffold provides an acceptable chemical
template for synthetic modification, probably resulting
in compounds with further promising anti-HIV-1 and
antibacterial potencies.
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