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Microbial division rates determine the speed of mutation accumulation and thus the emergence of
antimicrobial resistance. Microbial death rates are affected by antibiotic action and the immune system.
Therefore, measuring these rates has advanced our understanding of host-pathogen interactions and
antibiotic action. Several methods based on marker-loss or few inheritable neutral markers exist that
allow estimating microbial division and death rates, each of which has advantages and limitations.
Technical bottlenecks, i.e., experimental sampling events, during the experiment can distort the rate esti-
mates and are typically unaccounted for or require additional calibration experiments.
In this work, we introduce RESTAMP (Rate Estimates by Sequence Tag Analysis of Microbial

Populations) as a method for determining bacterial division and death rates. This method uses hundreds
of fitness neutral sequence barcodes to measure the rates and account for experimental bottlenecks at the
same time. We experimentally validate RESTAMP and compare it to established plasmid loss methods.
We find that RESTAMP has a number of advantages over plasmid loss or previous marker based tech-

niques. (i) It enables to correct the distortion of rate estimates by technical bottlenecks. (ii) Rate estimates
are independent of the sequence tag distribution in the starting culture allowing the use of an arbitrary
number of tags. (iii) It introduces a bottleneck sensitivity measure that can be used to maximize the accu-
racy of the experiment.
RESTAMP allows studying microbial population dynamics with great resolution over a wide dynamic

range and can thus advance our understanding of host-pathogen interactions or the mechanisms of
antibiotic action.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

During the last decade, considerable advances have been made
toward understanding the detailed population dynamics of patho-
gens [1–6]. These were made possible by theoretical [1,3,7] and
methodological developments such as signature tagging [1,8] and
next-generation sequencing [9]. Mutations mainly occur during
replication, and therefore microbial division rates are the main dri-
ver of the rates with which pathogens acquire antibiotic resistance
or evade vaccines. A complete understanding of the complex pop-
ulation dynamics from the level of individual dynamical processes,
such as division and death, offers a way to counter the rise of
antibiotic resistance [5,10,11] and for rational design of vaccines
and therapies against pathogen colonization and infection [1–4].

One set of methods for determining the division and death rate
of a microbial population relies on a single identifiable marker that
loses signal strength with each division. These markers include
phenotypic tags such as conditionally non-replicative plasmids
[12] unstable plasmids [13] and fluorescent inclusion bodies [14].
Plasmid based markers are lost during cell division from inheri-
tance in a single daughter cell or a fraction of cells. Alternatively,
fluorescent dye markers are diluted during cell growth and divi-
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sion [15,16]. The ratio of marker-to-marker-less cells or the magni-
tude of the marker signal, are used to estimate the division and
death rate. These methods yield robust and accurate rate estimates
for times short enough to ensure that the markers have not been
completely diluted out of the population. For example, Frenoy
et al. [12] used conditionally non-replicative plasmids in Escheri-
chia coli to show that mutation rates are systematically overesti-
mated in bacteria under stressful conditions unless the individual
division and death rates are taken into account. In the study by
Myhrvold et al. [14] self-aggregating fluorescent proteins were
used to estimate division rates and death rates, which were subse-
quently used to inform a mathematical model of the population
dynamics of E. coli in the mouse gut. Although successful, the appli-
cation of marker-based techniques is dependent on the assumption
that the markers are fitness neutral, i.e. do not change the wild-
type microbial division rates and death rates. This is typically
experimentally challenging to confirm within the context of
within-host infection models.

An alternative approach relies on the use of distinguishable
inheritable markers, where each marker labels a subpopulation
of cells and the change in the composition of the total population
is used to infer division and death rates by quantitative stochastic
population-dynamic approaches. In principle, these methods offer
an unlimited observation time with their accuracy limited by the
total number of unique tags. For example, sequence tags inserted
into a fitness neutral locus in the genome (wild type isogenic
tagged strains; WITS) have been successfully used to investigate
the pathogenesis of Salmonella enterica serovar Typhimurium [1]
to quantify the effects of different vaccines [3] and investigate
the colonization of the cecal lymph node [2]. Vlazaki et al. reviews
the underlying mathematical approaches for estimating rates and
the applications in more detail [15]. However, it remains unclear
how the error in the rate estimates depends on the specific exper-
imental protocol. Importantly, the impact of technical population
bottlenecks on rate estimates is typically not accounted for and
when addressed require additional calibration experiments [3].
Technical bottlenecks can change the population composition
and thereby the basis for rate estimates [17]. Bottlenecks are often
inevitably introduced during the experiment, for example when
sampling a small volume from a large volume or when sequencing
a limited number of cells. Moreover, the typical mathematical
analysis of WITS data constrains the experimental design, and
requires a uniform distribution of tags in the starting culture to
work accurately. This is experimentally challenging to achieve for
a large number of tags and therefore restricts the number of use-
able distinguishable sequence tags.

A number of studies have employed population genetic con-
cepts to study microbial dynamics qualitatively [8,18,19]. The
sequence tag-based analysis of microbial populations (STAMP)
method allows for an indefinite number of sequence tags to be
incorporated, limited only by the throughput of next-generation
sequencing. Like WITS, STAMP allows for a much longer observa-
tion time than marker-loss methods. STAMP also prescribes a sim-
ple way to aggregate the change of each individually tagged
subpopulation into a single measure, the founder population size.
The founder population size carries a simple interpretation as the
size of a population that survived a death event [20] (Fig. 1). These
events are also often referred to as bottlenecks and can correspond
to host-pathogen interactions, e.g. physical barriers, immune
defenses, nutritional limitations, etc. The smaller the size of the
founder population, compared to the initial population, the greater
the stringency of the bottleneck. This measure can be affected by
artificially changing the composition of the tagged population by
technical handling of the sample after the biological process, for
example by transferring only part of a sample by pipetting or by
1036
sequencing to an insufficient sequencing depth. These events can
be seen as random sampling events [17].

In this work, we specifically distinguish them as technical bot-
tlenecks in contrast to the biological bottlenecks due to birth–
death processes. In combination with the current bacterial burden,
measured by colony forming units (CFU), the founder population
size can help understand the detailed dynamics of a population.
For example, if the current bacterial burden is linked to a small
founder population size that would indicate growth of the
microbes, while the same bacterial burden linked to a large foun-
der population size would indicate slower growth. Loss of tag
diversity indicates bacterial death, and the more bacteria are killed,
the more tag diversity is lost. Fig. 1D illustrates how tags are lost
depending on the division or death rates. At one extreme, when
there is only death, the founder population size decreases in step
with the bacterial burden. At the other extreme, when there is only
growth, the tag diversity does not change and the founder popula-
tion size remains constant. Hence, the simultaneous time-course
data for the bacterial burden and the founder population size pro-
vides a unique signature for how rapidly cells divide and die that
has been exploited to qualitatively assess the relative contribution
to bacterial division and death events [8] (Fig. 1E). However, to
date there exists no mathematical framework for the STAMP
method able to infer these rates from CFU and founder population
size values.

In this work, we develop and expand the population genetic
framework for the STAMP method to quantify the relationship
between the founder population size and microbial division and

death rates. Our method, RESTAMP (Rate Estimates by Sequence

Tag Analysis of Microbial Populations), allows for estimating rates
via measurements of the founder population size and colony form-
ing units that are independent of the distribution of the sequence
tags. The RESTAMP method relies on estimating the magnitude of
the fluctuations in the genetic composition of cells as they undergo
random birth–death processes. Unavoidable technical bottlenecks
such as sampling a small volume and sequencing influence the
fluctuations in the genetic composition and can lead to biased rate
estimates. We show that measuring the founder population size
permits for a simple analytical scheme to correct for technical bot-
tlenecks. Finally, we propose a bottleneck sensitivity measure and
show how the bottleneck sensitivity depends on experimental
parameters. This measure can be used to design experiments to
maximize the accuracy and precision of bacterial division rate
and death rate estimates. The method is validated by simple con-
trol experiments, aimed at emulating a pure death process
(Fig. 1AB), and for cells growing in lysogeny broth (LB) media
(Fig. 1C) by comparison with the well-established marker-loss
plasmid segregation (PS) method.
2. Results – theory

In this section we develop the population genetic framework for
the experimental STAMP method (equation (1)) against the back-
drop of a random birth–death process. In subsection 2.1 we con-
sider the ideal case where there is no influence of technical
bottlenecks, e.g. due to sequencing or sampling, and derive an
equation (equation (5)) that relates the mean founder population
size to the division and death rate of a population of cells. In sub-
section 2.2 we explore the influence of technical bottlenecks on the
analysis of sequence tags for estimating division and death rates.
Here we also explore the impact of using an experimental estimate
of the reference state at time 0 by sampling. The main result of this
subsection is equation (7), which prescribes how to subtract the
influence of technical bottlenecks. In subsection 2.3 we propose a
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bottleneck sensitivity measure, the purpose of which is to quantify
the sensitivity in the rate estimates against making an error in the
bottleneck correction terms in equation (7). The rationale for the
bottleneck sensitivity measure is to maximize the variance in the
frequencies of sequence tags due to random birth–death events
relative to the variance in the frequencies induced by experimental
sampling events.

2.1. RESTAMP – bacterial division rate and death rate estimates from
the founder population size

To model the population dynamics of k (see Table 1 for the def-
inition and meaning of variables) distinguishable and independent
subpopulations of cells we adopt the standard stochastic frame-
work for which the trajectories are assumed to be continuous-
time Markov processes [22].

We consider a birth–death process where both the time until
the next event and the type of event are random variables. The
event is either a division with rate b per unit time, defined as the
inverse average time it takes for a cell to divide, or a death event
with rate d per unit time, defined as the inverse average time it
takes for a cell to die. The division rate and the death rate do not
depend on the specific sequence tag i = 1, 2, 3,. . .,k since the inser-
tion is fitness neutral. Hence, each subpopulation i undergoes ran-
dom division and death events with the same rates for a length of
time t resulting in a random subpopulation size, ni(t). Conse-
quently, the proportion of cells with a sequence tag i, fi(t), is also

a random variable where f i tð Þ ¼ ni tð Þ=N tð Þ and N tð Þ ¼Pk
i¼1ni tð Þ is

the total population size at time t. The implication is that the foun-
der population size, NB(t), as determined by equation (1), is also to
be treated as a random variable.

NB tð Þ ¼ 1
1
k

Pk
i¼1

f i tð Þ�f i 0ð Þð Þ2
f i 0ð Þ 1�f i 0ð Þð Þ

ð1Þ

The equation for the founder population size is derived in the
context of a multinomial random-sampling process, where it is
interpreted as the population size that survived a multinomial ran-
dom sampling event [20]. The equation was originally derived by
[8] for diploid organisms and adapted by [20] for haploid organ-
isms. The validity of this interpretation is contingent on a small
volume being sampled so that the proportion of subpopulation i
before sampling, fi(0), remains unchanged after sampling, fi. Here
we introduce the notation fi without an explicit time dependence
to signify that the change in subpopulation proportions are due
to a random sampling process (technical bottleneck) in contrast
to changes in subpopulation proportions due to a birth–death pro-
cess (biological bottleneck) (see Table 1). In this section, we focus
Fig. 1. Schematic of the experimental setups. (A) Illustrates a pure death process for a pop
fitness neutral location in the genome. The three magnified cells illustrate the genome w
and the fitness neutral location with a sequence tag (color of rectangle/bacterium). The i:t
size is N(0). The bacteria undergo random death events for a length of time t1 with rate d
th subpopulation is fi(t1). The founder population size at time t1, NB(t1), is calculated
(equation (1)). After an elapsed time t2 > t1 fewer cells remain with N(t2) < N(t1) and NB(t2
pure death process. The volume Dv t is sampled from a large volume in which tagged bac
cells having undergone a death process for a length of time t (A). The founder population s
used to estimate the death rate, d, as it would be in a pure death process (see 5.1 – Emula
time-dependent process, which is indicated by apostrophes around t. (B) A birth–death p
and b per unit time, respectively. By measuring the total population size and the genetic
estimated. (D) Simulation for tag loss in two populations with the same initial compositio
adopted to investigate the mean fraction of unique sequence tags (y-axis, RESTAMP) tha
population that dies more quickly than it replicates. The red line represents a population
in Figure Supplementary Fig. 1. (E) Schematic representation of the simultaneous change
for two different sets of division and death rates (light and dark red, respectively). For
constant. However, depending on the magnitude of the rates, different profiles for NB eme
reader is referred to the web version of this article.)
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on the stochastic birth–death process where we seek to relate
the founder population size to the division rate and death rate.
By taking the inverse of equation (1) and apply the mean operator,
<>, we get

< NB tð Þ�1
>¼ 1

k

Xk
i¼1

< f i tð Þ � f i 0ð Þð Þ2 >

f i 0ð Þ 1� f i 0ð Þð Þ ð2Þ

where the mean is with respect to repeating the birth–death pro-
cesses given an initial proportion, fi(0). This assumes that the initial
tag frequencies can be determined precisely. Next, we assume that
the total population size is large enough to make the error in the
approximation of the mean subpopulation proportion as
< f i tð Þ >� <ni tð Þ>

<N tð Þ> negligible. Since the mean subpopulation size for

a birth–death process is given by < ni tð Þ >¼ ni 0ð Þe b�dð Þt and the total
population size is given by < N tð Þ >¼ N 0ð Þe b�dð Þt , it follows that
< f i tð Þ >� f i 0ð Þ ¼ ni 0ð Þ=N 0ð Þ. Substituting < f i tð Þ >� f i 0ð Þ in the
numerator under the sum in equation (2) we get

< NB tð Þ�1
>� 1

k

Xk
i¼1

Var f i tð Þð Þ
f i 0ð Þ 1� f i 0ð Þð Þ ð3Þ

where by definition, Var f i tð Þð Þ ¼ < f i tð Þ �< f i tð Þ >ð Þ2 > is the vari-
ance in the subpopulation proportions. Equation (3) is likewise
valid for a multinomial random sampling process for which the
mean subpopulation size after sampling NB cells is < ni >¼ NBf i 0ð Þ
and < f i >¼< ni > =NB ¼ f i 0ð Þ. Using the error propagation method
we derive (see 5.4 - The variance in the proportion of cells with respect
to repetitions for a birth–death process) the variance in the subpopu-
lation proportions for a birth–death process which reads

Var f i tð Þð Þ � bþ dð Þ 1� e� b�dð Þt� �
b� dð ÞN 0ð Þ f i 0ð Þ 1� f i 0ð Þð Þ ð4Þ

Substituting equation (4) in (3) and making the approximation

< NB tð Þ >� 1= < NB tð Þ�1
> (i.e. the average of the inverse is not

equal to the inverse of the average) we get

< NB tð Þ >� b� dð ÞN 0ð Þ
bþ dð Þ 1� e� b�dð Þtð Þ ð5Þ

Equation (5) shows that the mean founder population size due
to a birth–death process is independent of the distribution of tags.
This simplifies the work of an experimenter aiming to estimate
bacterial division rates and death rates as care need not be taken
to produce a library of cells with a specific distribution of sequence
tags. Consequently, it becomes a simple matter to analyze an arbi-
trary number of sequence tags which are all aggregated into the
founder population size. We also note that < NB(t) > is directly pro-
ulation of bacteria with i = 1, 2, 3,. . .,k = 1000 unique 30 base pairs sequence tags at a
ithin the bacteria (black circle) with potential fitness neutral locations (rectangles)
h subpopulation is initially present with a frequency fi(0) where the total population
per unit time after which the total population size is N(t1) and the frequency of the i:
by comparing the frequency of bacteria at time t1 with the initial frequency, fi(0)
) < NB(t1). (B) Random sampling of the initial population with the aim of emulating a
teria are suspended such that the number of cells sampled is equal to the number of
ize, NB(‘t01), and the population size, N(‘t01), are determined in the sample Dvt and are
ting a death process by sampling). The random sampling process in itself is not a real
rocess that includes both death events and division events with rate d per unit time
drift in terms of the founder population size the division rate and death rate can be
n but different growth and death rates. The mathematical framework from [21] was
t survives until time t (x-axis) in a birth–death process. The black line represents a
that replicates more than it dies. The parameters for the simulation are the same as
in census population size (black dotted line) and founding population size (red dots)
both scenarios, the census population size, i.e. the total number of cells remains
rge over time. (For interpretation of the references to color in this figure legend, the



Table 1
Summary of variables used in this work.

Variable Meaning Comments

Section 2.1: RESTAMP – Bacterial division rate and death rate estimates from the founder population size
k Total number of subpopulations. For the experiments in this work, k = 1000 and corresponds to the total

number of unique 30 base pairs sequence tags.
i An index denoting a specific subpopulation of cells. The range is i = 1,2,. . .,k.
b Division rate. Defined as the inverse average time it takes for a cell to divide.
d Death rate. Defined as the inverse average time it takes for a cell to die.
r Net growth rate. The net growth rate is defined as the difference between the division rate b

and the death rate d, r = b- d.
t The length of time cells undergo a birth–death process.
<ni(t) > a,b Average number of cells with a sequence tag insertion i at time t.
<N(t)> Total average number of cells at time t.
fi(t) The proportion of cells having undergone a birth–death process for a

length of time t with a sequence tag i.
<fi(t) > denotes the average proportion of cells where the average is with
respect to realizations.
fi(0) is the proportion of cells with sequence tag i in the inoculum.

Var(fi(t)) The variance in the proportion of cells having undergone a birth–death
process for a length of time t with a sequence tag insertion at site i.

The variance is with respect to repetitions of the experiment.

fi The proportion of cells having undergone a random sampling event with a
sequence tag insertion at site i.

In this work we assume that experimental samplings (technical
bottlenecks), e.g. due to pipetting or sequencing, are modeled as random
sampling processes, whereby a subset of cells are sampled such that each
cell has the same chance of ending up in the sample.

Var(fi) The variance in the proportion of cells having undergone a random
sampling event with a sequence tag insertion at site i.

NB(t) The founder population size is calculated by comparing the proportion of
cells with tag i at time t with the proportion of cells with tag i in the
inoculum (equation (1)).

The magnitude of NB(t) signifies the biological bottleneck, where a small
NB(t) corresponds to a stringent bottleneck and vice versa. The explicit
time-dependence signifies that the founder population size is calculated for
cells having undergone a birth–death process. In contrast, NB (without time
dependence) refers to a technical bottleneck.

Section 2.2: RESTAMP – Correcting for unwanted random sampling events (bottlenecks)
mS The number of bottlenecks that the sample at time t undergoes. The typical value is mS = 2 in our experiments which include an

experimental sampling bottleneck and a sequencing bottleneck. For the
controlled death experiments, mS = 1.

mI The number of bottlenecks that the sample at time 0 undergoes. The typical value is mI = 2 in our experiments which include an
experimental sampling bottleneck and a sequencing bottleneck. For the
controlled death experiments, mI = 1.

j A specific random sampling event. The range is j = 1,2,. . .,mI for the sample at time 0 and j = 1,2,. . .,mS for the
sample at time t.

Sj The sample size of the j:th random sampling event.
Ij The inoculum size of the j:th random sampling event.
Section 2.3: RESTAMP – Bottleneck sensitivity of bacterial division and death rate estimates
NB The sample size in a random sampling event. NB is the notation used for the magnitude of a technical bottleneck e.g. the

sample size in the transferred volume when pipetting or the sequencing
depth when loading the sample on a sequencing chip.

sB(t) Bottleneck sensitivity. Defined as the ratio of the variance in the subpopulation proportions due to
a random sampling event and a birth–death process, i.e.
sB tð Þ ¼ VarB f ið Þ=VarBD f i tð Þð Þ. The purpose of SB(t) is to serve as a measure of
how sensitive division rate and death rate estimates are to technical
bottlenecks.

Section 5.1: Materials and Methods – Emulating a death process by sampling
Dvt The size of the sampled volume. This is the volume sampled to emulate a death process at time t where

Dvt = Dv0e
-dt with Dv0 being the sampled volume of the starting culture at

t = 0 (Dv0 = 1 ml in our experiments).
s The number of cells at time t for a death process or the number of cells in

the sample Dvt.
P(ni = s) The probability of sampling s cells with a sequence tag insertion at site i in

the sample Dvt.
P(ni(t) = s) The probability of s cells remaining at time t in a pure death process.
p Probability of a single cell surviving until time t. p = e-dt

Section 5.2: Materials and Methods – Plasmid Segregation (PS)
F(t) Proportion of cells with a plasmid at time t.

a All cell numbers are implicitly expressed as per unit volume.
b Averages over repetitions are denoted with angular brackets <>.
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portional to the total population size at t = 0, N(0), and is given in
units of per volume. This implies that the mean founder population
size must be expressed with respect to the same unit of volume for
equation (5) to be dimensionally consistent. For example, if N(0) is
determined as the CFU per ml and only 200 ml is sampled for deter-
mining NB, then the measured NB values need to be multiplied by 5
(200 ml � 5 = 1 ml). Using equation (5) and the exponential growth
model for which < N tð Þ >¼ N 0ð Þe b�dð Þt , we solve for the division
rate and death rate to get
1039
d � r
2

N 0ð Þ

<NB tð Þ> 1� N 0ð Þ
<N tð Þ>

� �� 1

2
4

3
5

b � r þ d

8>><
>>: ð6abÞ

where r is the net growth rate and can be experimentally estimated
as the slope of a regression line of ln(CFU) versus time.



Fig. 2. The bottlenecks in a typical experimental setup for RESTAMP rate estimates. The schematic lays out a typical experimental setup to determine division and death rates
of cells by RESTAMP. An initial population with i = 1,2,. . .,k = 4 unique sequence tags, indicated by green, purple, beige and blue color, respectively, undergoes a birth–death
process (biological bottleneck; indicated by red arrows) for time t with division rate b [min�1] and death rate d [min�1]. At the beginning of the experiment and at time t, S1
cells are sampled, i.e. pass through a technical bottleneck (small opening in big grey bars). This could for example represent harvesting a set of cells during a time-lapse
experiment. This changes the proportion of subpopulation i from fi(t) to fi,1. Following genome extraction (black loops), the genetic tag regions (colored triangles) are
amplified by PCR, which we assume is unbiased. Hence, the proportion of the subpopulations do not change and remain fi,1. The amplified tag regions are then sequenced,
which constitutes another technical bottleneck (grey bars), where S2 sequence reads are sampled and the proportions are changed from fi,1 to fi,2. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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2.2. RESTAMP – Correcting for technical bottlenecks

Equations (6ab) prescribe how to estimate the division rate and
death rate from CFU measurements and NB measurements assum-
ing that the only contribution to the variance in the subpopulation
proportions in equation (3) is due to a birth and death process.
Another implicit assumption made with regard to equation (3) is
that the variance is conditional on fi(0) which means that fi(0) is
treated deterministically. However, a typical experiment involves
additional technical bottlenecks that add to the variance in the
subpopulation proportions. For example, sequencing is a technical
bottleneck due to the limited capacity of the sequencing chip and
sample preparation can impose bottlenecks. Additional technical
bottlenecks include sampling the initial proportions which means
that fi(0) in itself is a random variable. The aim of this section is
to understand how to subtract the added variance in the subpopu-
lation proportions due to technical bottlenecks so that the experi-
mentally determined founder population size value is consistent
with the assumptions made in deriving equations (6ab) for esti-
1040
mating the bacterial division rate and death rate. Equation (3) is
central in this endeavor and whose derivation (see 2.3 RESTAMP -
Bottleneck sensitivity of bacterial division rate and death rate esti-
mates) relied on the approximation < fi|fi(0)>� fi(0), where < fi|
fi(0) > is the mean tag proportions conditional on the tag distribu-
tion at t = 0. In this section fi(0) is treated as a random variable,
hence < fi>=<fi(0) > by the law of total expectation [23]. Thus, for
the derivation of equations (6ab) to be valid the initial proportions
in equation (1) need to be substituted for the average initial pro-
portion, <fi(0) > . Experimentally, we use triplicate samples of
fi(0) to estimate the mean initial proportions of sequence tags,
<fi(0)> (see 6.7-RESTAMP). To separate the contributions from a
birth–death process to NB and the contributions due to sampling
bottlenecks we iteratively apply the law of total expectation and
the law of total variance to propagate the variance in the frequency
of sequence tags throughout the experiment illustrated in Fig. 2A
(see 6.5 – Correcting for technical bottlenecks by the iterative applica-
tion of the law of total expectation and the law of total variance).
From this analysis we find that subtracting the added genetic vari-
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ation due to j = 1,2,..,mI technical bottlenecks of size Ij at time 0 and
j = 1,2,..,mS technical bottlenecks of size Sj at time t, can be achieved
by analyzing the frequency of sequence reads according to

< NB tð Þ >

� 1
1
k

Pk
i¼1

f i tð Þ�<f i 0ð Þ>ð Þ2
<f i 0ð Þ> 1�<f i 0ð Þ>ð Þ �

PmS
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where <Sj> is the j:th sequential mean sample size taken at time t
and <Ij> is the j:th sequential mean sample size at t = 0 taken to esti-
mate <fi(0)>. Equation (7) corresponds to the equation used in [8] to
analyze data formI =mS = 1 and is validated against simulations and
experiments in section 3. Stochastic Simulations and Experimental
Results. The typical experimental setup for RESTAMP used in this
work is illustrated in Fig. 2 which highlights the technical bottle-
neck events where mI = mS = 2.

2.3. RESTAMP – Bottleneck sensitivity of bacterial division and death
rate estimates

Tight technical bottlenecks can affect growth and death rate
determination despite corrections. How much technical bottle-
necks affect rate determinations and the impact on experimental
design remain unanswered questions. The variance in the subpop-
ulation proportions determines the magnitude of the founder pop-
ulation size (equation (3)), and the total variance is
approximatively the sum of the variances due to a birth–death pro-
cess (VarBD) and a bottleneck event (VarB). Hence, if
VarB f ið Þ=VarBD f i tð Þð Þ approaches 1 then VarBD f i tð Þð Þ � VarB f ið Þ
and the technical bottleneck event becomes dominating. As a
numerical and artificial example, if VarB(fi) is 100 and VarBD(fi) is
1 then the total variance is 101. Suppose that the error in estimat-
ing the sample sizes in equation (7) has an error rate of 10% due to
experimental noise. Thus, one might conceivably estimate the bot-
tleneck correction term to be 90. The variance due to the birth–
death process is then estimated as (1 + 100)-90 = 11. This overes-
timates the variance by one order of magnitude and results in a one
order of magnitude underestimation of the founder population size
values and approximately a one order of magnitude overestimate
in the rates according to equations (6ab). In another case, one
might estimate the correction term to be 110 which would lead
to a negative founder population size value. While negative foun-
der population size values cannot be used to estimate rates, they
are a strong indicator of the presence of very stringent technical
bottlenecks. Considering the reverse situation where VarBD(fi) is
100 and VarB(fi) is 1, the impact of experimental noise due to tech-
nical bottlenecks is negligible. Thus, we define a bottleneck sensi-
tivity measure, sB(t) = VarB f ið Þ=VarBD f i tð Þð Þ.

The variance in the subpopulation proportions due to a birth–
death process is given by equation (4) and is derived in 5.4 - The
variance in the proportion of cells with respect to repetitions for a
birth–death process. For a technical bottleneck event, modeled as
a multinomial random sampling process, the variance is
VarB f ið Þ ¼ f i 0ð Þ 1� f i 0ð Þð Þ=NB where the sample size is NB. The bot-
tleneck sensitivity measure is therefore given by

sB tð Þ ¼ VarB f ið Þ
VarBD f i tð Þð Þ �

r
bþ dð Þ 1� e�rtð Þ

N 0ð Þ
NB

ð8Þ

Equation (8) shows that the bottleneck sensitivity, sB(t),
increases with smaller sample sizes (NB) as expected. What might
be less intuitive is the dependence of sB(t) on the total population
size at t = 0. This results from the variance in the proportion of
cells, due to a birth–death process, being smaller for larger popula-
tion sizes (equation (4)). Importantly, the total population size at
t = 0, N(0), is implicitly expressed as per unit volume, which means
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that sB(t) is also a quantity that depends on the volume. Since CFUs
are typically reported as per ml, we define sB(t) to be in a volume of
1 ml meaning that the value for N(0) to be put into equation (8) is
the CFU count per ml. We perform control experiments to find a
threshold value for sB(t) below, which we expect to result in accu-
rate rate estimates in section 3. Another feature of equation (8) is
that sampling bottlenecks can become much more important to
account for than the sequencing bottleneck. For example, consider
a sampling bottleneck where 2x105 cells are sampled for determin-
ing the founder population size. After genome extraction, shearing,
and PCR amplification, the sequence tags are sequenced on a chip
with a capacity of the order of 2x107 sequence reads. Hence, the
variance in the subpopulation proportions due to the sampling
bottleneck are 100 times higher than for the sequencing bottle-
neck. Failure to correct for the sampling bottleneck as prescribed
by equation (7) will result in underestimating the founder popula-
tion size due to a birth–death process and consequently overesti-
mating the division rate and death rate (equations (6ab)).

Equation (8) also shows that technical bottlenecks become
more dominating for shorter times, or for stationary-like cells
where the division rate and death rate are small in magnitude.
Shorter times and smaller rates will therefore magnify technical
bottleneck effects and could potentially lead to overestimating
the rates. Importantly, the bottleneck sensitivity measure depends
on experimentally controllable parameters. Using an estimate of
the individual rates as b�r, d�0 for a growing population of cells
or b�0, d�r for a dying population of cells we can plan the exper-
iment so that the sensitivity is minimized and the accuracy of rate
estimates maximized.
3. Results – stochastic simulations and experiments

We first test the theory developed in section 2 by comparing
against stochastic tau-leaping simulations [24] for the case of cells
dying on average with d = 0.03 min�1, b = 0.01 min�1 (Fig. 3A, 3B
and 3C) and for cells growing on average with d = 0.01 min�1,
b = 0.03 min�1 (Fig. 3D, 3E and 3F) for t = 120 min. The sequence
tag distribution at t = 0 is geometric with the probability parameter
set to 1/1000 for k = 1000 unique sequence tags, which results in
an inoculum size, N(0), of approximately 106 cells. This is sufficient
information to calculate the theoretical average founder popula-
tion size (equation (5)) as a function of time, shown as red dotted
lines in Fig. 3A and 3D. The corresponding stochastic tau-leaping
simulations were ran for 100 iterations with the founder popula-
tion size calculated using equation (1) for each iteration. The mean
and the standard deviation for both the NB values (black dashed
line) and the CFU values (black solid line) where subsequently cal-
culated and plotted in Fig. 3A and 3D. Fig. 3A and 3D show an
excellent agreement between the theoretical average founder-
population size and the simulated average. Next, we use equations
(6ab) to determine the division and death rate for both cases
(Fig. 3B and 3E). The estimated death rate (solid red line) and divi-
sion rate (solid blue line) agree very well with the target rates
(dashed lines), with the deviations being negligibly small.

Lastly, we tested equation (7) which prescribes how to correct
for technical bottlenecks, including sampling from a larger volume
and sequencing with a limited chip capacity. The population at
t = 120 min and the inoculum, the population at t = 0, undergoes
two random sampling events (m = 2) where I1 = I2 = S2 = 106 and
S1 = 105. The ideal NB value without any added technical bottle-
necks, the estimated NB value without correction terms (equation
(1)) and the estimated NB value with correction terms (equation
(7)) are plotted in Fig. 3C and 3D. The results show excellent agree-
ment between the theoretical mean NB value and the NB value as
calculated using equation (7) with technical bottleneck correc-



Fig. 3. The theoretical framework for RESTAMP agrees well with stochastic tau-leaping simulations. (A) A population of k = 1000 distinguishable cells undergo a random
birth–death process with d = 0.03 min�1 and b = 0.01 min�1 for 120 min with a geometrical tag distribution at t = 0 with the probability parameter set to 1/1000. The
stochastic tau-leaping simulations were ran using StochKit2 [24] with a time-step 0.01 for 100 iterations. A custom script for generating the input file to StochKit2 is available
on SourceForge (see 6 – Code). The proportion of subpopulations was determined for each time point and the founder population size was calculated using equation (1). The
mean founder population size and the standard deviation were next determined and plotted as a function of time (black dashed line). The CFU were calculated by summing
the i = 1,2,. . .,k subpopulations at each time point after which the mean (over iterations) CFU and the standard deviation were determined (black solid line). The theoretical
founder population size values were calculated using equation (5) (red dotted line). (B) Using the mean CFU and mean NB values illustrated in (A) we estimate the division
rate and death rate over time using equations (6ab). (C) The population of cells at t = 120 min undergo two sequential multinomial random sampling events (technical
bottlenecks) where the sample sizes S1 = 105 and S2 = 106 were taken. The inoculum (population at t = 0) also underwent two sequential random sampling events where the
sample sizes I1 = I2 = 106 were taken. The founder population size was then calculated according to equation (1) which does not include bottleneck corrections and equation
(7) which includes bottleneck corrections. The target founder population size without any technical bottlenecks is also shown and corresponds to the founder population size
at t = 120 min before sampling. (D-F) Same as (A-C) except d = 0.01 min�1 and b = 0.03 min�1. The lower bound for the standard deviation in (F) is not shown on a log scale
since it is negative, i.e. the standard deviation is larger than the mean NB value. The mean and the standard deviation of the founder population size values are <NB>=
{5.5 � 105, 6.6 � 104, 6.1 � 105 and Std(NB)={2.5 � 104, 3.2 � 103, 7.1 � 105} for the results plotted in (F). The corresponding values for (C) are <NB>={4.9 � 104, 3.0 � 104,
4.9 � 104} and Std(NB)={2.5 � 103, 1.5 � 103, 4.1 � 103}. All scripts for reproducing these results are provided on SourceForge (see 6 – Code). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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tions. However, we observe that the standard deviation relative to
the ideal case without technical bottlenecks increase more when a
sample is very small relative to the total population size. Notably,
the standard deviation can even be larger than the mean founder
population size value (Fig. 3F). It is therefore important to carefully
design experiments aimed at estimating division rates and death
rates to minimize this source of error. Figure Supplementary
Fig. 2 shows additional stochastic simulation results where the
accuracy and precision in rate estimates are compared to the cor-
responding bottleneck sensitivities. The results show that the accu-
racy and precision for RESTAMP rate estimates increase as the
magnitude of the bottleneck sensitivity decrease.

Next, we tested the RESTAMP method by devising a control
experiment where we controled death rates (see 5.1 - Emulating
a death process by sampling). We aimed to emulate a pure death
process by sampling a volume Dvt = Dv0e

-dt from a flask that con-
tained E. coliMG1655 cells tagged with k = 1000 unique, 30 bp long
sequence-tags that are fitness neutral as experimentally verified
(Figure Supplementary Fig. 3). The target division rate is 0 and
the death rate and time points can be freely chosen. We set a high
target death rate of d = 0.1 min�1 and a low target death rate of
d = 0.015 min�1. The time points were set to t={20,25,30,35,40}
min. The sampled volume of the inoculum at t = 0, Dv0, was 1 ml
and equation (7) was used to calculate the founder population size
values for each time point with mI = mS = 1 bottleneck corrections
due to the limited sequence chip capacity. The specific instantia-
tion of equation (7) used to analyze the sequence reads for this
experiment is therefore

NB tð Þ � 1
1
k

Pk
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f i tð Þ�<f i 0ð Þ>ð Þ2
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In addition, matching a death-process with a multinomial ran-
dom sampling process requires scaling the NB values by the factor
1/(1-p) where p = e-dt (see 5.1 - Emulating a death process by sam-
pling). The mean founder population size at each time point and
the corresponding mean CFU were substituted into equations
(6ab) to estimate the bacterial division rate and death rate. The
mean CFU at t = 0 was determined by serial dilution. The CFU
was determined as < N(0) > e-dt at time t. We also performed the
same experiment using plasmid (pAM34-Plac) containing cells
and the established plasmid segregation method to estimate rates
(Materials and Methods – Plasmid Segregation) [12]. Fig. 4F illus-
trates a simple schematic of the experimental workflow.

Fig. 4A shows the mean estimated rates and the standard error
of the mean, at all time points, for the high death rate experiment.
The corresponding data for the low death rate experiment is shown
(Fig. 4B). The mean rate estimates (diamond markers) agree well
with the target death rates and division rate of 0 for both methods.
However, RESTAMP does have a slight propensity to overestimate
the rates, particularly for the high death rate case. From the
time-resolved RESTAMP rate estimates we see that much of the
contribution to the noise is for the shorter time points (Fig. 4C),
where we also observe larger fluctuations in the mean rate esti-
mates. In contrast, the time-resolved RESTAMP rate estimates for
the low death rate experiment are robust (Fig. 4D). We exploit this
difference between the high death rate and the low death rate
experiments to define a threshold for the sensitivity measure
sB(t) (equation (8)), below which we expect rate estimates to be
accurate and robust against making an error in estimating the
technical bottleneck correction terms in equation (7). The sensitiv-
ity measure is plotted in Fig. 4E for the high death rate (black line)
and the low death rate (magenta line) experiments, where the



Fig. 4. The death rates and division rates in an emulated death process are accurately determined by the RESTAMP and PS methods. A pure death process is emulated by
sampling different volumes from a starting culture to correspond to different time points in a death process (see 5.1 – Emulating a death process by sampling). (A) The target
division rate for a pure death process is 0 (magenta dashed line) and the target death rate was set to 0.1 min�1 (black dashed line). The time points for the RESTAMP
experiment were set to t = {20,25,30,35,40} min and 3 repetitions of the experiment were performed. The diamond marker shows the mean estimated rate in a sample size of
15 rates determined for each time point and experiment. The bars show the standard error of the mean. The chosen time points for the plasmid segregation experiment were
set to t = {20,40,60,80} min and 3 repetitions of the experiment were performed. (B) Same as (A) except the target death rate was set to 0.015 min�1 and the time points for
the plasmid segregation experiments were set to t={20,25,30,35} min. (C) Time resolved division rate and death rate estimates for the high death rate case where the target
death rate is 0.1 min�1 (black dashed line) and the target division rate is 0 (magenta dashed line). For each time point, the mean value (diamond marker) and the standard
error of the mean are shown. (D) Time resolved division rate and death rate estimates for the high death rate experiment, where the target death rate is 0.015 min�1 (black
dashed line) and the target division rate is 0 (magenta dashed line). For each time point, the mean value (diamond marker) and the standard error of the mean are shown. (E)
The bottleneck sensitivity was calculated using equation (8) for the individual high death rate (HDR – black solid line) and the low death rate experiments (LDR – magenta
solid line) (Figure Supplementary Fig. 4) where the plot shows the mean bottleneck sensitivity ± S.D. A threshold value of sB(t) = 0.17 for the bottleneck sensitivity was set to
correspond to robust rate estimates (red dashed line) at t = 35 min. (F) A simple schematic of the experiment. Different size volumes (Dvt) are sampled from an Erlenmeyer
flask which contains either a population of cells with a sequence tag (STAMP) or a population of cells with an identifiable plasmid (PS) in LB media. The size of the volumes
was determined so as to emulate a pure death process (see 5.1 – Emulating a death process by sampling). Colony forming units (CFUs) were determined by serial dilution for the
largest volume (corresponding to t = 0) and extrapolated to the pre-determined time points in (C-D). For the RESTAMP method, the genomes were extracted and tag
frequencies were determined by next-generation sequencing. For the PS method the fraction of cells carrying the conditionally replicative plasmid were determined by
selective plating. The experiments were repeated biologically independently three times. Rate estimates for all trials at each time point and experimental CFU and NB values
are available for download on SourceForge (see 6 – Code). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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parameter NB was set to 2x107 (i.e. the sequencing bottleneck) in
equation (8). The total population size at t = 0, N(0), were experi-
mentally determined to be 5.8x105 CFU/ml for the high death rate
experiment and 7.7x104 CFU/ml for the low death rate experiment.
The graph shows that sB(t) is larger for the high death rate exper-
iment, primarily a consequence of N(0) being larger by a factor
7.5. A larger N(0) means that the variance in the subpopulation
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proportions due to the death process is smaller. Hence, the vari-
ance due to technical bottlenecks becomes more dominating and
the sensitivity in the rate estimates increases. The death rate esti-
mates for the high death rate case are robust after 25 min, however
we do notice large fluctuations for the bottleneck sensitivity value
at t = 25 min and at t = 30 min. . Therefore, we set a threshold
sB(t) = 0.17, corresponding to the bottleneck sensitivity value at



Fig. 5. Estimated division rates and death rates for RESTAMP and PS for cells growing in LB media. (A) Net growth rate estimates at each time point for three repetitions of a
plasmid segregation experiment. The diamonds and bars show the standard error of the mean. (B) Estimates of average division rates using the plasmid segregation method
(diamonds) where the bars show the standard error of the mean. (C) Estimates of average death rates using the plasmid segregation method (diamonds) where the bars show
the standard error of the mean. (D) A linear regression of the natural logarithm of the CFUs versus time. The slope p1 is the average net growth rate with the 95% confidence
interval given in parenthesis where p1 = 0.02547 (0.01984, 0.03111) min�1 and p2 = 12.2 (11.93, 12.48) min�1. (E) Estimated division rates using the RESTAMPmethod at each
time point of the experiment (black circles). The black dashed line is the average division rate and the blue dashed line is the net growth rate. (F) Estimated death rates using
the RESTAMP method (magenta circles). The dashed magenta line is the average estimated death rate and the blue line is a death rate of 0. (G) The bottleneck sensitivity (y-
axis, black solid line)) for sequencing was calculated according to equation (8) where r = b = 0.025 min�1, t={20, 40, 60, 80} min, N(0) = 1.95 � 105 CFU/ml and NB is the mean
sample size on the sequencing chip (S2) where <S2> = {8.643 � 105, 1.16 � 106, 9.4751 � 105, 1.3145 � 106}. The red dashed line corresponds to the bottleneck sensitivity
threshold, 0.17. (H) A simple schematic of the experiment also illustrated in Fig. 1C. Samples were taken from an Erlenmeyer flask, which contains either a population of cells
with a sequence tag (STAMP) or a population of cells with an identifiable plasmid (PS) in LB media after growing for time t. Colony forming units (CFUs) were determined by
serial dilution for all samples in triplicates. For the RESTAMP method, the genomes were extracted and tag frequencies were determined by next-generation sequencing. For
the PS method the fraction of cells carrying the conditionally replicative plasmid were determined by selective plating. The experiments were repeated biologically
independently three times. Rate estimates for all trials at each time point and experimental CFU and NB values are available for download on SourceForge (see 6 – Code). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

A. Mahmutovic, Aaron Nicholas Gillman, S. Lauksund et al. Computational and Structural Biotechnology Journal 19 (2021) 1035–1051
t = 35 min. From the definition of sB(t) in equation (8), this means
that the variance in the frequency of subpopulation i due to ran-
dom birth–death processes in a volume of 1 ml should be at least
5 times larger than the variance due to sampling. Fig. S4 shows the
rate estimates and the bottleneck sensitivities for the individual
replicates at all time points.

Next we perform an experiment for bacteria growing in com-
plex media (LB) where we do not control the division and death
rates. Fig. 5H illustrates a simple schematic of the experimental
workflow. Fig. 5A shows the mean net growth rate and the stan-
dard error of the mean of three repetitions of the plasmid segre-
gation experiment where the bacteria grow for a time t=
{20,40,60,80} min. The mean net growth rate is stable at approx-
imately 0.025 min�1 corresponding to a generation time of
28 min. Fig. 5B and 5C show the plasmid segregation division
and death rate estimates, respectively. Here we see that the divi-
sion rate is close to the net growth rate, meaning that the bacte-
ria are not dying. The death rates are close to 0, although may be
estimated as negative due to experimental noise. Hence, we
expect that the RESTAMP rate estimates produce the same result
with no death and a division rate close to the net growth rate.
Fig. 5D shows the natural logarithm of the CFUs as estimated in
the RESTAMP experiment at the time points t={20, 40, 60, 80}
min. The slope of the regression line is an estimate of the net
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growth rate of 0.025 min�1. Fig. 5E and 5F show the division
and death rate estimates for each time point, respectively. Here
we see that the division rate estimates are accurate where the
mean division rate over all time points (black dashed line) corre-
late very close to the net growth rate (blue dashed line). Likewise,
we see that the death rate estimates are close to 0, and can
potentially be estimated as negative due to experimental noise
as discussed in section 2.3 RESTAMP - Bottleneck sensitivity of bac-
terial division rate and death rate estimates. Fig. 5G shows the mag-
nitude of the experimental bottleneck sensitivities for sequencing
where the dashed red line correspond to the bottleneck sensitiv-
ity threshold, sB(t) = 0.17. Since the bottleneck sensitivities exceed
the threshold value we expect that the rate estimates are more
sensitive to making errors in estimating the bottleneck correction
terms in equation (7). We confirm this by reanalyzing the data
without bottleneck correction terms using equation (1) and com-
paring with the rate estimates with bottleneck correction terms
(Figure Supplementary Fig. 5). Important to note is that the
RESTAMP rate estimates need to be closely integrated with the
experimental protocol. In this experiment we have two technical
bottleneck events (Fig. 2), the first from sampling 200 ll and the
second from sequencing (Fig. 5H). Therefore, mI = mS = 2 and the
specific instantiation of the equation used to calculate NB values
(equation (7)) is
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where <I1> = 3.9x104 CFUs and <S1> = {7.5 � 104, 9.7 � 104,
1.8 � 105, 3.2 � 105} CFUs corresponding to each time point t=
{20,40,60,80} min for the sampling bottleneck. For the sequencing
bottleneck we have <I2> = 1.04 x106 sequence reads and <S2> =
{8.643 � 105, 1.16 � 106, 9.4751 � 105, 1.3145 � 106} sequence
reads.

4. Discussion

Powerful methods have been devised to investigate the detailed
population dynamics of pathogens in order to gain insight into the
disease causing mechanisms and establish guiding principles and
strategies for disease prevention. Typically, these methods are
based on tracking and identifying a marker that loses signal
strength as the cells divide or die. Plasmid segregation (PS) have
been shown to be a very capable method which uses conditionally
non-replicative plasmids as the marker [12]. Since the proportion
of cells that contain a plasmid decrease exponentially with time
(Materials and Methods – Plasmid Segregation), the PS method and
other marker-based techniques work best during a short time win-
dow. It can also be experimentally challenging to ensure that the
accessory genes or fluorescent markers of the plasmids do not
change the wild-type division and death rates, especially in the
context of within-host infection models. Methods such as WITS
can overcome some of the limitations of the plasmid segregation
method [1]. The WITS method infer migration rates, division rates
and death rates based on changes in the composition of tags in the
total population. The tradeoff is that WITS is more sensitive to
technical bottlenecks, e.g. sampling and sequencing, as these influ-
ence the variation in the genetic composition of the total popula-
tion [17]. However, it should be noted that previous work have
taken steps towards detecting technical bottlenecks in [25,26]
which is summarized in [27]. In addition, the mathematical analy-
sis of WITS data relies on the assumption that the tags are initially
evenly distributed [1–3]. Consequently, these studies are typically
constrained to using ~ 10 tags, which limits the accuracy in the rate
estimates.

In this work, we develop the RESTAMP method (Rate Estimates

by Sequence Tag Analysis of Microbial Populations) that takes into
account, and corrects for, the impact of technical bottlenecks. The
mathematical framework for RESTAMP is constructed on top of the
experimental STAMP method [8] and provides a simple way to
aggregate information about many sequence tags into a single
measure; i.e. the founder population size. Hence, our method can
handle any number of DNA sequence tags, limited only by the
sequence chip capacity. Furthermore, we show that the average
founder-population size is independent of the initial tag distribu-
tion. This simplifies the process of estimating rates for the experi-
mentalist, as the sample does not require an exact composition of
tags.

The independence of the mean founder population size on the
sequence tag distribution at t = 0 (equation (5)) relies on a fixed
initial tag distribution, fi(0). Ideally, this means that the samples
taken to determine mean founder population size values exactly
reflect the sequence tag distribution of the population they were
sampled from, regardless of the initial distribution. However, it is
experimentally challenging to completely remove the influence
of sampling on tag distributions. Thus, to minimize the effect of
sampling on the accuracy of the rate estimates, multiple samples
are taken from the same culture. Ultimately, we find that the
impact of this variation is minimal since we get reasonable rate
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estimates as validated by control experiments and by comparison
with the PS method (Figs. 4 and 5).

The successful application of the bottleneck corrections is con-
tingent on an accurate measurement of the CFUs used to determine
the sample sizes. Severely underestimating the sample size can
result in calculating a negative founder population size value. Even
with an accurate CFU estimate, there is also a chance to produce
negative founder-population size values in the presence of strin-
gent technical bottlenecks. This is due to the noise from random
division and death events being overwhelmed by the magnitude
of stochastic variation induced by technical bottlenecks (see 2.3
RESTAMP – Bottleneck sensitivity of bacterial division rate and death
rate estimates). We used this to define a bottleneck sensitivity mea-
sure, sB(t), in the rate estimates as the ratio between the variance in
the subpopulation proportions due to a birth–death process and
the variance due to a multinomial random sampling event used
to model a technical bottleneck. By devising a control experiment,
we a priori set the target death rate by emulating a death process-
ing by sampling (see 5.1 – Emulating a death process by sampling)
and find a threshold for the sensitivity measure, below which we
expect the rate estimates to be robust and accurate (Fig. 4). For
the experimental results illustrated in Fig. 5 we find that the
bottleneck sensitivity is larger than the sensitivity threshold. We
therefore expect that the rate estimates are more sensitive to mak-
ing an error in the bottleneck correction terms in equation (7). We
confirm this by comparing the rate estimates with and without
bottleneck correction terms in Figure Supplementary Fig. 5.

The sensitivity measure predicts an increasingly accurate rate
estimate for longer observation times. In control experiments, we
find that the relative fluctuations (the standard error of the mean
relative to the mean) are 16–23% for the high death rate case
(d = 0.1 min�1) and 18–21% for the low death rate case
(d = 0.015 min�1) (Fig. 4). We find that the magnitude of the rela-
tive fluctuations are more stable at 18–21% at each time point as
expected based on the shallow slope of the bottleneck sensitivity
measure versus time (Fig. 4E - magenta line). By comparison with
the PS method, RESTAMP mean rate estimates are slightly closer to
the target division and death rates. In terms of the uncertainty in
the rate estimates, RESTAMP performs equally well as the plasmid
segregation method. However, the advantages of RESTAMP comes
into the forefront when it is experimentally challenging to assess
whether the plasmids are fitness-neutral or where long observa-
tion times (Figure Supplementary Fig. 1) are needed; e.g. in study-
ing within-host population dynamics.

In Figure Supplementary Fig. 1 we investigate the precision and
accuracy of rate estimates as a function of time up until 24 h for
both RESTAMP and PS by performing stochastic tau-leaping simu-
lations. If the cells are growing, on average (Figure Supplementary
Fig. 1A) we observe a practically unlimited observation time with
RESTAMP while PS is limited to ~ 17 h. The reason is that the plas-
mid containing cells are unaffected by division events and are lost
on average at a rate proportional to e�dt . However, the precision
and the accuracy of the rate estimates using the PS method are
very robust during the time window where PS works. This remains
true for the PS method also in the case when cells are dying (Fig-
ure Supplementary Fig. 1B), where on average the observation time
is reduced to ~ 5 h as the death rate for the cells is increased. The
RESTAMP observation time also becomes limiting for this case
where we observe a deterioration in the precision of the rate esti-
mates beginning at ~ 5–6 h, a consequence of lost sequence tags. To
calculate the fraction of unique sequence tags that survives until
time t in a birth–death process, we adopted the mathematical
framework for a transposon insertion sequencing experiment
[21]. The variables are reinterpreted in the context of RESTAMP
where the number of transposon insertion sites correspond to
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the number of barcodes (k = 1000). The fitness coefficients (wi) are
set to 1 and the equation for the extinction probability for a birth–
death process was used (equation (6) in [21]). The extinction prob-
abilities were subsequently used to calculate the mean reduction
in library complexity (equation (8) in [21]), interpreted as the frac-
tion of unique sequence tags that survives until time t. Upon mul-
tiplying the fraction of sequence tags by k we get the number of
unique sequence that survives until time t. This is plotted in Fig-
ure Supplementary Fig. 1D for both the case of cells growing on
average and for cells dying on average. For the former case we
do not observe any loss of tags while for the latter the number of
tags decrease as a function of time where there is less than 400
tags at 5–6 h. In principle, one could increase the initial population
size to drive the observation times to be longer for both methods.
For example, in Figure Supplementary Fig. 1C the inoculum size
was increased by a factor of 100 to N(0) = 108 for the case of cells
dying on average.

In summary, it might be advantageous to increase the number
of unique sequence tags prior to executing a RESTAMP experiment
to buffer against loss of accuracy depending on whether severe
death events are expected. To aid in this decision, this type of anal-
ysis could be used to estimate the expected number of extinct
sequence tags, e.g. in within-host infection models, from the CFU
time-course data by setting r�d for cells dying on average.

The RESTAMP method abstracts away the details of the under-
lying stochastic dynamics that drive birth–death processes and
simplifies the analysis of an arbitrary number of sequence tags
by providing an explicit equation relating the division and death
rates with the average NB and CFU values (equations (6ab)). It
was previously shown that the accuracy of NB estimation can be
improved by increasing the number of sequence tags [8]. Hence,
there is potential for the accuracy of the rate estimates to improve
with respect to the founder population size. However, there is a
limit to this improvement due to other unavoidable sources of
experimental errors. For example, the PCR amplification step might
not be unbiased and error in CFU determination is heavily influ-
enced by the experimentalist’s consistency in methodology (e.g.
sample dilution, time to plate samples, counting). We minimized
potential technical bottlenecks due to PCR by minimizing the num-
ber of amplification cycles and performing the amplification in
triplicate and pooling the results. Our experimental results suggest
that the best way to increase the accuracy is to take the average of
multiple rate estimates as the average rates accurately approxi-
mate the target rates (Fig. 4AB).

The quantitative analysis of WITS data typically relies on
expressing the dynamics in the form of a master equation, i.e. an
equation for the probability of having a certain number of cells
at a particular time point, whereby the rates are inferred using
maximum likelihood estimates [1–3]. In contrast, RESTAMP
abstracts away the details with respect to the master equation that
drives the stochastic population dynamics. It is centered on analyz-
ing the frequency of sequence tags by defining a particular function
of the frequencies, e.g. equation (1) for the founder population size,
such that it becomes relatively simple to tie it to experiments and
correct for unavoidable technical bottlenecks.

A recent alternative approach employed the moment-closure
method where a system of ordinary differential equations for the
mean, variance, and covariance in the subpopulation sizes are
solved for, and the rates inferred by adopting an appropriate diver-
gence measure between the WITS data and the generated
moments [7]. Likewise, the RESTAMP approach for inferring rates
also depends on higher order moments, namely the variance in
the proportion of subpopulations (equation (3)). Theoretically,
the calculation of the average founder population size can be inte-
grated with the moment-closure framework which would allow
RESTAMP to also estimate migration rates in addition to division
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and death rates. By expressing the mean founder population size
in terms of the first and second moments, we can expand to a
multi-compartment model with arbitrary topology and location
dependent division, death, and migration rates. This approach
would allow RESTAMP to determine rates for bacteria that are
not strictly growing exponentially, e.g. logistic growth, in multiple
compartments and is best studied in the context of a within-host
infection model.

Nevertheless, the RESTAMP framework as is can be used to pro-
vide a low-resolution picture of in vivo dynamics by treating the
animal model as a single compartment. The first step in using
RESTAMP to plan an in vivo or an in vitro experiment is to measure
CFUs over time, i.e. a growth curve. The growth conditions for this
experiment must be the same as the growth conditions that will
later be used to determine division and death rates. It is not neces-
sarily required to use the barcoded library of cells, as long as the
used strain and the final tagged library have the same division
and death rates, e.g. when the used tags are fitness neutral and
the CFUs over times are measured with the untagged parental
strain. Our model is restricted to exponential growth or decay.
The CFU over time data can be used to check if the growth condi-
tions fulfill this requirement and given a certain inoculum size, the
time interval of exponential growth or decay can be determined. In
this interval, the net growth rate r can be estimated. Next, it is nec-
essary to identify whether the environment is particularly hostile
to the cells. If there is a sharp decrease in the CFUs over time, then
it might be necessary to increase the number of identifiable sub-
populations (k) to buffer against barcode extinction events. The
number of identifiable subpopulations should be at minimum
k = 400–500 [8]. Whether this is a necessity can be checked by set-
ting r�d and using the rationale as discussed above to plot a graph
corresponding to Figure Supplementary Fig. 1D and read out the
number of tagged subpopulations that survives until time t. The
next step is to identify the number of technical bottlenecks in
the experiment that all samples are subjected to, i.e. at time 0
(mI) and at time t (ms) (Fig. 2). In principle, all technical bottlenecks
can be accounted for. However, in this work we only consider the
two (ms = mI = 2) major technical bottlenecks, which typically are
the harvesting of the cells from the growth environment and the
limited sequencing depth of next-generation sequencing. This will
normally remain true in an in vivo experiment, where all the cells
are harvested from the organ of interest and then sampled and
loaded onto a sequencing chip. The next step is to estimate the
sample sizes for each technical bottleneck, e.g. the number of har-
vested cells (S1, I1) or the number of generated sequences (S2, I2).
These are required to calculate the bottleneck sensitivity, sB(t).
Within the constraints of the experimental setup, these can be
freely chosen. At this point the experimenter only needs an esti-
mate of the division rate b and the death rate d to calculate sB(t)
for each sample by using equation (8). The number of cells per
ml at the beginning of the experiment is known (N(0)), the net
growth rate is known (r), the sampling time is known (t) and the
sample size is known (NB). For a first estimate the (b + d) term in
equation (8), one can set r�d for a dying population of cells or
r�b for a growing population of cells. A better approach would
be to calculate sB(t) over a range of biologically plausible division
and death rates. For example, if the minimum expected time until
the population doubles in size is ~ 15 min then the maximum divi-
sion rate is ln(2)/15 min�1 ~ 0.046 min�1. Likewise, if the minimum
expected time until the population halves in size is 5 min then the
maximum death rate is ln(2)/5 min�1 ~ 0.14 min�1. If this calcula-
tion shows an sB(t) value that exceeds the threshold of sB(t) = 0.17
(see justification above, Fig. 4E) then the experimenter can change
the experimental setup, i.e. lower the initial concentration (N(0)
per ml), sample more cells (increase NB) or choose to sample at
later time points. Lastly, given that the experiment has been
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designed such that the sB(t) values do not exceed the sensitivity
threshold, all that remains is to determine the NB(t) values using
equation (7). Note that the CFU estimates are experimentally
decoupled from NB(t) estimates. In our setup, the CFUs were deter-
mined from 1 ml of culture, while only the DNA extracted from
200 ml of culture was sequenced. Therefore, it is important to scale
both measures to the same volume (see section 2.1). Finally, the
microbial division and death rates are estimated by parameterizing
equations 6ab with the CFU and the scaled NB(t) values.

To provide the reader with a guideline for the typicalmI =ms = 2
experimental system (Fig. 2) we will assume a minimum number
of sequences of 106 = I2 = S2 per sample and the sample size for
the inoculum to be 106 = I1. We choose a sampling time point
t = 60 min and an initial concentration N(0) = 105 cells per ml.
The division rate and death rate are varied between [0, 0.046]
min�1 and [0, 0.14] min�1 in 0.001 min�1 increments. The calcula-
tions of sB(t) using equation (8) shows that this system does not
exceed the bottleneck sensitivity threshold for nearly the whole
range for the division and death rate when at minimum 106 = S1
cells are sampled at t = 60 min. However, the bottleneck sensitivity
does tend to sharply increase when the division rate and death rate
approach 0 i.e. when b and d are less than 0.005 min�1. Therefore,
extra care should be taken in estimating the division and death rate
for cells growing slowly, where the CFUs do not change appreciably
during the time of observation.

One of the assumptions that underlies the RESTAMP model is
that all cells divide and die at an equal rate (section 2). This is a
limitation, which prevents using RESTAMP to study e.g. experi-
ments with high selection pressure over extended periods of time,
where mutants with altered fitness could accumulate or pheno-
typic heterogeneity, where genetically identical cells can manifest
different phenotypes in a constant environment [28]. A striking
example of this would be persister cells, where a fraction of cells
in a genetically identical population survives longer in the pres-
ence of antibiotics [29]. In Figure Supplementary Fig. 6, we test
the performance of the RESTAMP method in the presence of varia-
tion in the division rate and the death rate. The rates were inde-
pendently drawn from a normal distribution where the mean
death rate is 0.03 min�1 and the mean division rate is 0.01 min�1.
We also consider the case where the rates are interchanged, i.e. the
mean division rate is 0.03 min�1 and the mean death rate is
0.01 min�1. Figure Supplementary Fig. 6C shows the rate estimates
for the former case while Figure Supplementary Fig. 6D shows the
rate estimates for the latter case as functions of the standard devi-
ation for the normal distribution, from which the rates were
drawn. The results suggest that the estimated rates correspond
to the mean rates for standard deviations smaller than 10-3 min�1,
i.e. when the standard deviation relative to the mean is less than
10%. For wider distributions, when the standard deviation is 10-2

min�1, the rate estimates drift towards very large values. Account-
ing for this requires extending the RESTAMP theory for example by
considering the division rate and death rate to be random vari-
ables. This potential extension of RESTAMP is best studied in the
context of environments that induce phenotypic heterogeneity.

In this work, RESTAMP was tested and validated against exper-
iments using E. coli. While the experimental (RE)STAMP protocol
has been optimized and calibrated for bacteria, there is in principle
no reason why it cannot be extended to other organisms. Likewise,
the mathematical framework developed in this work does not
make any organism-specific assumptions. We therefore believe
that our approach can be useful to study the population dynamics
of other pathogens, such as viruses.
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5. Materials and methods

5.1. Emulating a death process by sampling

Here we seek to emulate a pure death process (Fig. 1A) by ran-
dom sampling events (Fig. 1B) with the aim of devising an experi-
ment where the death rate can be controlled. This control
experiment can then be used to test how well the death rate, with
the target division rate being 0, can be estimated using equations
(6ab). The total average number of cells at time t in a pure death
process with death rate d is given by < N tð Þ >¼ N 0ð Þe�dt . This is
emulated by sampling a small volume Dvt = Dv0e

-dt from a large
volume. Since the rate estimates require not only the mean num-
ber of cells but also the mean founder population size at time t,
one needs to ensure that <NB(t)> is correctly matched as well. Anal-
ogously, this translates to a requirement of matching the mean
subpopulation size and the variance in the subpopulation size with
the death process and the random sampling process. This is due to
equation (3) that states the magnitude of the founder population
size is inversely proportional to the variance in the subpopulation
proportions. To proceed, we model the random sampling event as a
multinomial random sampling process for which the probability of
sampling s cells with a sequence tag insertion at site i is binomial.

P ni ¼ sð Þ ¼ N tð Þ
s

� �
f i 0ð Þs 1� f i 0ð Þð ÞN tð Þ�s

; s ¼ 0;1; � � � ;N tð Þ: ð11Þ

The binomial distribution applies for ni(t) cells surviving until
time t in a death process as well where

P ni tð Þ ¼ sð Þ ¼ ni 0ð Þ
s

� �
ps 1� pð Þni 0ð Þ�s

; s ¼ 0;1; � � � ;ni 0ð Þ ð12Þ

and p = e-dt is the probability of a single cell surviving until time t.
The mean number of cells in the random sample is
< ni >¼< N tð Þ > f i 0ð Þ ¼ ni 0ð Þe�dt ¼ ni 0ð Þp which agrees with the
mean number of cells for a death process. However, the variance
in the number of cells with a sequence tag at site i in the sample
Dvt is Var nið Þ ¼ ni 0ð Þp 1� f i 0ð Þð Þ which is not equal to the variance
in the death process where Var ni tð Þð Þ ¼ ni 0ð Þp 1� pð Þ. Hence, for
the random sampling experiment to match a death process, Var
(ni) need to be scaled with the factor (1-p)/(1-fi(0)). From equation
(3), this translates to scaling the mean inverse founder population
size as

< NB tð Þ�1
>� 1

k 1� pð Þ
Xk
i¼1

Var f i tð Þð Þ
f i 0ð Þ 1� f i 0ð Þð Þ2

ð13Þ

In our experiments k is 1000 and the factor (1-fi(0)) in the cor-
rection term is negligible and can be approximated as 1 with a neg-
ligible effect on the founder population size values. Thus, the
experimentally determined mean founder population size as esti-
mated in the random sampling experiment is simply scaled by
the factor (1-p)-1.

5.2. Plasmid segregation

In this work, we adopt a simple mathematical framework for
describing the dilution of an identifiable marker within cells that
was recently used to quantify the dilution of self-aggregating fluo-
rescent proteins [14]. Within this framework, the fraction of cells
containing a plasmid at time t, <F(t)>, is given by < F(t)>=F(0)e-bt

where b is the division rate and r = b-d is the net growth rate. Solv-
ing for the rates we get
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b ¼ 1
t ln

<F 0ð Þ>
<F tð Þ>

� �
d ¼ 1

t ln
<F 0ð Þ><N 0ð Þ>
<F tð Þ><N tð Þ>

� �
8><
>: ð14abÞ

Where <N(t)> is the average total population size at time t and
is experimentally estimated as the number of colony forming units.
5.3. Protocol for removing spurious sequence reads

The development of next generation sequencing technologies
have revolutionized the quantification and analysis of the struc-
tures of microbial communities [9]. In particular, Illumina’s MiSeq
platform [30] was successfully used in establishing the STAMP
method for qualitatively investigating the population dynamics
of cells [8]. The workflow of STAMP includes clustering and tallying
individual sequence reads, the purpose of which is to remove spu-
rious sequences that typically arise in using next generation
sequencing technologies [31]. The aim of this section is to update
the clustering step in the STAMP workflow [8] with a simple model
for the expected number of extraneous spurious sequences. The
consequence is that the sequence identity threshold in clustering
is replaced with a query for the expected number of distinguish-
able subpopulations, i.e. the expected number of unique barcodes.
The overarching strategy will be to estimate the expected number
of the extraneous sequences that come about due to sequencing
errors assuming that the error of a misread is equal and indepen-
dent of basepair position. The additional sequences that remain
after clustering k unique sequence tags including the ones that
arise due to sequencing errors are then designated as spurious
and removed from the analysis. All the variables used for modeling
sequencing errors and their meaning are summarized in Table 2.

Using STAMP, we generate on the order of 107 51 base pairs
long sequence reads, where the first 30 base pairs are random
and the last 21 base pairs are constant, and integrate them in a
neutral position of the genome of our bacterial model. We denote
the random sequence as the random barcode and the fixed
sequence as the strain barcode and denote the lengths of these
sequences as NR and NS, respectively. Artificial genetic variation
Table 2
A summary of the variables used in modeling sequencing errors.

Parameters Meaning Comments

NR Random barcode sequence length. In our experiments the
length is NR = 30 bp.

NS Strain barcode sequence length. In our experiments the
length is NS = 21 bp.

k Number of unique barcodes/
sequence tags.

In our experiments
k = 1000.

n Total number of sequences from
the sequencing machine.

Typically on the order of
107.

nF Total number of sequences after
filtering for the strain barcode.

Empirically it is often
between 104-5.

p Probability of a correct nucleotide
at any position in the sequence.

Typically, p is between
0.98 and 0.99 in our
experiments.

q Probability of an incorrect
nucleotide at any position in the
sequence.

Equal to 1-p and is
typically between 0.01
(1%) and 0.02 (2%)

m Number of mismatches.
P(m) Probability of m mismatches in the

random barcode region.

n
�
m

Expected number of sequences
containing m mismatches in the
random barcode region.

mmax The maximal number of
mismatches for which the
expected number of sequences are
greater than one.
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is introduced in our bacterial model by using the random barcodes
and is subsequently exploited to investigate the population
dynamics of cells. The purpose of the strain barcode is to validate
that the sequence reads with a random barcode are sequenced as
opposed to sequencing random DNA snippets. In addition, the
strain barcode allows for multiplexing different strains, which
can be used to study interactions between populations. After filter-
ing, the sequence reads with respect to the strain barcode and clus-
tering the 100% matching sequences, our experiments result in
104-105 sequences. However, we expect k unique random barcodes
where k is 1000 in this study. The additional sequences are due to a
convolution of different effects such as sequencing errors, PCR
errors or pooling of multiple barcodes [31]. The task at hand is to
determine how many of the extraneous sequences arise due to
sequencing errors and to designate the rest of the sequences as
spurious which are then removed from the analysis. We use a sim-
ple model that assumes that the probability of reading an incorrect
nucleotide at any position in the sequence is equal for all positions
and independent of the position. Hence, the expected number of
sequences after filtering with respect to the strain barcode (nF) is

nF ¼ pNSN ð15Þ
where p is the probability of a correct nucleotide at any position and
N is the total number of sequence reads. We use equation (15) to
estimate p as

p ¼ nF

N

� �1=NS ð16Þ

Given p, the probability of m incorrect reads in the barcode
region is binomially distributed

P mð Þ ¼ NR

m

� �
qm 1� qð ÞNR�m ð17Þ

where q = 1-p is the probability of an incorrect nucleotide at any
position. After sorting the sequences with respect to abundance
we remove all sequences beyond k with average number of m mis-

matches for which n
�
m < 1 as spurious sequences. The average is

used because we compare every extraneous sequence with all the
k barcodes and thus we get a distribution of mismatches. This
leaves k unique barcode sequences plus a mix of spurious- and
sequencing error sequences. The last step in the algorithm is to pick

out, top to bottom, n
�
0; n

�
1; :::;n

�
max

n o
from the extraneous sequences

and discard the rest as spurious sequences.

5.4. The variance in the proportion of cells with respect to repetitions
for a birth–death process

Here we use the error propagation approximation to derive the
variance in the proportion of subpopulation i, Var(fi(t)), for a
stochastic birth–death process. Let ni(t) be the number of cells
for subpopulation i at time t and let N(t) be the total number of
cells at time t. Thus, fi(t) = ni(t)/N(t). For notational simplicity we
substitute x = ni(t), y = N(t) and fi(t) = g(x,y) = x/y. Using the error
propagation method, the variance of a ratio of random variables is

Var g x; yð Þð Þ � lx

ly

 !2
Var xð Þ
l2

x
þ Var yð Þ

l2
y

� 2
Cov x; yð Þ
lxly

" #
ð18Þ

where mx=<ni(t)>, my=<N(t) > and the angular brackets <> denote an
average over repetitions. For independent subpopulations the
covariance term reduces to Var(x).

Cov x; yð Þ ¼ Cov ni tð Þ;N tð Þð Þ ¼ Cov ni tð Þ;ni tð Þð Þ ¼ Var ni tð Þð Þ
¼ Var xð Þ ð19Þ
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For the birth–death process with division rate b, death rate d
and net growth rate r = b-d we have the well-known relations for
the means and the variances for the i:th subpopulation of cells
and the total population.

< ni tð Þ >¼ ni 0ð Þert
< N tð Þ >¼ N 0ð Þert
Var ni tð Þð Þ ¼ ni 0ð Þ bþd

b�d e
rt ert � 1ð Þ

Var N tð Þð Þ ¼ N 0ð Þ bþd
b�d e

rt ert � 1ð Þ

8>>>><
>>>>:

ð20abcdÞ

Substituting equations (19–20) in (18) the variance in the pro-
portion of cells is

Var f i tð Þð Þ � bþ dð Þ 1� e�rtð Þ
rN 0ð Þ f i 0ð Þ 1� f i 0ð Þð Þ ð21Þ
5.5. Correcting for technical bottlenecks by the iterative application of
the law of total expectation and the law of total variance.

In this section we consider a typical RESTAMP experiment,
which involves technical bottlenecks such as sampling a small vol-
ume from a larger volume and sequencing due to the limited
sequence chip capacity, in addition to a stochastic birth–death pro-
cess. The variance of the founder population size will therefore
include contributions due to these technical bottlenecks. An addi-
tional source of variation comes from estimating the initial tag fre-
quencies, fi(0), by experimental sampling. The task at hand is to
separate these contributions from the birth–death process by
propagating the added variance in the frequencies of sequence tags
by iteratively applying the law of total expectation [23] and the
law of total variance [23].

For simplicity and notational clarity, we consider a single tech-
nical bottleneck event. Using equation (1) to estimate the founder
population size for cells having undergone a birth–death process
and an additional downstream bottleneck event, we determine a
founder population size that is a function of the total variance in
the proportions, Var(fi,1) (equation (3)). See Fig. 2A for an illustra-
tion of the experimental setup. Using the law of total variance
[23] Var(fi,1) can be decomposed as

Var f i;1
� � ¼< Var f i;1jf i tð Þ� �

> þVar < f i;1jf i tð Þ >� � ð22Þ
where <Var(fi,1|fi(t))> is the mean contribution to the total variance
due to the bottleneck event. Here, fi,1 is the frequency of sequence
tag i after sampling the population of cells having undergone a ran-
dom birth–death process for a time t and fi(t) is the frequency of
sequence tag i at the end of the birth–death process at time t
(Fig. 2A). By modeling the bottleneck as a multinomial random sam-
pling process we have <fi,1|fi(t)>=fi(t), i.e. sampling does not change
the frequency of sequence tag i on average. Hence, Var(<fi,1|fi(t) > ) =
Var(fi(t)) which is the total variance due to a birth–death process.
Applying the law of total variance on Var(fi(t)) we get

Var f i tð Þð Þ ¼< Var f i tð Þjf i 0ð Þð Þ > þVar < f i tð Þjf i 0ð Þ >ð Þ ð23Þ
where <Var(fi(t)|fi(0))> is the mean variance in the sequence tag fre-
quency due to birth–death process given an initial subpopulation
proportion fi(0). Substituting equation (23) in equation (22) and
using < fi(t)|fi(0)>�fi(0), the total variance in the subpopulation pro-
portions with a sequence tag i becomes

Var f i;1
� � ¼< Var f i tð Þjf i 0ð Þð Þ > þ < Var f i;1jf i tð Þ� �

> þVar f i 0ð Þð Þ
ð24Þ

Substituting equation (24) in equation (3), with fi(0) substituted
for <fi(0)> as discussed in section 2.2, we get
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NB tð Þ�1
>� 1

k

Xk
i¼1

< Var f i tð Þjf i 0ð Þð Þ >
< f i 0ð Þ > 1�< f i 0ð Þ >ð Þ

þ 1
k

Xk
i¼1

< Var f ijf i tð Þð Þ >
< f i 0ð Þ > 1�< f i 0ð Þ >ð Þ

þ 1
k

Xk
i¼1

Var f i 0ð Þð Þ
< f i 0ð Þ > 1�< f i 0ð Þ >ð Þ ¼< NBD

B tð Þ�1
>

þ < NB
B

�1
> þ < N0

B

�1
> ð25Þ

where < NBD
B tð Þ�1

> is the contribution to the founder population

size due to a birth–death process, < NB
B tð Þ�1

> is the contribution
due to the bottleneck (a multinomial random sampling event) and

< N0
B tð Þ�1

> is the contribution due to sampling the inoculum at
t = 0. In the context of sampling, the founder population size is
equivalent to the sample size and we used equation (3) to equate
the left hand side of equation (25) with the right hand side. We sim-
plify the notation where NB

B = S1 and NB
0 = I1 and equation (25)

becomes < NB tð Þ�1
>�< NBD

B tð Þ�1
> þ < S�1

1 > þ < I�1
1 >. The foun-

der population size due to a birth–death process, having accounted
for a single bottleneck event, can therefore be estimated as

< NBD
B tð Þ >� 1

1
k

Pk
i¼1

f i tð Þ�<f i 0ð Þ>ð Þ2
<f i 0ð Þ> 1�<f i 0ð Þ>ð Þ � < S�1

1 > � < I�1
1 >

ð26Þ

This result is generalized for j = 1, 2, 3. . .,mS bottleneck events
for the sample taken at time t and j = 1, 2, 3. . .,mI bottleneck events
for the reference sample at t = 0 by iteratively applying the law of
total variance, which leads to subtracting the sum of the average
inverse sample sizes.

< NBD
B tð Þ >

� 1
1
k

Pk
i¼1

f i tð Þ�<f i 0ð Þ>ð Þ2
<f i 0ð Þ> 1�<f i 0ð Þ>ð Þ �

Pms
j¼1< S�1

j > �PmI
j¼1< I�1

j >

ð27Þ
5.6. Strains

RESTAMP libraries of E. coli MG1655 (SoA2898) were con-
structed based on guidelines established in [8]. A chloramphenicol
resistant gene (CmR) was PCR amplified from plasmid pKD3 utiliz-
ing primers 50-TCAGCGGCTACCGTGATTCATTCCCGCCAACAACCGCG
CATTCCTCCAACGTGTAGGCTGGAGCTGCTTC-30 and 50-ATAAACTA
CAGCTGGCAGACAGCCGCTGCGAAGGCATTTTTGCACATGGCGCTCAT
TCCAGTCTACACGT-(N30)-ACTGGCCGTCGTTTTACAGCCATGGTCCAT
ATGAATATCCTCCTTAG-30, where N30 represents randomly inte-
grated nucleotides, to create unique 30 bp tags. The PCR product
was integrated into the genome of E. coli MG1655 between genes
codA (b0337) and cynR (b0338) by the k-red pKD46 system per
standard protocol [32]. A library of 1000 individual colonies, corre-
sponding to �1000 unique tags, were individually grown to O.D.600
0.300, concentrated to O.D.600 10, combined with DMSO to 10% (v/
v), aliquoted at 1 ml, and frozen at �80 �C. Each RESTAMP experi-
mented utilized a frozen aliquot produced from the same stock.
Plasmid pAM34-pLac was transformed into E. coli MG1655 by elec-
troporation per New England Biolab’s protocol [12,33]. Standard
growth conditions for bacteria were LB-media (Miller, Sigma Cat.
#L3147 or #L3522) at 37� C with broth cultures shaken at
225 rpm. When used, antibiotic concentrations were carbenicillin
50 mg/ml (Sigma, Cat. #C1389) and chloramphenicol 50 mg/ml
(Sigma, Cat. #C0857). Isopropyl b-D-1-thiogalactopyranoside
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(IPTG) 1 mM was used for maintenance of pAM34-pLac replication
in E. coli MG1655. Optical densities were measured at 600 nm
(Thermo, Genesys20) in a 1 cm gap cuvette (Thermo, Cat. #5510).

5.7. Plasmid Segregation: Experimental

E. coli MG1655 pAM34-pLAC was recovered from frozen stocks
on LB agar with carbenicillin 50 mg/ml and IPTG 1 mM. From a sin-
gle colony 5 ml LB broth carbenicillin 50 mg/ml and IPTG 1 mMwas
seeded and grown for 16 h. Cultures were then pelleted and resus-
pended twice in 5 ml PBS (Sigma, Cat. #P4417) to remove residual
IPTG. The culture was diluted 1:1600 into pre-warmed 37� C LB
broth and grown to 1.0 O.D.600 nm to obtain ~ 20–30% pAM34-
pLac positive cells. Culture was diluted to target starting concentra-
tion of 2.4x105 CFU/ml in 25 ml of pre-warmed 37� C LB broth
(~1:1470 dilution). For wild-type plasmid-loss controls, every
20 min, 600 ml sample was removed from the culture, serial diluted
in PBS, and 100 ml of each dilution plated in triplicate for colony
counts on LB agar carbenicillin 50 mg/ml and IPTG 1 mM and LB
agar IPTG 1 mM. To simulate death, the starting culture was grown
as above to a concentration of 2.4x105 CFU/ml culture in 400 ml LB
broth and then grown to an O.D.600 0.5. For a target death rate of
0.015 min�1, the culture was then serial diluted 4 times at 74 ml,
93 ml, 93 ml, and 93 ml to a total volume of 100 ml to represent
targeted decreases in CFU at 20, 25, 30, and 35 min respectively.
For a target death rate of 0.1 min�1, the sample was diluted
13.5 ml into 100 ml 4 fold for 20, 40, 60, and 80 mins. Immediately
following dilutions, 100 ml were serial diluted and plated in tripli-
cate on LB agar carbenicillin 50 mg/ml and IPTG 1 mM and LB agar
IPTG 1 mM. Percent-positive pAM34-pLac colonies for were deter-
mined by the ratio of CFUs on carbenicillin containing agar to no
antibiotics. All experiments were performed in triplicate.

5.8. RESTAMP

Frozen 1 ml aliquots of E. coli MG1655 (SoA2898) were recov-
ered in 300 ml of pre-warmed 37� C LB broth and grown at 37� C
to 0.3 O.D.600 nm. Cells were then diluted in 25 ml of pre-warmed
37� C LB broth to a concentration of 2.4x105 CFU/ml (~1:133 dilu-
tion). For measuring wild-type death rates, every 20 min 600 ml
sample was removed from the culture, and serial diluted in PBS.
100 ml of each dilution was plated in triplicate for colony counts
on LB agar chloramphenicol 5 mg/ml. Harvest plates for RESTAMP
were prepared by plating 200 ml undiluted sample on to LB agar
chloramphenicol 5 mg/ml and growing for 16 h at 37� C. To simu-
late death rates, 1 ml frozen aliquots of E. coli MG1655
(SoA2898) were recovered as described above and diluted to a cal-
culated O.D.600 nm of 0.001 (~1x106 CFU/ml). Sample volumes were
then taken from the solution, with decreases in volumes represent-
ing increased time, and diluted to a volume of 1 ml in LB and
allowed to grow to an O.D.600 nm of 0.1 (~1 h). Short log-phase
growth does not alter tag frequencies. The samples were the pel-
leted, and DNA extracted for NB determination as described later.
For the time points of 0, 20, 25, 30, 35, and 40 mins the volumes
taken for the target death rate of 0.015 min�1 were 100, 74.1,
68.7, 63.8, 59.1, and 54.9 ml respectively. For the target death rate
of 0.1 min�1, the sample volumes were 1000, 135.3, 82.1, 49.8,
30.2, and 18.3 ml. All experiments were performed in triplicate.

5.9. RESTAMP: Sample processing

Plates for RESTAMP analysis were harvested by placing 5 ml PBS
on top of the plate and scraping. The O.D.600 of a 1:10 dilution of
the sample was measured and the dilution factor calculated for
an O.D.600 of 1.0. Using the calculated dilution factor the original
solution was diluted and 1 ml pelleted. Genomic DNA extraction
1050
was performed on the pellet by adding 600 ml 2% sodium dodecyl
sulfate (w/v) 0.5 M Ethylenediaminetetraacetic acid (aq) pH 8.0
lysis buffer for 5 min at 80 �C then 3 ml RNase A solution (Sigma,
Cat. #R6148) was added for 30 mins at 37� C. Cell debris was pre-
cipitated with 200 ml 7.5 M ammonium acetate (aq) then cen-
trifuged. DNA was precipitated from the supernatant with 800 ml
of isopropanol then washed with 70% ethanol (aq) and suspended
in 100 ml molecular grade water.

Illumina Miseq sequencing samples were generated using PCR
with primers targeting the barcode flanking sequences with cus-
tom indexes and sequencing primer overhangs and manufacturer’s
recommended P5 P7 regions (S1 Table). PCR was performed with
OneTaq 2x Master Mix (NEB, Cat. #M0482) spiked with 1 U of Phu-
sion High-Fidelity DNA Polymerase (NEB, Cat. #M0530). Three
50 ml PCR reactions were performed per sample with 20 cycle reac-
tion to minimize replication bias then combined and purified using
QIAquick PCR Purification Kit (Qiagen, Cat. # 28104) per manufac-
turer’s protocol. PCR products were confirmed by gel electrophore-
sis and concentration determined by Nanodrop (ThermoFisher,
ND-1000). Samples were combined for a concentration of 10 ng/
ml of each sample. The final concentration of the sample was mea-
sured by Qbit (ThermoFisher, Cat. #Q32854) and diluted to 8 nM.
Sequencing was performed on Illumina MiSeq System TruSeq HT
assay per manufacturer’s protocol using MiSeq Reagents Kit v2
50 cycles (Illumina, Cat. #MS-102–2001) with custom sequencing
primers (S1 Table).

6. Code

Codes for all figures were implemented in MATLAB (R2017b,
The MathWorks, Natick, MA, USA). All code for reproducing the
results and the raw sequencing data is available on SourceForge:

https://sourceforge.net/projects/restamp/. All scripts are free soft-
ware and are free to redistribute and/or modify under the terms
of the GNU General Public License as published by the Free Soft-
ware Foundation, either version 3 of the License, or any later
version.

To make the method in this work accessible we implemented
an analysis pipeline in Matlab R2017b that takes next-generation
sequencing files and produce founder population size values via
a graphical user interface. The analysis pipeline is an extension of
[8] and has been updated with a protocol for removing extraneous
spurious sequences that typically arise in next-generation
sequencing technologies [31] (see 5.3 – Protocol for removing spuri-
ous sequence reads). This software was used to analyze the next-
generation sequencing data and produce founder population size
values, which were subsequently used to calculate the rates using
equations (6ab). The software is freely available for download on

https://sourceforge.net/projects/restamp/.
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