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Abstract

Type III secretion system (T3SS) plays important roles in bacteria and host cell interactions by specifically translocating type
III effectors into the cytoplasm of the host cells. The N-terminal amino acid sequences of the bacterial type III effectors
determine their specific secretion via type III secretion conduits. It is still unclear as to how the N-terminal sequences guide
this specificity. In this work, the amino acid composition, secondary structure, and solvent accessibility in the N-termini of
type III and non-type III secreted proteins were compared and contrasted. A high-efficacy mathematical model based on
these joint features was developed to distinguish the type III proteins from the non-type III ones. The results indicate that
secondary structure and solvent accessibility may make important contribution to the specific recognition of type III
secretion signals. Analysis also showed that the joint feature of the N-terminal 6th–10th amino acids are especially important
for guiding specific type III secretion. Furthermore, a genome-wide screening was performed to predict Salmonella type III
secreted proteins, and 8 new candidates were experimentally validated. Interestingly, type III secretion signals were also
predicted in gram-positive bacteria and yeasts. Experimental validation showed that two candidates from yeast can indeed
be secreted through Salmonella type III secretion conduit. This research provides the first line of direct evidence that
secondary structure and solvent accessibility contain important features for guiding specific type III secretion. The new
software based on these joint features ensures a high accuracy (general cross-validation sensitivity of ,96% at a specificity
of ,98%) in silico identification of new type III secreted proteins, which may facilitate our understanding about the
specificity of type III secretion and the evolution of type III secreted proteins.
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Introduction

Bacteria encode different protein translocation systems, via

which various bacterial substrate proteins are translocated into the

host cells in order to function in pathogenesis or symbiosis [1–3].

Type III secretion system (T3SS) is particularly important because

it mediates and maintains bacterial infection in a wide range of

gram-negative bacteria [1–3]. Many severe infectious diseases are

closely related with T3SSs, including human (and/or animal)

plague, typhoid, dysentery, cholera and enteritis, plant blast and

streak disease, etc [1,3]. T3SSs also play important roles in the

symbiosis process between Rhizobia or other gram-negative

symbiotic bacteria and their hosts [1,3].

The substrates translocated through T3SSs are T3S (Type III

Secreted) effectors, which can be specifically recognized and

secreted through the T3SS conduit [4–5]. After entering the host

cell cytoplasm, these effectors can interact with the host proteins

and mediate bacterial infection or invasion. Due to their

importance in bacteria-host interaction, identification of new

T3S effectors has attracted much research attention in the past

decade. However, possibly due to bacterial adaptation to different

hosts or environments, the number of T3S effectors varies greatly

among different bacterial species, and the sequences lack apparent

similarity among different effectors [1–3]. This makes it extremely

difficult to identify new T3S effectors by sequence alignment or

phylogenetic approaches. Other features were therefore used to

identify new T3S effectors. For example, based on the fact that

some effector-coding genes are clustered with T3SS apparatus-

encoding genes in a single operon or genomic region [3,6–9], new

T3S effectors were identified [7,10–13]. In addition, other general

properties, such as distinct G+C nucleotide content, clustering

with chaperones, transcriptional co-regulation with apparatus

genes, etc., were also used for screening new effectors that scatter

in the genomes [14–16].

With the tremendous progress of sequencing technology, more

and more bacterial genomes have been sequenced [3]. The

research interest gradually shifts from individual discovery of

effectors to genome-wide identification of effector coding genes

[17–18]. Two foundational discoveries greatly accelerated the

computational identification of new T3S effectors. One is that the

N-terminal peptide sequences of T3S effectors contain both

necessary and sufficient signal information to guide the specific

protein secretion, although there is the argument that T3S signals

are encoded in the mRNA but not the amino acid sequences of the
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T3S effectors [19–20]. However, experimental evidence show that

some effectors are unable to secrete through T3SS conduit without

N-terminal peptides, and the N-terminal peptides can mediate

type 3 secretion of some non-effectors [19–20]. By computational

modeling, Arnold et al. and Wang et al. found that the frame-shift

of T3S signal sequences has more influence on T3S recognition

compared to the amino acid position shift [17,21]. Wang et al.

further discovered that the T3S effectors which can tolerate frame

shift in fact retain their original amino acid composition after the

frame shift. This further demonstrates that the N-terminal peptide

sequences of T3S effectors indeed encode the T3S signal [21]. The

other foundational discovery is that a T3S effector can be secreted

through different T3SS conduits [22–23]. Based on these

discoveries, new features including the N-terminal signal sequence

patterns, amino acid composition frequency, and secondary

structure composition, etc. were analyzed for T3S proteins [17–

18,21,24–26]. The most important features identified so far are

sequence-based or position-based amino acid composition (Aac)

profiles in the N-terminal signal region [17,21]. However, the

amino acid preference in the signal sequences is quite subtle and

the enriched or depleted amino acids do not contain apparent

physical and chemical properties. Therefore, no common motif or

simple linear amino acid combination has been disclosed from the

signal peptide of T3S effectors [26]. Several computational

methods were developed to train these atypical features, but

unfortunately they only achieved limited success [17–18,21,24–

26].

To interpret the possible connections between the subtle but

unique Aac features and the specificity of protein secretion, several

research groups analyzed the second-order structure composition

encoded by the primary signal peptide sequences, including the

secondary structure (Sse) and water accessibility states (Acc)

[17,21,24]. Although distinctive Sse and Acc features were noted,

it seems that these features do not individually contribute to the

specific recognition of T3S proteins [17,21,24]. One group

considered the joint distribution of Sse or Acc and Aac, and

provided limited evidence that the Sse and Acc features contribute

to the specific secretion of T3S proteins [25]. The exact

mechanism underlying specific recognition and secretion of T3S

proteins are still poorly understood.

In this study, we further explore the possible contribution of

secondary structure and solvent accessibility to the specific T3S

recognition. We developed a joint-feature distribution model to

integrate position-specific Aac, Sse and Acc features of the T3S

signal sequences. The model, namely T3SEpre, achieves a high

sensitivity of 95.9% at a specificity of 97.7% (5-fold cross

validation). The model is robust, inter-species effective, and

outperforms the other current software with the same application.

An in silico deletion analysis identified the most important region

for type III signals. Furthermore, genome-wide T3S prediction

was conducted for Salmonella and selected predictions were

validated experimentally. Interestingly, T3S signals were also

identified from gram-positive bacteria and yeasts. Some candidates

from yeast were further validated experimentally.

Results

1. Distinct Structural Features of T3S N-terminal
Sequences
A comprehensive list of validated T3S effectors were annotated

from different bacteria, followed by two-rounds of filtering process

to remove homologs for full-length proteins and N-terminal 100aa

signal segments (Methods and Materials). The sequences of N-

terminal 100aa were extracted for analysis because previous study

indicated that this region contain T3S guiding signals [21]. The

resulting non-redundant and reliable dataset was subjected to

position-specific Aac, Sse and Acc profile analysis.

Consistent with previous observations [21], serine is apparently

enriched in the T3S sequences compared with non-T3S proteins

(Fig. 1A and 1B). Secondary structure comparison revealed

apparently enriched coils for most positions in the T3S signal

sequences (Fig. 1C). This pattern is especially apparent within the

first 30 positions (Fig. 1C). In contrast, helices are more preferred

at ,25 positions of the non-T3S sequences (Fig. 1D). In addition,

fewer strands are adopted for T3S sequences (Fig. 1C and 1D).

Solvent accessibility analysis showed that most positions are

exposed for T3S sequences but buried for non-T3S sequences

(Fig. 1E and 1F). Taken together, apart from specific Aac features,

T3S sequences also contain distinctive Sse and Acc profiles. More

coils and fewer strands in the T3S signal regions indicate the

sequences may be more flexible [27].

2. Distinct Joint Profiles of Sse, Acc and Aac in T3S Signal
Sequences
Previous studies suggested that individual Sse or Acc features

almost make no contribution to the specific recognition of T3S

proteins [17,21]. In these studies, however, the authors assumed

that the Sse and Acc variables were independent of Aac.

Alternatively, we consider Sse, Acc and Aac as co-variables

depending on each other, and the joint profiles of these 3 features

were observed for each position of signal sequences of T3S and

non-T3S proteins.

As shown in Fig. 2A, T3S proteins exhibit more apparent joint

element preference than non-T3S proteins. Specifically, there are

apparently fewer elements present in each position of T3S N-

terminal sequences. For most positions, the cumulative occurrence

frequency for the top 10 and top 20 elements are both higher for

T3S proteins (Fig. 2B). ‘SCe’ (‘serine-coil-exposed’) is most

frequently preferred by T3S proteins for most positions, followed

by ‘TCe’ (‘threonine-coil-exposed’), ‘PCe’ (‘proline-coil-exposed’),

‘NCe’ (‘asparagine-coil-exposed’), ‘GCe’ (‘glycine-coil-exposed’),

etc. (Table S1). The difference is still striking when the number of

non-T3S and T3S is equal (Fig. 2C and 2D), indicating the general

joint element preference in T3S proteins is not caused by smaller

data size. Non-T3S proteins also show preference for certain

elements, especially within the first 25 positions, and yet the

preferred elements are apparently different. For example, ‘LHb’

(‘leucine-helix-buried’), ‘AHb’ (‘alanine-helix-buried’), and ‘VHb’

(‘valine-helix-buried’) are more frequently found in the non-T3S

proteins (Table S1).

3. T3S Protein Prediction Model Based on Joint Features
of Aac, Sse and Acc
The position-specific joint element features were extracted using

Bi-profile Bayes (BPB) model [28], and then trained with Support

Vector Machine (SVM). The parameters were optimized and

shown in Table 1. The new classifier, namely T3SEpre, achieved

excellent classifying performance, with a sensitivity of 95.9% at

a high specificity of 97.7% (Table 1) in a 5-fold cross-validation.

We found that the Sse and Acc feature made important

contribution to the specificity of T3S signals. BPBAac, which

adopts the position-specific Aac feature only, is one of the best T3S

protein classification programs [21]. A direct comparison showed

that T3SEpre outperformed BPBAac with the same training

dataset (Fig. 3; Table 1). A BPBAll model was also trained with the

current datasets based on the simple linear combination of Aac,

Sse and Acc features [21]. Consistent with previous results, the
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discriminative performance of BPBAac was slightly better than

BPBAll [21]. This indicates that Sse and Acc feature do not

independently contribute to the T3S specificity, rather in an Aac-

dependent manner (Fig. 3; Table 1). Furthermore, T3SEpre was

compared with SSE-ACC, a T3S classifier using SVM to train

sequence-based but not position-specific features. As shown in

Fig. 3 and Table 1, T3SEpre also outperformed SSE-ACC in

terms of sensitivity, specificity, accuracy, MCC and AUC of ROC

curve. Therefore, the position-based features are proved to be

more effective in distinguishing T3S proteins.

To make a thorough comparison, independent datasets were

also tested. First, two large-scale T3S protein datasets, Arnold

2009 [17] and Lower 2009 [18], were used. Arnold 2009 contains

109 high-quality validated T3S effectors from different species

[17]. Lower 2009 contains 533 partially validated T3S effectors

[18,21]. For both datasets, T3SEpre performed apparently better

than BPBAac, especially in terms of sensitivity, accuracy, and

MCC values (Table 2). T3SEpre also outperformed earlier

software Effective T3 (Table 2). In addition, other two new

datasets (Mukaihara 2010 and Baltrus 2011) containing validated

T3S effectors from an individual bacterial species or genus [29,30]

were also adopted. Mukaihara 2010 contains a group of validated

Ralstonia T3S effectors while Baltrus 2011 is a comprehensive set of

validated Pseudomonas T3S effectors [29,30]. For Mukaihara 2010,

T3SEpre correctly recalled 32 out of the total 35 non-homologous

effectors (91.4%), whereas BPBAac and Effective T3 only recalled

,60% of them (Table 2). T3SEpre also recalled much more

known Baltrus 2011 effectors (Table 2).

The robustness of T3SEpre was further examined using two

strategies [21]: (1) Sub-datasets with different size were randomly

selected from training data to re-train the model and to classify the

remaining data; (2) Leave-One-Out strategy was adopted: the T3S

and non-T3S proteins from one bacterial genus/subgroup was

classified by the model trained on the remaining training data.

The results showed that models trained by different sub-datasets

performed equally well, and the performance was still fairly good

even when only 30% of the original training data were used

(Fig. 4A). In Leave-One-Out assessment, most of the effectors

(93.465.4%) were recalled and consistently high specificity

(98.062.2%) was obtained (Fig. 4B). A comparison was also made

between T3SEpre and BPBAac. Except for few genera or

subgroups (e.g., Yersinia and Citrobacter), T3SEpre recalled more

(or identical number of) effectors at a similar high specificity

(Fig. 4B). Chlamydiae is a genus phylogenetically distant to other

bacteria with functional T3SS. Using effectors and non-effectors of

other bacteria as training sequences, BPBAac recalled 73.7% (14/

19) of Chlamydiae effectors; however, T3SEpre model trained with

the same dataset recalled 94.7% (18/19) of the effectors (Fig. 4B).

Figure 1. Distinctive N-terminal position-specific Aac, Sse and Acc feature in T3S proteins. Element positions are depicted on the
horizontal axis. The heights of characters represent the preference or enrichment level. (A), (C) and (E): Aac, Sse and Acc preference for T3S proteins,
respectively. (B), (D) and (F): Aac, Sse and Acc preference for non-T3S proteins, respectively.
doi:10.1371/journal.pone.0059754.g001

Figure 2. Comparison of preference profile for Aac-Sse-Acc joint features between T3S and non-T3S sequences. (A) and (C): Total
number of non-zero distributed joint features at each position for T3S or non-T3S sequences. Full set of joint features include 120 different elements.
The ratio of data size between T3S and non-T3S proteins is ,1:2 in (A) and 1:1 in (C). (B) and (D): Cumulative frequency of the most enriched 10 (T3S-
10 or non-T3S-10) or 20 (T3S-20 or non-T3S-20) joint features in T3S or non-T3S sequences. The ratio of data size between T3S and non-T3S proteins
was about 1:2 in (B) and 1:1 in (D). Only the first 50 positions at the N-terminal end of T3S and non-T3S sequences were included for analysis.
doi:10.1371/journal.pone.0059754.g002
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Results from animal and plant pathogens/symbionts’ T3S

effectors also demonstrated the high efficacy of T3SEpre (Fig. 4B).

4. Stepwise Deletion Analysis for T3S Signal Sequences
An in silico stepwise deletion analysis was designed to identify

the most important positions contributing to the specificity of T3S

signals. As shown in Fig. 5A, deletions of N-terminal positions 60–

100 (N80 and N60) only slightly decreased the classifying

performance of T3SEpre. When more positions were deleted,

the recall rates were dramatically reduced for training models

(N40 and N20). Starting from position 60 counting from the N-

terminal end, the performance decreased with more deleted

positions (N50-N10, Fig. 5B). Therefore, the N-terminal up to 60

amino acids form the most critical region for T3S signal.

Although with apparently decreased performance compared

with N60, N20 can still recall 70% real T3S signals (Fig. 5C).

Further deletions were then performed to delineate the important

sub-regions within the N-terminal 20 positions. When C-terminal

5 and 10 positions were deleted from the N20 model (N15 and

N10, respectively), the performance was not reduced apparently

(Fig. 5C). However, the performance of the new model (N5)

sharply decreased when more positions were deleted (Fig. 5C).

Therefore, the N-terminal positions 6–10 may contain critical

guiding features. The fact that model based on positions 6–10

(N6–10) performed apparently better than those based on adjacent

positions with the same length (N5 and N11–15) further confirmed

the importance of this short fragment (Fig. 5D). In fact, specific

amino acid enrichments were apparently reflected in this short

region (Fig. 1A, indicated in red rectangle). The Sse and Acc

profiles in this region also showed striking enrichment of ‘helix’

and ‘exposed’, respectively (Fig. 1C and Fig. 1E, indicated in red

rectangle). The joint features of Aac, Sse and Acc are also

apparently different between T3S and non-T3S sequences

(Fig. 2A–D).

Table 1. Optimal parameters and corresponding
performance based on five-fold cross-validation.

Name C|ca Sn (%) vs. Sp (%) A (%) AUC (%) MCC

T3SEpre 4|0.001 95.9% vs. 97.7% 97.1 99.5 0.935

BPBAac 8|0.001 84.4% vs. 94.8% 91.3 96.4 0.803

BPBAll 8|0.001 82.0% vs. 95.2% 91.1 96.0 0.796

SSE-ACC 4|0.008 78.0% vs. 95.2% 89.5 94.5 0.759

aC: cost, which was optimized based on 10-fold cross-validation grid search.
c: gamma, which was optimized based on 10-fold cross-validation grid search.
The T3SEpre, BPBAac and BPBAll used BPB model while SSE-ACC used SPB
model to extract features from N-terminal 100 amino acids of T3S proteins. All
software adopted SVM kernel radial basis function.
doi:10.1371/journal.pone.0059754.t001

Figure 3. Performance evaluation of T3SEpre. ROC curves resulted from different T3S protein prediction software based on 5-fold cross
validation using the same datasets. The parameters were optimized respectively (refer to Table 1).
doi:10.1371/journal.pone.0059754.g003

Table 2. Performance comparison using different datasets.

Dataset Software Sn (%) Sp (%) A (%) MCC

Lower
2009

T3SEpre 59.0 96.2 79.9 0.627

BPBAac 38.6 99.4 72.8 0.505

Effective T3 39.4 98.0 72.3 0.495

Arnold
2009

T3SEpre 92.7 94.5 93.9 0.869

BPBAac 86.4 97.7 93.9 0.865

Effective T3 55.5 94.5 81.4 0.595

Mukaihara
2010

T3SEpre 91.4 (32/35) – – –

BPBAac 60.0 (21/35) – – –

Effective T3 57.1 (20/35) – – –

Baltrus
2011

T3SEpre 83.2 (242/
291)

– – –

BPBAac 49.5 (144/
291)

– – –

Effective T3 58.1 (169/
291)

– – –

doi:10.1371/journal.pone.0059754.t002
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5. Identification of New Salmonella T3S Effectors and
Experimental Validation
A list of Salmonella T3S proteins (193 in total) were predicted

using T3SEpre (Table S2), and most known effectors were

correctly recalled (Table S2, in red and blue). Many newly

predicted candidates include phage-originated proteins, or hypo-

thetical proteins with unknown function (Table S2, in italic). Some

proteins are known to be related with T3SS function, but it is not

clear whether they can be translocated through T3SS conduit,

e.g., invH and invE (Table S2, in green).

In total 36 candidate effectors were predicted with high score

($0.5). Among them, 14 were known effectors and 22 were new

predictions (Table 3). A large percentage (10/22, 45%) of the

newly predicted T3S proteins were annotated with ‘unknown

function’ (Table 3; shown in italic). We randomly selected 10

candidates for Cya translocation assay (Table 3; in bold). The

assay result confirmed that 8 of them were translocated into co-

cultured eukaryotic cells via Salmonella SPI-1 T3SS conduit

(Fig. 6A). The other 2 candidates, mdoH and yaaA, were not

secreted into the cytoplasm of eukaryotic cells (Fig. 6A). A

Figure 4. Stableness and inter-species applicability of T3SEpre. (A) ROC curves for T3SEpre models with different training to test data ratios.
‘Xx% vs. Yy%’ : ‘the percentage of training data versus that of testing data’. (B) Inter-species/group robustness of T3SEpre. Leave-One-Out strategy
was adopted with the exception that, ‘One’ : data from ‘one species/group’. ‘Animal’ and ‘Plant’: ‘animal pathogens/symbionts’ and ‘plant pathogens/
symbionts’, respectively. Sn and Sp represent sensitivity and specificity respectively. The recall rate of BPBAac and T3SEpre on each subgroup or
species was indicated.
doi:10.1371/journal.pone.0059754.g004
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microarray based gene co-expression analysis revealed that all the

newly validated Salmonella T3S genes except STM2486 were co-

expressed with invA under SPI-1 induction. They also showed

high expression correlation with invA under 32 different culture

conditions (Table S3).

6. Wide Distribution of T3S Signals in Different Species
Whole-genome T3S prediction was performed on a variety of

micro-organsims, and a list of new T3S signal-containing

candidates were identified. Interestingly, candidate T3S signal-

containing genes were also predicted from species with no

previously reported T3SSs, such as Helicobacter and Mycobacterium

(Table 4 and Table S4). T3SSs have so far only been found in

gram-negative bacteria, and yet a group of T3S candidates were

confidently predicted with high scores from gram-positive bacteria

and even in yeast (Table 4 and Table S4). To validate our

prediction, 3 yeast candidates with high scores were selected

for.Cya translocation assay. Interestingly, 2 of these 3 signal

sequences could mediate translocation of Cya gene into eukaryotic

cells via Salmonella SPI1 T3SS conduit (Fig. 6B).

Discussion

1. Structural Features for T3S Protein Recognition
Several lines of evidence suggest that the N-terminal sequences

contain signals guiding the specific recognition and secretion of

T3S proteins [19–20,31–34]. The molecular basis of this

specificity, however, remains to be determined. Several groups

attempted to find sequence-based specific T3S signal features.

However, due to the high diversity of sequences, it is difficult to

identify common domains or motifs within a certain bacterial

genus or closely related genera [15,35]. Recently, both sequence-

based and position-based amino acid enrichment and depletion

were discovered in the N-terminal region of T3S proteins [17,21].

Computational models based on these features can well classify the

T3S and non-T3S proteins, suggesting that the amino acid

sequences at least encode part of the T3S specificity. Furthermore,

some second-order elements including Sse and Acc were analyzed

for more direct and specific features [17,21]. Although differences

were found between T3S and non-T3S proteins, these features

were not considered as important for the specificity because they

failed to improve the performance of classifier when incorporated

independently [17,21]. In this research, we treat the Aac, Sse and

Acc features as inter-dependent co-variables and analyze the

position-specific joint profiles of these features. We found that

integration of these features apparently improved the classification

power. Performance comparison between T3SEpre and BPBAac

[21] showed that Sse and Acc are important features that

contribute to the T3S-specificity. In a previous report, combining

Aac, Sse and Acc did not particularly improve the model’s

performance because they were treated as independent features

Figure 5. Performance of models with successively shortened N-terminal sequences. (A) The first 100, 80, 60, 40 and 20 amino acid
positions. (B) The first 60, 50, 40, 30, 20 and 10 amino acid positions. (C) The first 20, 15, 10 and 5 amino acid positions. (D) 1–10, 1–5, 6–10 and 11–15
amino acid positions.
doi:10.1371/journal.pone.0059754.g005
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[21]. We therefore believe that Sse and Acc features contribute to

the specificity of T3S signals, and in an Aac-dependent manner.

We developed a ‘stepwise in silico deletion method’ to screen for

the most important regions guiding specific type III secretion, and

the N-terminal 6–10 positions were identified as the most critical

motifs for such function (Fig. 5). The distinct amino acid

composition, secondary structure, and solvent accessibility in this

short region further indicate its significance. It is possible that non-

continuous positions may jointly make important contribution.

The tertiary structure may directly explain the secretion

specificity of T3S effectors. However, till now, the 3D structures

have been resolved for only a limited number of T3S effectors, of

which the N-terminal regions were mostly neglected because they

are frequently disordered and very flexible [27]. We therefore

adopted an in silico analysis strategy to predict their 3D structure

(Materials and Methods). Among the 189 non-redundant T3S

signal sequences, 41 were predicted with high confidence (Table

S5; Zip file S1). The structure coordinates of these sequences were

aligned against each other, and one fourth of them (11) were found

to form a cluster that exhibits similar structure conformation:

a loose N-terminal coil with varied length continued with multiple

(3,5) anti-paralleled helices or strands (Table S5 and Fig. S1A-E).

This cluster should not be formed randomly because non-T3S

sequences seldom adopt similar structure (Zip file S1). More

interestingly, three sequences (Yersinia YopP, EHEC EspB,

Chlamydia Q3KMQ0) showed nearly identical 3D structure even

though no sequence similarity was found among them (Fig. S1B-

E). There are also other sequences exhibiting high structure

similarity, e.g., Pseudomonas HopPtoA1Pma, Xanthomonas XopD

and Vibrio VopF, Rhizobium NopL and Shigella IpgB1, Vibrio VopC

and Pseudomonas HopAN1, and Ralstonia RSc3401 and RSc1349,

etc (Table S5 and Fig. S2A-D). This observation implied that the

signal sequences of T3S proteins could possibly adopt special

structural conformation to support their specific secretion.

However, the 3D structures were only derived from computational

prediction, which may not enough to draw decisive conclusion.

Further experimental resolution of the T3S signal sequences is

urgently required to unravel the mechanism of the T3S signal

recognition.

2. Newly Identified Salmonella T3S Effectors
Using our high-performance computational model, 8 candidate

T3S genes were identified from Salmonella genome. These genes

are all co-expressed with T3SS apparatus genes under SPI-

inducing conditions (Table S3). Except for STM2486, all the other

newly validated T3S genes show clear co-expression with T3SS

apparatus genes under different conditions (Table S3). Therefore,

these genes potentially encode new effectors translocated into the

host cytoplasm. Of the newly identified T3S candidates, 5 (yiiG,

STM0281, STM1870, STM1791, STM2005 and STM2486) are

annotated as hypothetical proteins with unknown function. These

genes provide useful targets for further functional studies. Apart

from the validated genes, a list of other T3S candidates were also

predicted from Salmonella (Table 3 and Table S2). These potential

Salmonella T3S effectors remain to be validated experimentally.

3. The Formation and Evolution of T3S Signal Sequences
In addition to the specific features embedded in the T3S signal

sequences, how these sequences are formed and evolved also

remains an enigma. In many bacterial species, some T3S effectors

were resulted from horizontal gene transfer event together with

T3SS apparatus [1]. For these effectors, the signal sequences seem

to co-evolve with T3SS apparatus genes. However, more effectors

were found to be scattered in the bacterial genomes. In model

species such as Salmonella, it is known that different effectors

function coordinately in the host-bacteria interactions [36]. It is

interesting to investigate how these scattered effectors can be co-

coordinately regulated.

Inspired by the ‘terminal re-assortment’ hypothesis proposed by

Stavrinides et al. [37], a full-length T3S protein was partitioned

into 2 parts: the N-terminal signal part and the C-terminal

function part. We found that among the T3S proteins predicted

with high scores from Salmonella, some are not co-expressed with

either SPI-1 or SPI-2 apparatus genes (Data not shown). Besides,

T3S signal-containing genes are also predicted from gram-positive

Table 3. Salmonella T3S proteins predicted with T3SEpre (a
strict cutoff, score .= 0.5, was used).

SeqID Annotation SVM_Value

Seq2779 sipC 2.06

Seq1359 sseG 1.83

Seq765 slrP 1.74

Seq1354 sseC 1.68

Seq1358 sseF 1.37

Seq3891 yiiG 1.18

Seq2778 sipD 1.13

Seq1989 sopA 1.02

Seq1355 sseD 1.00

Seq1794 sopE2 1.00

Seq1055 sopB 1.00

Seq1352 sseB 1.00

Seq1356 sseE 0.99

Seq1347 ssaB 0.98

Seq4148 STM4312 0.95

Seq1274 katE 0.92

Seq2774 sptP 0.90

Seq3446 ftsY 0.89

Seq4253 STM4421 0.86

Seq1681 tonB 0.85

Seq272 STM0281 0.82

Seq4195 hflK 0.75

Seq1973 pduO 0.72

Seq1312 ydiF 0.71

Seq1809 STM1870 0.70

Seq1730 STM1791 0.70

Seq2839 sopD 0.69

Seq1931 STM2005 0.68

Seq2133 STM2209.1c 0.66

Seq2813 ygbI 0.65

Seq1111 mdoH 0.62

Seq241 rcsF 0.62

Seq2764 orgC 0.61

Seq5 yaaA 0.59

Seq2400 STM2486 0.57

Seq400 nrdR 0.55

Among them, sipC, sipD, sopA, sopE2, sopB and sptP are known SPI-1 effectors
while sseG, slrP, sseC, sseF, sseD, sseB and ssaB are known SPI-2 effectors.
doi:10.1371/journal.pone.0059754.t003
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Figure 6. Translocation of predicted T3S proteins. (A) Cya translocation assays of Salmonella T3S protein candidates. Each construct was
transformed into Salmonella SL1344 (Wild-type) and T3SS-deficient SL1344 strain (InvA-mutant). Duplicate was included for each test. Constructs
pBADB-CyaA and pBADB-sipC-CyaA were used as negative control (NC) and positive control (PC), respectively. For each construct, Student’s t test was
adopted to compare the cAMP level in the target wells co-incubated with the wild-type strain and InvA-mutant strain. Statistically significance was
indicated by star (p,0.05). (B) Statistical analysis for Cya translocation assays of yeast T3S protein candidates. Constructs pBADB-CyaA and pBADB-
sipC-CyaA were used as negative control (NC) and positive control (PC), respectively.
doi:10.1371/journal.pone.0059754.g006
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bacteria and even yeasts (Table 4 and Fig. 6B). We therefore

hypothesize that the T3S signal may form randomly and evolve

independently with T3SS apparatus. A protein with putative T3S

signals is not necessarily an effector because T3S effector must

contain a functional domain and must be co-regulated with T3SS

apparatus as well as other relevant genes for expression. For this

reason, the candidate genes with T3S signals which are not co-

expressed with corresponding T3SS apparatus, or those predicted

from gram-positive bacteria or yeasts should not be called T3S

effectors.

4. The Application of T3SEpre Software
Similar to BPBAac, T3SEpre is also an SVM classifier for T3S

effector prediction [3,21]. Both tools adopt a Bi-Profile Bayes

(BPB) model to extract maximum likelihood-based position-

specific features [21,28]. The major difference between T3SEpre

and BPBAac lies in the features: T3SEpre takes into account the

secondary structures, solvent accessibility and amino acid compo-

sition of T3S signal regions while BPBAac only considers the

amino acid composition features [21]. Compared with other

software, such as SIEVE [24], Effective T3 [17], SSE-ACC [25],

T3_MM [38], etc., which mostly extracts the sequence-based

features, the uniqueness of T3SEpre is using position-specific

instead of sequence-based features. Because each of these software

tools adopts different molecular properties of T3S effectors or

signal regions, a combination of two or more software is suggested

to help increase the prediction accuracy.

Materials and Methods

Data Source
The source, homology-filtering and other handling procedures

for positive (T3S) and negative (non-T3S) training datasets were

similar to those described previously [21]. T3S proteins were

annotated from literature with experimental evidence, while non-

T3S proteins were randomly selected from the remained genes

from different bacteria. For T3S and non-T3S proteins, only one

representative was selected as the training sequence for each

homologous cluster. JAligner (http://jaligner.sourceforge.net/)

was used to identify homologous clusters with a sensitive

pairwise/self ratio cutoff of 0.15 [17,21]. In total, 189 and 385,

non-redundant, T3S and non-T3S proteins were included in the

final training datasets, respectively (Text S1). The Sse (represented

as a combination sequence of ‘C’, ‘H’ or ‘E’) was predicted using

PSIPRED [39], while SCRATCH [40] was used to predict the

Acc (a combination of ‘B’ or ‘E’). The resulting positive and

negative training datasets were pooled as the final training datasets

and were randomly split into 5 subsets, each with equal number of

items (T3S and non-T3S proteins as well the total number) for 5-

fold cross-validation.

Three-dimensional Structure Modelling and Comparison
I-TASSER and MUFOLD, two different high-accurate tertiary

structure computational tools were adopted to predict structure for

the N-terminal up to 100 amino acids of T3S and non-T3S

proteins [41–42]. For each peptide sequence, MultiProt, a multiple

protein structure alignment tool, was used to evaluate the

consistency of structures predicted by I-TASSER and MUFOLD

[43]. The high confident three-dimensional structure was included

for further analysis only when it meets both of the following two

criteria: (1) TM-score larger than 0.4 for I-TASSER prediction

[41]; (2) high conformation similarity by I-TASSER and

MUFOLD prediction based on MultiProt alignment results. The

high-confident structures were further compared or clustered

according to pairwise or multiple structure alignment by Multi-

Prot, respectively. A cluster was identified when the grouped

peptides share a structure similarity not smaller than 50%

coordinates, and then compared by hand. All the structure

alignments were performed with a sequence-ordered mode and an

accuracy of 10 angstroms [43]. RasWin was used to view the 3D

structures [44]. The PDB files for T3S and non-T3S sequence

predictions are available upon request.

Joint Feature Extraction, Model Training and
Performance Comparison
Let vector S= {s1,s2,s3,…,sn} denotes a sequence of peptides, in

which s represents amino acid while 1, 2… or i represents position

and n represents total length of the sequence. For any 1# i # n, si

Table 4. Potential T3S proteins in representative species
predicted by T3SEpre (5 with highest prediction scores were
given for each species).

Species Protein SVM_Value

Agrobacterium
(NC_003062)

NP_353267.1 1.8262186013

(Gram 2; no reported
T3SS)

NP_353197.1 1.8182696817

NP_354762.2 1.3438005288

NP_353597.1 1.3053632004

NP_529196.1 1.1505788212

Helicobacter
(NC_000915)

NP_208221.1 1.2728691623

(Gram 2; no T3SS) NP_208270.1 0.81876863031

NP_207400.1 0.79814466522

NP_207364.1 0.76127749423

NP_208245.1 0.74734863579

Mycobacterium
(NC_002755)

NP_334701.1 2.5282200382

(Gram 2; no T3SS) NP_334584.1 2.1134425698

NP_338544.1 2.091326393

NP_337005.1 1.8061094469

NP_337833.1 1.7706735128

Staphylococcus
(NC_013450)

YP_003281316.1 1.1964289751

(Gram +; no T3SS) YP_003282311.1 1.1653620221

YP_003281905.1 0.99871685539

YP_003281879.1 0.82115720581

YP_003282635.1 0.70904028709

Streptococcus
(NC_011900)

YP_002511184.1 0.86992793954

(Gram +; no T3SS) YP_002510266.1 0.86910627471

YP_002510762.1 0.73099842015

YP_002511727.1 0.63822324187

YP_002511008.1 0.60030423151

Yeast (S288c; no T3SS) DAA10219.1 2.9246207038

DAA07267.1 2.9232109626

DAA10797.1 2.7428577459

DAA09242.1 2.6276802073

DAA08250.1 2.3665151381

doi:10.1371/journal.pone.0059754.t004
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has 20 alternatives since it could be any one of the 20 amino acids.

Let Sse[si] and Acc[si] represent the secondary structure element

(Sse) and solvent accessibility state (Acc) that si takes, respectively.

Sse[si] belongs to set {C, H, E} and Acc[si] belongs to set {B, E},

and consequently for any position i (1# i # n), there are

206362= 120 types of combination of the three categories of

components (amino acid, Sse and Acc). The frequency of each

type of combination was calculated for each position of positive

training sequences (T3S) and negative training sequences (non-

T3S), represented as P+1(siSse[si]Acc[si]) and P-1(siSse[si]Acc[si]),

respectively. For each sequence, a feature vector containing 2n bi-

profile frequencies was obtained for n sequential positions (n was

set as 100 in this research):

fPz1 s1Sse s1½ �Acc s1½ �ð Þ,Pz1 s2Sse s2½ �Acc s2½ �ð Þ,

:::,Pz1 snSse sn½ �Acc sn½ �ð Þ,

P{1 s1Sse s1½ �Acc s1½ �ð Þ,P{1 s2Sse s2½ �Acc s2½ �ð Þ,

:::,P{1 snSse sn½ �Acc sn½ �ð Þg

ð1Þ

The bi-profile features from both positive and negative samples

were extracted with a bi-profile model [21,28], followed by

training with a support vector machine (SVM). Radial basis kernel

function K Si,Sj

� �
~exp {cDDSi{Sj DD2

� �
was selected for SVM

prediction. SVM parameter c and penalty parameter C were

optimized using grid search based on 10-fold cross-validation [45].

SSE-ACC, BPBAac and BPBAll were re-trained with the same

dataset prepared in this study with prior parameters suggested by

the original paper and the 10-fold cross-validation grid searching

results. The performance was compared among different software

based on a 5-fold cross-validation evaluation.

The parameters for performance assessment, including Accu-

racy (A), Specificity (Sp), Sensitivity (Sn), Receiver Operating

Characteristic (ROC) curve, the area under ROC curve (AUC) and

Matthews Correlation Coefficient (MCC), were well defined in

Wang et al, 2011 [21].

Stepwise in silico Deletion Analysis
For each step, peptide strings with a defined length were deleted

successively at a given direction (C- or N-terminal end) for all the

training sequences. The successively shortened sequences were

used as a new training dataset to train the model. The

performance of each new model was evaluated by Sn, Sp and

AUC, all of which were assessed by average results for 5-fold cross

validations. The deleted length was set as a series of 20 amino

acids at the beginning, followed by 10 amino acids, and 5 amino

acids respectively.

Performance Comparison among Different Software
Apart from the training dataset used in this study, four other

independent datasets containing validated T3S effectors and

control proteins were included: Arnold 2009 [17], Lower 2009

[18], Mukaihara 2010 [29], and Baltrus 2011 [30] (Text S2, S3,

S4, and 5). The Mukaihara 2010 data were also used in Wang

et al., 2011, in which only one protein was randomly selected from

a homologous cluster while the rest were removed. Therefore, the

final number of included effectors was 35 although the actual

number identified in the original study was 46. The N-terminal

100 amino acid (not including the starting ‘M’) sequences were

used to predict the secondary structure and solvent accessibility as

described before.

The original parameters were adopted for BPBAac and

Effective T3 to classify the proteins of test datasets (default

decision value 0.5 and 0.99 for BPBAac and Effective T3

respectively) [17,21].

Implementation of T3SEpre and Whole-genome T3S
Protein Prediction
The T3SEpre software was written in Perl and R. An R package

for T3SEpre can be freely downloaded from http://biocomputer.

bio.cuhk.edu.hk/softwares/T3SEpre. A web server was also

developed to implement on-line prediction of T3SEpre. The

interface was developed with HTML, PHP and Javascript (http://

biocomputer.bio.cuhk.edu.hk/T3DB/T3SEpre.php). Currently,

both the stand-alone software and the web server require users

to predict Sse and Acc features with corresponding software before

implementation of T3SEpre. Details (including parameter selec-

tion) about the usage can be found within the package or web

server documents.

Bacteria or yeast whole-genome protein sequences were down-

loaded from NCBI Genome database. The N-teminal up to 100

amino acid position or full-length sequence for peptides with fewer

than 100 amino acids was extracted for secondary structure

prediction using PSIPRED [39]. The solvent accessibility was

predicted using SCRATCH [40]. The amino acid sequence, Sse

sequence, and Acc sequence were used together for T3SEpre to

predict if the corresponding peptide contains T3S signals. For

more specific results, a default cutoff value of 0.5 was used.

Bacteria, Plasmids and Cell Lines
E.coli DH5alpha and Salmonella typhimurium strain SL1344 were

used in this research. SL1344 was obtained from Salmonella

Genetic Stock Centre (SGSC, http://www.ucalgary.ca/̃kesander).

SPI1 T3SS deficient SL1344 strain was constructed by disrupting

invA gene using a gene replacement method [46]. The bacteria

were cultured on LB plate or in LB broth with or without 100 mg/

L ampicilin. The yeast genome DNA was provided by Mr Gao

Caiji from the Chinese University of Hong Kong. The plasmids

used in this study were summarized in Fig. S3 and Table S6. The

pMS107 plasmid with Bordetella CyaA gene insertion was gifted

by Professor Guy R Cornelis (Focal Area Infection Biology,

Biozentrum, University of Basel, Switzerland). A pair of primers

(Table S7) were designed to PCR amplify CyaA gene. The

pBADB-Myc-His plasmid with an L-arabinose-induced promoter

and C-terminal Myc and His double tags, was ordered from

Invitrogen (Cat. No. V440-01). CyaA gene fragment was cloned

into pBADB-Myc-His plasmid, generating pBADB-CyaA-tag (Fig.

S3). DNA sequences encoding N-terminal 100 amino acids of

candidate T3S proteins were amplified and cloned into pBADB-

CyaA-tag at the 59 end of CyaA sequence, resulting in different

constructs (Table S6 and Table S7).

Human liver cancer HepG2 cells were cultured in DMEM

supplemented with 10% fetal bovine serum. Cells were grown at

37uC in a 5% CO2 humidified incubator.

Western Blotting and Cya Translocation Assay
Wild-type and invA-mutant SL1344 strains transfected with

different constructs were cultured for 12 h in LB-0.3 M NaCl

medium containing 100 mg/L ampicilin. The culture was diluted

1:100 fold using fresh LB-0.3 M NaCl medium, and grown for

another 3 h under slow agitation to obtain an optical density of

OD600 0.8,0.9 (Salmonella Pathogenecity Island 1 (SPI-1)

inducing conditions). The fusion proteins with pBAD promoter

were induced with 20% L-arabinose during the last 3 hours.

Bacterial T3S Effector Identification

PLOS ONE | www.plosone.org 11 April 2013 | Volume 8 | Issue 4 | e59754



Bacterial total proteins were extracted and re-suspended in sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)

sample buffer for SDS-PAGE analysis. Protein expression was

detected using Western blotting with anti-myc antibody (Invitro-

gen, Cat. No. R950-25).

The mechanism of Cya translocation assay was shown in Fig. S4

[47]. HepG2 cells were plated into 24-well tissue culture plates 1

day before infection. Each well contains 1 ml medium, and after

24 h culture, the density of adherent cells reached 2610̂5 cells per

well. HepG2 cells were washed twice, replaced with fresh medium,

and used to infect Salmonella for 2 hour at a multiplicity of infection

(MOI) of 20 [48]. After infection, the cells were washed with ice-

cold Phosphate-buffered saline (PBS) for three times, and then

lysed in 100 ul of extraction solution (50 mN HCl/0.1% Tri-

ton6100) on ice. The lysate was boiled in a water bath for 5 min,

followed by neutralization with 6 ul of 0.5 M NaOH. cAMP was

extracted with ethanol. After centrifugation at 115006g for 5 min,

the supernatant containing cAMP was lyophilized and then

quantified using a cAMP ELISA kit (R&D, Cat. No. KGE002B).

Microarray Dataset and Data Analysis
Microarray dataset GSE2456 profiling the expression of

Salmonella genes under 32 different growth conditions was down-

loaded from NCBI GEO database. All the gene chips used the

same platform and the experiments were performed at the same

time by the same group (McClelland laboratory, unpublished).

After normalization, the expression values for each gene were

analyzed for their expression correlations and co-expression with

both SPI-1 (invA, invG and invC, encoding export apparatus,

outer membrane ring and ATPase, respectively) and SPI-2 (ssaV,

ssaC and ssaN, encoding export apparatus, outer membrane ring

and ATPase, respectively) apparatus genes. For expression level

correlation analysis, Pearson Correlation Coefficients (PCCs) and

Spearman Rank Correlation Coefficients (SCCs) were calculated.

To analyze co-expression between candidate and SPI-1 or SPI-2

apparatus genes, expression levels for each gene were observed

and ranked. Four categories were defined: ‘‘+++’’ represents the
situation that expression of target gene is strongly co-induced

under InvA strongly-inducing conditions (the expression level of

target gene ranking top 10%); ‘‘++’’ represents the situation that

expression of target gene is relatively strongly induced under InvA

strongly-inducing conditions (ranking top 20%); ‘‘+’’ represents the
situation that expression of target gene is induced under InvA

strongly-inducing conditions (ranking top 50%); otherwise, the

target gene is considered not co-expressed under SPI-1 inducing

conditions, and is represented as ‘-’.

Supporting Information

Figure S1 A common 3D structure cluster of T3S signal
sequences and similar structures. (A) The cluster (11

sequences) contains common 3D structure. (B) Structure align-

ment among Yersinia YopP, EHEC EspB, Chlamydia Q3KMQ0,

and Shigella VirA signal sequences; (C)–(E) Structure and topology

of Yersinia YopP, EHEC EspB, Chlamydia Q3KMQ0, respectively.

The backbones of aligned peptides were shown in (A) and (B),

while strands for individual peptide were shown in (C)–(E). N-

termini were shown in blue and C-termini in red.

(PDF)

Figure S2 Structure alignments for T3S signal se-
quences with similar 3D structures. Pseudomonas HopP-

toA1Pma, Xanthomonas XopD and Vibrio VopF; (B) Rhizobium NopL

and Shigella IpgB1; (C) Vibrio VopC and Pseudomonas HopAN; (D)

Ralstonia RSc3401 and RSc1349. Structure backbones were shown

for the aligned peptides. N-termini were shown in blue and C-

termini were in red.

(PDF)

Figure S3 Construction of Cya translocation reporter
plasmid. Plasmid pMS107 containing CyaA fragment was used

as template to amplify CyaA gene with EcoRI and XhoI

restriction sites. The PCR product was further cloned into plasmid

pBADB-Myc-His to get the resulting pBADB-CyaA-tag reporter

plasmid. Candidate signal sequences were cloned into pBADB-

CyaA-tag plasmid between XbaI and EcoRI sites to obtained

different testing plasmids, respectively.

(PDF)

Figure S4 Principles of CyaA translocation assay. CyaA
reporter plasmids inserted with N-terminal candidate signal

sequences were transformed into bacteria of functional T3SSs.

Under induction of L-arabinose, the mosaic protein fused with N-

terminal candidate T3S signals, CyaA polypeptides, and C-

terminal Myc-His double tags will be expressed. Under T3SS

induction conditions, T3SS apparatus genes will be expressed and

assembled. If the signal sequence cloned in reporter plasmid is true

T3S signal, it will be specifically recognized by T3SS apparatus,

and consequently the fusion protein will be translocated into

contacting eukaryotic cells. In cytoplasm of eukaryotic cells, with

the assistance of Calmodulin (CaM) protein, CyaA protein will

exert its function to catalyze the reaction by which ATP is changed

to cAMP. Therefore, the cAMP level will be increased

significantly.

(PDF)

Table S1 Joint feature profiles in the N-terminal up to 50

positions.

(XLS)

Table S2 Salmonella T3S effectors predicted by T3SEpre.

(XLS)

Table S3 Expression correlation with InvA and co-expression

under InvA inducing conditions of newly identified Salmonella

T3S proteins.

(DOC)

Table S4 T3S signal-containing proteins predicted from organ-

isms without reported T3SS.

(XLS)

Table S5 3D structure predictions and comparison for T3S

signal sequences.

(DOC)

Table S6 Plasmids used in this study.

(DOC)

Table S7 Primers used in this study.

(DOC)

Text S1 Training peptide, secondary structure and
solvent accessibility.
(TXT)

Text S2 Arnold 2009 training sequences.
(TXT)

Text S3 Lower 2009 training_sequences.
(TXT)

Text S4 Mukaihara 2010 Ralstonia T3S proteins.
(TXT)

Text S5 Baltrus 2011 Comprehensive Pseudomonas
T3S protein.
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(TXT)

Zip file S1 Predicted 3D structure of T3S and non-T3S
signal sequences.
(ZIP)
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