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ABSTRACT The bacterium Actinobacillus succinogenes GXAS137, an efficient pro-
ducer of succinic acid, was isolated from bovine rumen in Nanning, Guangxi Prov-
ince, China. Here, we present the 2.3-Mb genome assembly of this strain, which con-
sists of 2,314,479 bp (G�C content of 44.89%) with a circular chromosome, 2,235
DNA coding sequences, 57 tRNAs, and 15 rRNAs.

Succinic acid (SA) is an important C4-building chemical platform for many applica-
tions, including food, agriculture, and pharmaceutical (1, 2) production. Commercial

SA is mainly produced through petrochemical processes, which bring environmental
pollution and other concerns related to sustainable development (3, 4). As an alterna-
tive, SA can be manufactured using bio-based feedstock through microbial fermenta-
tion (5).

SA production has been accomplished by different microorganisms, including An-
aerobiospirillum succiniciproducens, Actinobacillus succinogenes, Basfia succiniciprodu-
cens, Mannheimia succiniciproducens (6), Saccharomyces cerevisiae (7), and Escherichia
coli (8). Although these organisms have achieved a competitive performance, A. succi-
nogenes, a capnophilic anaerobic Gram-negative bacterium, is promising because of its
ability to form SA naturally at appreciable yields and productivities from a broad range
of carbon sources (9–11).

Recent study in our laboratory has isolated an efficient SA-producing strain, A.
succinogenes GXAS137 (China Center for Type Culture Collection accession no. CCTCC
M 2011399), which was originally isolated from bovine rumen in China. The strain can
produce up to 95 g/liter of SA with different substrates, such as glucose, cane molasses,
duckweed powder, cassava powder, and crude glycerol (12–14). To generate genomic
insights into its SA production and relative gene regulation, we performed the whole-
genome sequencing of A. succinogenes GXAS137.

The genome of A. succinogenes GXAS137 was sequenced at Beijing Novogene
Bioinformatics Technology Co., Ltd., with massive parallel sequencing using Illumina
technology. Two DNA libraries were constructed: a paired-end library with an insert size
of 350 bp and a mate-pair library with an insert size of 6 kb. The 350-bp library
was sequenced with an Illumina MiSeq and HiSeq 2500 platforms using a paired-end
300-bp strategy. A total of 700 Mb of filtered paired-end reads were obtained with
SOAPdenovo software to reach a depth genome coverage of 200-fold (15). Gaps were
closed by PCR and subsequent Sanger sequencing. Gene prediction was performed
with GeneMarkS. The filtered reads were assembled with SOAPdenovo to generate
scaffolds. Genome annotation was predicted with the NCBI Prokaryotic Genome Auto-
matic Annotation Pipeline, and additional software was used to predict the other
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elements in the genome. tRNAs were predicted with tRNAscan-SE, rRNAs were
predicted with rRNAmmer, and small RNAs (sRNAs) were predicted by a BLAST search
against the Rfam database. PHAST was used for prophage prediction, and CRISPRFinder
was used to identify clustered regularly interspaced short palindromic repeats (16).

The genome of A. succinogenes GXAS137 was characterized by a circular chromo-
some of 2,312,173 bp with a 44.89% G�C content without plasmids. The chromosome
contains approximately 2,454 predicted genes, 2,235 protein-coding genes, 139 pseu-
dogenes, 57 tRNAs, 15 rRNAs, and 8 sRNAs.

So far, only one complete sequencing genome of the A. succinogenes 130Z has been
published and analyzed in detail (17). The availability of the complete genome se-
quence of strain GXAS137 not only will contribute to enriching the genome database
but will also give us the opportunity to investigate further the genes related to the
biosynthesis of SA.

Accession number(s). This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession no. NHRD00000000. The version described in
this paper is the first version, NHRD01000000.
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