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Abstract: Intestinal mucins constitute the major component of the mucus covering the epithelium
of the gastrointestinal tract, thereby forming a barrier against microbial colonization. Rabbits are
bred in large numbers worldwide, with little known about intestinal O-glycosylation despite this
insight being crucial to the understanding of host-pathogen interactions. In the present study,
a major mucin-type glycopeptide (RIF6) of hyla rabbit intestine was isolated and the O-glycans were
extensively characterized based on liquid chromatography-tandem mass spectrometry (LC-MS/MS)
combined with bioinformatics approaches. Thirty-three O-glycans were identified, and most of
them were sulfated or sialylated glycans. It was worth noting that Neu5Gc-containing structures
within sialylated O-glycans accounted for 91%, which were extremely different from that of other
species including humans, mice, chickens, etc. Sulfated glycans accounted for 58%, unique disufated
and sulfated-sialylated glycans were also detected in rabbit intestinal mucin. These structural
characterization reflected species diversity and may provide deeper insights into explaining the
adaptability of hyla rabbit to the environment.
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1. Introduction

The intestine, an important part of the digestive system, is comprised of a complex organization
of epithelium, immune cells, and resident microbiota [1]. The intestinal epithelium is covered by a
mucus layer, which together with other substances forms the front line of defense to prevent microbial
colonization and avoid erosion of the underlying epithelia [2].

Intestinal mucins, the major components of the mucus layer in intestine, are extensively
O-glycosylated proteins that comprise up to 80% of the mucin by weight. These mucins play
an essential role in protecting the underlying epithelium from chemical and mechanical stresses.
Additionally, the mucin provides binding sites for pathogenic microbes, as well as serves as an
abundant potential carbon source for resident microflora [3]. Several studies have indicated that
alterations in mucin structure can be utilized to distinguish different species or certain diseases, such
as Crohn’s disease, cystic fibrosis, or cancer [4–11]. Furthermore, O-glycan structural diversity in
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different species can contribute to the selection of microbial communities along and across the intestinal
tract [12,13].

Rabbits are herbivores that are bred in large volumes worldwide. Infectious diseases of the
digestive system currently cause up to 60% mortality of rabbit, which greatly influence rabbit farming.
These enteric diseases are caused by the presence of the pathogen [14]. Previous studies have indicated
that endogenous glycans, such as O-glycans, exert a great effect on intestinal health by maintaining the
balance of microbial community [15]. However, despite the intestine being important to the overall
health, little is known regarding unique intestinal O-glycosylation and how it impacts host-pathogen
interactions in rabbits. Therefore, rabbit intestinal mucin-type glycopeptides were obtained and the
O-glycans were characterized using LC-MSn and various bioinformatics approaches in glycomics.

2. Results

2.1. Purification and Chemical Analysis of Hyla Rabbit Intestinal Mucins

Papain was used to obtain the mucin-type peptides from the rabbit intestines. Following
purification by using QFF chromatography, four glycopeptide fractions (RIF4, RIF6, RIF8, and
RIF10) were acquired. According to the monosaccharide composition analysis (Supplementary
Information, Table S1), RIF6 was predominantly composed of Gal, GlcNAc, GalNAc and Sialic acid
(Supplementary Information, Figure S1), which was consistent with mucin character, and thus was
further characterized for the O-glycan studies. Whereas minor content of GalNAc and Gal in RIF4
ruled out its possibility of being O-glycans, RIF8 and RIF10 were glycosaminoglycans according to
their monosaccharide composition.

2.2. Structural Analysis of O-glycan by LC-MS/MS

The O-glycans were released by using the reductive β-elimination method, and all O-glycans
would be existed in its alditol form. The profiling of the O-glycans was performed on a porous
graphitized carbon column separation and online LC-MSn analysis technique [16]. All data obtained
from LC-MSn were analyzed with bioinformatics softwares. Collision-induced dissociation (CID),
a fragmentation technique, was adopted to characterize the fine structures of O-glycan. The parent ions
derived from the full MS were labeled as various fragments which could then be utilized to determine
the core type, specific linkage mode, and the positions of fucose or sialic acid [17–21]. The naming
rules for the fragment ions were based on previously described nomenclature [22], with Ai, Bi, and Ci

representing fragment ions containing non-reducing ends, while Xj, Yj, and Zj representing fragment
ions containing reducing ends. Additionally, the subscript α is used to represent longer branches in
the O-glycan chain, while the subscript β represents shorter ones.

2.2.1. LC−MS/MS Revealed Overall Structural Characteristics

O-Glycans from RIF6 were detected as singly and doubly charged ions in negative-ion mode
(Table 1). Overall, 33 O-glycans were characterized, containing six sulfated or Neu5Gc-containing
structures unique to the rabbits (m/z 747, 837, 982, 488, 529, 836). The O-glycans were 2–6 residues long,
and most were sulfated or sialylated. The distribution of O-glycans from RIF6 was 25.46% neutral,
10.40% sialylated, 57.7% sulfated, 16.92% fucosylated and 4.87% sulfated-sialylated glycans (Figure 1).
It is worth noting that the five most abundant structures (m/z 667, 425, 464, 733 and 732) accounted to
72.22% of total content. Most of these five structures were sialylated or sulfated core 3.
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Figure 1. Composition and content of O-glycans. (a) Quantitative graph of 33 kinds of O-glycans 
existed in rabbit intestines. (b) Percentage of different types of O-glycans with various modifications. 

2.2.2. Core 3 Extended with TypeⅡ LacNAc is the Main O-glycan Type 

Core structures can be easily identified from CID spectra by the loss of a moiety from the 
pseudomolecular ion [16,20,23]. Core 3 structure represented the largest proportion of glycans 
(75.22%) based on the integral areas of the MS analysis. The B type ion (m/z 202) in Figure 2a and Z2 
(m/z 407) in Figure 2f indicate the presence of core 3 type structures. Furthermore, core 1 can be also 
detected based on different Z1β ions formed by the loss of the Gal (Figure 2b). Two structures (m/z 
813, 1040) containing both core 1 and core 3 isomers are also detected. The m/z 614 and m/z 507 
fragments (Figure 2c,d) indicate the presence of cores 2 and 4. In Figure 2f,e, the 0,2A2/0,2A2α-H2O 
fragment ion at m/z 280, m/z 343 indicates the presence of a typeⅡ chain. The majority of identified 
glycans were typeⅡ lactosamine structures (15 of 33), accounting for 64.59% according to integral 
area. Among these structures, core 3 structures were the main portion elongated with a typeⅡ 
lactosamine.  
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Figure 1. Composition and content of O-glycans. (a) Quantitative graph of 33 kinds of O-glycans
existed in rabbit intestines. (b) Percentage of different types of O-glycans with various modifications.

2.2.2. Core 3 Extended with Type II LacNAc Is the Main O-glycan Type

Core structures can be easily identified from CID spectra by the loss of a moiety from the
pseudomolecular ion [16,20,23]. Core 3 structure represented the largest proportion of glycans (75.22%)
based on the integral areas of the MS analysis. The B type ion (m/z 202) in Figure 2a and Z2 (m/z 407)
in Figure 2f indicate the presence of core 3 type structures. Furthermore, core 1 can be also detected
based on different Z1β ions formed by the loss of the Gal (Figure 2b). Two structures (m/z 813, 1040)
containing both core 1 and core 3 isomers are also detected. The m/z 614 and m/z 507 fragments
(Figure 2c,d) indicate the presence of cores 2 and 4. In Figure 2f,e, the 0,2A2/0,2A2α-H2O fragment ion
at m/z 280, m/z 343 indicates the presence of a type II chain. The majority of identified glycans were
type II lactosamine structures (15 of 33), accounting for 64.59% according to integral area. Among these
structures, core 3 structures were the main portion elongated with a type II lactosamine.
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Figure 2. MS/MS spectra in the negative ion mode and proposed fragmentation of O-glycan with 
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[GlcNAcβ1-3GalNAc-ol]; (b) core 1 oligosaccharide at m/z 691 [Galβ1-3(Neu5Gcα2-6)GalNAc-ol]; (c) 
core 2 oligosaccharide at m/z 894 [Neu5Gcα2-3Galβ1-3(GlcNAcβ1-6)GalNAc-ol]; (d) core 4 
oligosaccharide at m/z 870 [Galβ1-4(SO3−)GlcNAcβ1-6(GlcNAcβ1-3)GalNAc-ol]; (e) oligosaccharide 
with both Galβ1-3 linked and Galβ1-4 linked to a GlcNAc residue; (f) oligosaccharide with a Galβ1-4 
linked to a GlcNAc residue. 
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detected. Herein, the B ion at m/z 290 in MS/MS spectra (Figure 3a,b) corresponds to a Neu5Ac residue 
and the ion at m/z 306 (Figure 2b,c) corresponds to a Neu5Gc residue. One structure at m/z 982 in the 
MS/MS spectra (Supplementary Information, Figure S3) was also found containing Neu5Gc and 
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Figure 2. MS/MS spectra in the negative ion mode and proposed fragmentation of O-glycan
with different core types and two isomeric oligosaccharides: (a) core 3 oligosaccharide at m/z 425
[GlcNAcβ1-3GalNAc-ol]; (b) core 1 oligosaccharide at m/z 691 [Galβ1-3(Neu5Gcα2-6)GalNAc-ol];
(c) core 2 oligosaccharide at m/z 894 [Neu5Gcα2-3Galβ1-3(GlcNAcβ1-6)GalNAc-ol]; (d) core 4
oligosaccharide at m/z 870 [Galβ1-4(SO3

−)GlcNAcβ1-6(GlcNAcβ1-3)GalNAc-ol]; (e) oligosaccharide
with both Galβ1-3 linked and Galβ1-4 linked to a GlcNAc residue; (f) oligosaccharide with a Galβ1-4
linked to a GlcNAc residue.

2.2.3. Notable Feature of High Neu5Gc-containing O-glycans

O-glycans from RIF6 were heavily sialylated. Almost half of the identified O-glycans (16 of 33)
were sialylated with 18.18% sialylated core 1, 6.06% sialylated core 2, 15.15% sialylated core 3 and
9.09% sialylated Tn antigen. Two types of sialic acid, Neu5Ac (6 of 33) and Neu5Gc (11 of 33), were
detected. Herein, the B ion at m/z 290 in MS/MS spectra (Figure 3a,b) corresponds to a Neu5Ac residue
and the ion at m/z 306 (Figure 2b,c) corresponds to a Neu5Gc residue. One structure at m/z 982 in
the MS/MS spectra (Supplementary Information, Figure S3) was also found containing Neu5Gc and
Neu5Ac. Among these sialylated O-glycans, the Neu5Gc-containing glycans represented the most
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notable content and constituted 91%. The linkages included α2-3 linkages to Gal, α2-6 linkages to
GalNAc-ol, or an α2-8 linkage to di- or polysialyl motifs. The fragment ion at m/z 469 (Figure 3b)
serves as a diagnostic ion for a Neu5Ac residue directly linked to Gal via an α2-3 linkage. In addition
to these ions, the fragment ion at m/z 348 (Figure 3c) is annotated as ross-ring cleavage of 4A0-H2O,
indicating a sialic acid linkage to the core GalNAc-ol. The structure at m/z 675 contained two isomers
with Neu5Ac linking to Gal (Supplementary Information, Figure S3) or core GalNAc-ol (Figure 3d).
Seven of 16 sialylated structures contained α2-6 and six of 16 contained α2-3 linkages. Notably,
2 Neu5Gc-containing structures (m/z 894, 974) accounted for 56% according to the integral area.

Molecules 2019, 24, 1365 6 of 14 

 

GalNAc-ol, or an α2-8 linkage to di- or polysialyl motifs. The fragment ion at m/z 469 (Figure 3b) 
serves as a diagnostic ion for a Neu5Ac residue directly linked to Gal via an α2-3 linkage. In addition 
to these ions, the fragment ion at m/z 348 (Figure 3c) is annotated as ross-ring cleavage of 4A0-H2O, 
indicating a sialic acid linkage to the core GalNAc-ol. The structure at m/z 675 contained two isomers 
with Neu5Ac linking to Gal (Supplementary Information, Figure S3) or core GalNAc-ol (Figure 3d). 
Seven of 16 sialylated structures contained α2-6 and six of 16 contained α2-3 linkages. Notably, 2 
Neu5Gc-containing structures (m/z 894, 974) accounted for 56% according to the integral area. 

 

Figure 3. MS/MS spectra of sialylated oligosaccharides recorded in the negative ion mode: (a) and (b) 
oligosaccharide with a Neu5Acα2-3 linked to a Gal residue; (c) oligosaccharide with a Neu5Gcα2-6 
linked to a GalNAc-ol; (d) oligosaccharide with a Neu5Acα2-6 linked to a GalNAc-ol. 

Figure 3. MS/MS spectra of sialylated oligosaccharides recorded in the negative ion mode: (a) and (b)
oligosaccharide with a Neu5Acα2-3 linked to a Gal residue; (c) oligosaccharide with a Neu5Gcα2-6
linked to a GalNAc-ol; (d) oligosaccharide with a Neu5Acα2-6 linked to a GalNAc-ol.

2.2.4. Characterization of Highly Sulfated O-glycans

O-glycans of RIF6 were highly sulfated with 15 of 33 O-glycans being identified. Among these
sulfated glycans, most were monosulfated (14 of 15), with minor trace of disulfated glycans (Figure 4c).
The content of sulfated glycans was up to 58% with one particular structure (m/z 667) accounting
for 43%. The location of sulfate was found on Gal, GlcNAc or GalNAc. The presence of the m/z
241 (Figure 4a) or m/z 282 (Figure 4b) ions indicates that the sulfate groups are located on a Hex or
HexNAc. The C-4 position linked to a Gal and the C-6 to GlcNAc were detected. A sulfated linkage to
a monosaccharide residue can be distinguished by various specific ring cleavages [17]. Herein, the 2,4A
and 3,5A fragment ions (Figure 4a) indicate a substitution of C-4 linkage. The fragment ion generated
via 0,4A-type and 0,2A-type cleavage (Figure 4d) can serve as the diagnostic ion for the C-6 sulfate
substitution of HexNAc.
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2.2.5. Presence of α1-2 Fucose-containing O-glycans

In mucin-type O-glycans, the location of fucose can, to a certain extent, determine the type of
epitope [20]. In this study, 12 of 33 structures contained fucose residues, mainly with an α1-2 fucose
linkage to Gal to form several antigens. Among these antigens, the blood group H epitopes (10 of 33)
were predominated, along with Lewisx (1 of 33) and group A (2 of 33). The total level of fucosylated
glycans constituted 17% of all glycans base on MS intensities (Figure 1). The content of H epitopes
was up to over 86% within glycans with fucose residues. Non-reducing end H antigen fragments
are always accompanied by the B-C2H4O2 ions of m/z 247 (Figure 5a), which is characteristic of a C-2
substituted Gal. In Figure 5b, the Y2β (m/z 975) and Y1β (m/z 813) cleavage ions indicate that an α1-2
fucose linkage to Gal was present.Molecules 2019, 24, 1365 8 of 14 

 

 

Figure 5. MS/MS spectra of two fucosylated oligosaccharides recorded in the negative ion mode: (a) 
oligosaccharide with α1-2 fucose linkage to Gal residue; (b) oligosaccharide with α1-2 fucose linkage 
to Gal residue and α1-3 fucose linkage to GlcNAc residue. 

3. Discussion 

O-Glycans on intestinal mucin are of great significance in protecting against harmful substances, 
maintaining balance of beneficial microbial community and helping rabbits to keep healthy. In this 
study, O-glycans from rabbit intestinal mucin-type glycopeptides were characterized, rendering this 
the first elaborate O-glycan profiling of hyla rabbit mucins. 33 O-glycans were characterized, and 
most were heavily sialylated or sulfated. These identified O-glycans showed great similarity (17 of 
33) to that of pigs, which are also domestic mammal as rabbits (Supplementary Information, Table 
S2). Additionally, one disulfated (m/z 747) and five Neu5Gc-containing structures (m/z 488, 529, 836, 
837, 982) were unique to the rabbits. This reflects the joint action of genetic inheritance and 
environmental selectivity. 

Cores 1, 2, 3, 4 and several Tn antigen were detected. Of these glycans, core 3 was the most 
abundant core type. This structure has showed an important role in reducing intestinal permeability 
and levels of bacteria within mucosa, thus promoting mucosal barrier function [24]. These findings 
are similar to previous studies in human [19] and chicken [25] intestines. However, it shows 
differences in other species, such as the porcine colon containing predominantly core 4 [26], mouse 
intestines mostly comprising core 2 [27], and fish intestine mostly consisting of core 5 [28]. 
Particularly, m/z 667, a sulfated core 3 structure, made up 43.19% of total glycans, which extensively 
existed in the intestines of humans and chickens with same core structure, but displayed in mouse 
and pig intestines with different isomers. Species-specific core type glycan expression reflects 
differences in needs of intestinal microorganism, encountered environmental challenges, and species 
diversity. 

Abundant Neu5Gc-containing glycans was the most unique feature in rabbit intestines. The 
identified Neu5Gc-containing structures were never found in intestines of humans or chickens 
whereas displayed 3 same glycans with pigs (Supplementary Information, Table S2). Notably, the 
content of Neu5Gc-containing glycans within sialylated O-glycans accounted for 91%, which was 
extremely higher than that in other species’ intestines. The most abundant three Neu5Gc-containing 
glycans (m/z 732, 974, 894) were only detected a small amount (1.8%) in pig intestines, but reached 
up to 13.08% of total content in the rabbit intestines. Interestingly, the content of Neu5Gcα2-3Gal 
structures in rabbit intestines accounted for 56% among sialylated glycans, even though only two 
structures (m/z 894, 974) were characterized. As prominent outermost carbohydrates on mucins, sialic 
acids play important regulatory and protective roles in cell biology [29]. Unique content of Neu5Gc 
may also alter the functions of endogenous receptors for sialic acids in the immune system [30]. 
Besides, many major pathogens gain access to their mammalian hosts by binding to certain sialic 
acids types or linkages in the surface of glycan chains. Previous studies have showed E. coli K99, a 
pathogen that has a strong preference for Neu5Gc, can cause serious diarrheal diseases in farm 
animals like cows and pigs [30]. Human influenza A virus preferentially recognize SAα2-6Gal 
linkage, whereas most animals are infected by α2,3-specific influenza A virus [31]. Another research 

Figure 5. MS/MS spectra of two fucosylated oligosaccharides recorded in the negative ion mode:
(a) oligosaccharide with α1-2 fucose linkage to Gal residue; (b) oligosaccharide with α1-2 fucose linkage
to Gal residue and α1-3 fucose linkage to GlcNAc residue.
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3. Discussion

O-Glycans on intestinal mucin are of great significance in protecting against harmful substances,
maintaining balance of beneficial microbial community and helping rabbits to keep healthy. In this
study, O-glycans from rabbit intestinal mucin-type glycopeptides were characterized, rendering this the
first elaborate O-glycan profiling of hyla rabbit mucins. 33 O-glycans were characterized, and most were
heavily sialylated or sulfated. These identified O-glycans showed great similarity (17 of 33) to that of
pigs, which are also domestic mammal as rabbits (Supplementary Information, Table S2). Additionally,
one disulfated (m/z 747) and five Neu5Gc-containing structures (m/z 488, 529, 836, 837, 982) were
unique to the rabbits. This reflects the joint action of genetic inheritance and environmental selectivity.

Cores 1, 2, 3, 4 and several Tn antigen were detected. Of these glycans, core 3 was the most
abundant core type. This structure has showed an important role in reducing intestinal permeability
and levels of bacteria within mucosa, thus promoting mucosal barrier function [24]. These findings are
similar to previous studies in human [19] and chicken [25] intestines. However, it shows differences
in other species, such as the porcine colon containing predominantly core 4 [26], mouse intestines
mostly comprising core 2 [27], and fish intestine mostly consisting of core 5 [28]. Particularly, m/z 667,
a sulfated core 3 structure, made up 43.19% of total glycans, which extensively existed in the intestines
of humans and chickens with same core structure, but displayed in mouse and pig intestines with
different isomers. Species-specific core type glycan expression reflects differences in needs of intestinal
microorganism, encountered environmental challenges, and species diversity.

Abundant Neu5Gc-containing glycans was the most unique feature in rabbit intestines. The
identified Neu5Gc-containing structures were never found in intestines of humans or chickens whereas
displayed 3 same glycans with pigs (Supplementary Information, Table S2). Notably, the content of
Neu5Gc-containing glycans within sialylated O-glycans accounted for 91%, which was extremely
higher than that in other species’ intestines. The most abundant three Neu5Gc-containing glycans
(m/z 732, 974, 894) were only detected a small amount (1.8%) in pig intestines, but reached up to
13.08% of total content in the rabbit intestines. Interestingly, the content of Neu5Gcα2-3Gal structures
in rabbit intestines accounted for 56% among sialylated glycans, even though only two structures
(m/z 894, 974) were characterized. As prominent outermost carbohydrates on mucins, sialic acids
play important regulatory and protective roles in cell biology [29]. Unique content of Neu5Gc may
also alter the functions of endogenous receptors for sialic acids in the immune system [30]. Besides,
many major pathogens gain access to their mammalian hosts by binding to certain sialic acids types or
linkages in the surface of glycan chains. Previous studies have showed E. coli K99, a pathogen that
has a strong preference for Neu5Gc, can cause serious diarrheal diseases in farm animals like cows
and pigs [30]. Human influenza A virus preferentially recognize SAα2-6Gal linkage, whereas most
animals are infected by α2,3-specific influenza A virus [31]. Another research revealed recognition of
Neu5Gcα2-3Gal structure is related to the efficient replication of influenza viruses in duck intestines [32].
Therefore, abundant Neu5Gc-containing glycans may make rabbits be susceptible to diseases such as
influenza viruses or diarrheal. Additionally, rabbits share less similar microorganisms composition
with other species which are high in Neu5Ac, thus conferring protection for both of species from animal
pathogens and diseases. For example, rabbits may be resistant to parasite infection which is in specificity
toward Neu5Ac in rat intestines [33]. This parallels the loss of Neu5Gc in humans and chickens,
which are the only two animals that lack the cytidine monophosphate (CMP)-N-acetylneuraminic acid
hydroxylase (CMAH) gene required to synthesize Neu5Gc [34,35]. The absence of Neu5Gc makes
humans and chickens be not prone to infections by viruses and bacteria which recognize Neu5Gc
only and can live close to rabbits [36]. Rabbit intestines have been used as food source in many Asian
countries, however, some studies have revealed that much intake of Neu5Gc-containing food may
contribute to a higher cancer frequency and other dietary associated diseases in humans [37]. Thus,
the higher rabbit intestinal Neu5Gc levels may also provide dietary references to prevent cancer or
other related diseases in humans.
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The extent of sulfation is further emphasized as another unique feature when compared with
other results from intestines in human, pig and fish (Supplementary Information, Table S2). Fifteen out
of 33 indentified O-glycans were sulfated structures in rabbit intestines. It is to be noted that the content
of these sulfated glycans accounted for 58%. And most were monosulfated, which was consistent with
the previous human mucin studies [38]. Compared with other species, one disulfated glycan (m/z 747)
and two sulfated-sialylated glycans (m/z 958, 974) were also detected as unique structural features in
rabbit intestines (Supplementary Information, Table S2). Sulfated structures in rabbit intestines were
extended cores 1, 2, 3, 4, which were different from structures in other species, such as the absence of
sulfated core 4 glycans in humans, even the absence of sulfated structures verified in fish intestines
(Supplementary Information, Table S2). As was observed in rabbits, many species have extensively
sulfated intestinal mucin O-glycans [25,27,39]. Previous studies showed that core 1–4 and 6 serve
as potential substrates for sulphotransferases (STs). Two main mucin STs, GlcNAc6ST and Gal3ST,
transfer sulphate from 3-phosphoadenosine 5-phosphosulphate (PAPS) to the 6-position of GlcNAc
and the 3-position of Gal, respectively [40]. The expression of GlcNAc6ST and Gal3ST differ in different
species. For instance, the GlcNAc6ST-2 transferase has been shown to be a major sulfation enzyme in
the murine colon, and this enzyme is responsible for the predominant GlcNAc-6-O-sulfation in mouse
colonic mucins [41]. The GlcNAc6ST-3 was mainly expressed in human intestines [42]. Additionally,
Gal3ST-2 transferase was upregulated in the pathogen resistant chickens [25]. These expression
changes of STs may account for various sulfated modification in intestinal mucins of different species.
In another study, infected pig colons had lower levels of sulfated structures when compared with
non-infected porcine [26]. Abundant charged structures (sulfated, sialylated and sulfated-sialylated) in
rabbit intestines confer acidic properties which can change epithelial cell interactions or even modulate
bacterial interactions by hindering bacterial degradation as previous studies have revealed [43,44].

Terminal fucosylated epitopes have been reported to act as binding sites for various pathogens.
Campylobactor jejuni, the most common source of food poisoning and a common cause of death [45,46],
is a bacterium usually present in the intestinal tract. Previous study reported the ABO blood group
antigens can be utilized by C. jejuni as adhesion receptors [47]. The blood group H epitopes (10 of 33)
may act as bacterial receptors within the rabbit intestine. However, this effect could be modulated
when these structures carry charged residues, such as sialic acid or sulfate [25]. Large portions of the
antigenic epitopes were modified by Neu5Gc or the addition of sulfate (Table 1), which may balance
the relationship between intestines and bacteria, thus promoting the health of rabbits.

The analysis of rabbit intestinal mucin-type glycans provides a platform for deeper understanding
on how structural differences in glycosylation could explain the adaptability to the environment.
The structural features of rabbit intestines, especially the presence of highly sialylated and sulfated
modification, may provide unique mucus environments to help specialized microflora to live and
protect mucus from degradation. Notable and abundant content of Neu5Gc-containing glycans in
rabbit intestines explains susceptibility or resistance to certain pathogens or diseases for rabbits and
also provides dietary references for humans.

4. Materials and Methods

4.1. Materials and Chemicals

Hyla rabbit intestines were provided by Kangda Food Co., Ltd. (Qingdao, China). Papain was
purchased from Amresco (Solon, OH, USA). Q-Sepharose Fast Flow resin was procured from GE
Healthcare (Uppsala, Sweden). Mannose (Man), N-acetylglucosamine (GlcNAc), glucuronic acid (GlcA),
galacturonic acid (GalA), N-acetylgalactosamine (GalNAc), glucose (Glc), galactose (Gal), xylose (Xyl),
and fucose (Fuc), cetylpyridinium chloride (CPC), 1-phenyl-3-methyl-5-pyrazolone (PMP) and sodium
borohydride (NaBH4) were purchased from Sigma-Aldrich (St. Louis, MO, USA). The Eclipse XDB-C18
column (4.6 mm × 150 mm, 5 µm) was obtained from Agilent (Santa Clara, CA, USA), and Hypercarb
KAPPA Capillary Column (100 mm × 0.5 mm, 3 µm) was obtained from Thermo Fisher Scientific
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(Waltham, MA, USA). Sodium hydroxide (NaOH), trifluoroacetic acid (TFA), N-acetylneuraminic acid
(Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), and 1,2-diamino-4,5-methylenedioxybenzene (DMB
derivative) were purchased from Aladdin (Shanghai, China).

4.2. Purification and Chemical Compositions of Rabbit Intestinal Mucin-Type Glycopeptides

The hyla rabbit intestines mucosa were degreased by adding 20 volumes of chloroform/methanol
(2:1) for 15 h. The dried degreased mucosa powders were treated with papain, and the crude
mucin-type glycopeptides were separated by cetylpyridinium chloride (CPC) precipitation. The
nucleic acids that existed in the crude mucin-type glycopeptides were further removed by the
isoelectric point precipitation method. The pure mucin-type glycopeptide (RIF6) was finally purified
on a Q-Sepharose Fast Flow (QFF) column as previously described [48]. The purified fractions were
dialyzed and lyophilized.

The monosaccharide composition was determined by using PMP labeling in conjunction with
high-performance liquid chromatography (HPLC) as described by Chen et al. [49]. The sialic acid
content was performed using a pre-column DMB derivatization as previous studies have reported [50].

4.3. O-Linked Glycans Released from RIF6

O-linked glycans were released from the hyla rabbit intestinal mucin-type glycopeptide by
β-elimination. Briefly, the samples (0.5 mg) were incubated with 50 mM NaOH and 0.5 M NaBH4 at
50 ◦C for 14 h. Reactions were quenched with glacial acetic acid, 3 volumes of ethanol was added and
then centrifuged, and the supernatants were dialyzed and freeze-dried.

4.4. Analysis of O-glycans Released from RIF6 by Liquid Chromatography-Mass Spectrometry (LC-MS/MS)

Herein, the LTQ-Orbitrap XL and Agilent 1260 capillary liquid systems were utilized for LC-MS/MS
analysis. The O-glycan samples were separated using a Hypercarb KAPPA column maintained at 25 ◦C.
The mobile phase A consisted of acetonitrile and the mobile phase B consisted of 10 mM ammonium
bicarbonate. A loading volume of 0.2 µL was utilized at a flow rate of 8 µL·min−1 under the following
gradient: 2%–8% A in 20 min; 8%–15% A in 50 min; 15%–35% A in 80 min; 35%–60% A in 50 min; and
a final hold step from 60%–75% A in 5 min. Electrospray ionization-mass spectrometry (ESI-MS) was
performed in negative ion polarity mode with an electrospray voltage of 3 kV, a capillary voltage of
−41 V, a lens voltage of −120 V, and a capillary temperature of 275 ◦C. The instrument was operated in
Fourier transform (FT) mode with a sheath gas flow rate of 8 L·min−1 and a mass range of 280–3000 m/z.
A full MS scan was performed first, followed by a data-dependent collision-induced dissociation (CID)
MS/MS scan of the 5 most abundant ions. To obtain optimal fragmentation, the normalized collision
energy was 30 V.

4.5. O-glycan Structural Annotation and Assignments

The LC-MS/MS data was processed manually using Xcalibur (Thermo Fisher Scientific, Waltham,
MA, USA) and GlycoWorkbench softwares (Alessio Ceroni et al., Imperial College, London, UK).
Glycans were annotated manually based on their MS/MS spectra and then validated using available
structures in the CarbBank database. The MS spectra and MS/MS spectra were analyzed using the
Xcalibur software and the precise glycan structures were generated using GlycoWorkbench based on the
different fracture fragments of the parent ions [51]. All of the quantitative data were calculated based
on the integrated peak areas obtained from LC−MS chromatograms and formatted as a percentage (%)
to represent relative quantitation.

Supplementary Materials: The following are available online. Table S1: Monosaccharide composition of four
fractions purified on a QFF column, Table S2: O-glycan structures assigned by ESI-CID-MS/MS in RIF6 and
comparison with other species, Figure S1: HPLC Chromatogram for sialic acid standards solution (Neu5Ac,
Neu5Gc) and sample (RIF6), Figure S2: ESI-CID-MS/MS spectra of the remaining O-glycans from RIF6, Figure S3:
Total ion chromatogram of assigned O-glycan structures of RIF6.
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