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In everyday life, attentional templates—which facilitate
the perception of task-relevant sensory inputs—are
often based on associations in long-term memory. We
ask whether templates retrieved from memory are
necessarily faithful reproductions of the encoded
information or if associative-memory templates can be
functionally adapted after retrieval in service of current
task demands. Participants learned associations
between four shapes and four colored gratings, each
with a characteristic combination of color (green or
pink) and orientation (left or right tilt). On each trial,
observers saw one shape followed by a grating and
indicated whether the pair matched the learned
shape-grating association. Across experimental blocks,
we manipulated the types of nonmatch (lure) gratings
most often presented. In some blocks the lures were
most likely to differ in color but not tilt, whereas in other
blocks this was reversed. If participants functionally
adapt the retrieved template such that the
distinguishing information between lures and targets is
prioritized, then they should overemphasize the most
commonly diagnostic feature dimension within the
template. We found evidence for this in the behavioral
responses to the lures: participants were more accurate

and faster when responding to common versus rare
lures, as predicted by the functional—but not the strictly
veridical—template hypothesis. This shows that
templates retrieved from memory can be functionally
biased to optimize task performance in a flexible,
context-dependent, manner.

Introduction

Attentional templates are the mental representations
that we use to facilitate the detection and identification
of task-relevant sensory inputs (Bundesen, Habekost, &
Kyllingsbæk, 2005; Carlisle, Arita, Pardo, & Woodman,
2011; Chelazzi, Duncan, Miller, & Desimone, 1998;
Chelazzi, Miller, Duncan, &Desimone, 1993; Desimone
& Duncan, 1995; Duncan & Humphreys, 1989; Geng
& Witkowski, 2019; Kok, Mostert, & De Lange, 2017;
Treue & Martinez Trujillo, 1999). A common intuition
is that the attentional template is a replica of the
anticipated target. However, templates may not always
be fully specified or strictly veridical. For example,
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we are able to search for an item at the category
level—that is, without knowing the exact features of the
target (Cunningham & Wolfe, 2014; Peelen & Kastner,
2011)—and objects that are functionally related to the
target template can guide visual search (Boettcher,
Draschkow, Dienhart, & Võ, 2018).

Recently, an alternative and more flexible view of
attentional templates is emerging, with their functional
nature prevailing over their mimetic quality. Rather
than a faithful reproduction of the anticipated target,
a template may be adapted to optimize perceptual
performance within a current task context. A striking
recent demonstration comes from work by Yu and
Geng (2019). Whereas templates resembled targets
when searching for a target color (orange) in arrays
with an equal likelihood of distractors from either side
of the color space (yellower and redder), templates
became distorted when distractors were all drawn from
one side of the color space (e.g., yellower). In this case,
when targets and distractors were linearly separable, the
attentional template was asymmetrically sharpened and
repelled away from distractors (becoming redder). In
such a functional framework, certain template features
may be overemphasized and/or distorted in service of
anticipated task requirements (for a recent review see
Geng & Witkowski, 2019).

Our aim was to investigate whether the functional
properties of attentional templates also generalizes
to templates retrieved from associative memory
(Boettcher, Stokes, Nobre, & van Ede, 2020). In typical
laboratory studies of attentional templates, the template
is explicitly provided before the start of a trial or block
of trials (Carlisle et al., 2011; Chelazzi et al., 1993; Lee
& Geng, 2019; Navalpakkam & Itti, 2007; van Driel,
Gunseli, Meeter, & Olivers, 2017; Yu & Geng, 2019).
However, in the real world, attentional templates are
more often derived from learned associations between
stimuli, such that one stimulus (A) predicts another
(B) (Boettcher et al., 2020; Higuchi & Miyashita, 1996;
Hutchinson & Turk-Browne, 2012; Kok et al., 2017;
Stokes, Thompson, Nobre, & Duncan, 2009). Can the
template for a stimulus B—retrieved on the basis of
its long-term memory association to stimulus A—also
be functionally biased in service of anticipated task
demands?

There are at least two reasons why templates retrieved
from long-term memory may not be as adaptable as
those explicitly presented. First, unlike functional
biases of templates that are explicitly presented,
templates retrieved from memory cannot benefit from
differences at the encoding stage (Reeder, Hanke, &
Pollmann, 2017; Serences, Ester, Vogel, & Awh, 2009).
Second, unlike forms of adaptation that may gradually
develop when repeatedly using the same template
for many trials in a row (as in, e.g., Navalpakkam &
Itti, 2007; Yu & Geng, 2019), the same associative
memory template may require distinct adaptations at

each instance of retrieval depending on the current
context. As such, these templates may not benefit from
potential functional biases at the level of the stored
memory trace, but rather from biases that develop
during or after their retrieval. Therefore an important
open question remains regarding whether templates
that are retrieved from associative memory can also be
functionally biased to optimally serve behavior.

Here we developed a task in which observers
retrieved templates from memory. Between relatively
short blocks lasting only a few minutes, one or the
other visual feature of the template (color or tilt) was
made more informative by increasing the proportion of
nonmatch (lure) items that differed along one of the
features. For example, if the majority of lures would
share the same color as the target, template color would
become less informative, and tilt might be emphasized
instead. Here, we studied this in a context in which the
associations varied randomly throughout the block
(to reduce the potential influence of priming or the
repeated use of a single template that is not necessarily
being retrieved from long-term memory). If templates
are inflexible and veridical, their constituent features
should have equal weightings, predicting consistent
behavior regardless of the lure type. In contrast, if
templates retrieved from memory can be functionally
adapted to overemphasize the most useful feature
dimension, we should find evidence for this in the
pattern of behavioral response as a function of block.

We hypothesized that templates retrieved from
long-term memory can become functionally biased, and
that may occur similarly for distinct feature dimensions.
At the same time, because the prioritization of different
visual feature dimension may (at least under certain
circumstances) be asymmetrical (e.g., Biderman,
Biderman, Zivony, & Lamy, 2017; Geng, Di Quattro,
& Helm, 2017; Lee & Geng, 2019; Niklaus, Nobre, &
van Ede, 2017), we remained open to the possibility to
find differences in functional biases of visual color and
tilt information (the two feature dimensions that we
evaluated here).

Methods

Participants

Twenty-two participants took part in the Experiment.
Two participants failed to complete the experiment due
to problems with the testing computer. The remaining
20 participants (13 female, 1 left handed) were between
21-35 years old with an average age of 24.6. All
Participants had normal or corrected-to-normal vision,
provided written consent prior to participation, and
were compensated at a rate of £10 per hour.
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Figure 1. Trial schematic of experiment. (a) In the Learning phase, each observer learned to associate four shapes to four gratings.
These pairings were randomized across participants. (b) In the test phase, each trial began with the presentation of one of the
4 shapes followed by a blank and then a grating. Observers indicated whether the shape-grating matched the association held in
memory in both color and tilt. On non-match (lure) trials, observers could be presented with a common or rare lure, such that lures
were more likely to have a different color (“color-distinguishing block”) or a different tilt (“tilt-distinguishing block”). Note that if a
different shape was presented—all shapes were equally likely—the roles of the gratings would also change. For example, if a star was
presented, then the expected grating would be a pink-right tilted target, and the lures would change accordingly.

Task and procedure

All experimental procedures were reviewed and
approved by the Central University Research Ethics
Committee of the University of Oxford. Participants
completed the experiment in a group testing room
with a capacity of 20 people, although no more than
12 people were tested at one time. Participants each sat
approximately 50 cm from the monitor (Dell U2312HM
Monitor, 1920 × 1080 resolution; refresh rate 60
Hz). The experimental script was generated using the
Psychophysics Toolbox (Brainard, 1997) on MATLAB
(version 2014b; The MathWorks Inc., Natick,
MA, USA).

Prior to the main experimental task, participants
took part in a learning phase in which they learned
the relationship between four distinct shapes (square,
star, circle, and triangle) and four gratings (Figure 1a;
shape-grating pairings were randomized across
participants). The four gratings each had a unique
combination of color (green or pink; RGB values:
[46, 142, 141], [246, 37, 113]) and tilt (left or right,

at an angle of ± 45°). On each trial, observers saw
a central shape (1.4°) followed by a central grating
(9.1°) and indicated whether the pair matched the
learned shape-grating association. Shapes appeared
for 1000 ms followed by a 1000-ms delay. The grating
then appeared for 150 ms. Observers were required to
respond within 1500 ms with the “j” key (right hand
response) if they believed the stimulus matched the
learned shape-grating association in memory (in both
color and tilt) and the “f” key (left hand response) if the
grating did not match the learned association (because
either the color or the tilt was different). On 50% of the
trials a match grating was presented whereas on the
other 50% of the trials a nonmatching lure stimulus
was presented. Nonmatching (lure) stimuli matched
the learned association in one dimension but not the
other (Figure 1b). In the learning phase, participants
were required to complete a practice block of 30 trials
with above 80% accuracy before moving on to the
test phase (main verification task) that followed the
same procedure, but where we manipulated the type of
non-match gratings across blocks. These pairings were
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further reinforced during the experiment in the form
feedback after each trial.

The main verification task consisted of 30 blocks
with 30 trials in each block—with each block lasting
approximately three minutes. The central experimental
manipulation concerned how informative each feature
dimension was for discriminating targets from lures
by changing the probability that the lure shared either
color or tilt with the target across blocks. Specifically, in
half of the blocks the lure was most likely to differ from
the target in color but not tilt (color-distinguishing
blocks), whereas in the other blocks this pattern was
reversed (tilt-distinguishing blocks). Block type was
randomly ordered across 15 pairs (e.g., AB BA AB …).
We will refer to these nonmatch gratings as common
and rare lures. Common lures occurred on 85% of
lure trials whereas rare lures occurred on 15% of lure
trials. For example, in a color-distinguishing block,
in 85% of the lure trials the grating differed from the
expected target in color but not tilt (common), whereas
in the remaining 15% of the lure trials the grating
differed from the expected target in tilt but not color
(rare). If templates retrieved from associative memory
are veridical and therefore both features are weighed
equally, then we should see no effect of lure type.
However, if the attentional template for the upcoming
stimulus is adapted such that the distinguishing feature
is emphasized, then the common lure will be more
distinct from the template compared with the rare lure.
It follows that participants should be more accurate and
faster to reject common lures compared with rare lures.

After observers responded, or if they were too slow
with their response (> 1500 ms; this occurred in less
than 1% of trials across all participants), feedback was
provided in the form of a color change in the fixation
cross—green for correct response, red for incorrect
responses, and orange on trials in which a response was
not provided in time.

All feature values were equally probable within
each block, and participants were never tasked with
repeatedly searching for a specific feature value
throughout a given block. What defined the target,
the common lure, and the rare lure was solely and
completely dependent on the preceding shape cue.
Because the shape cues were randomly interleaved
across trials, participants were required to upload a
fresh attentional template on each trial. As such, there
is no possibility that low-level adaptation or short-term
priming could explain any differences in performance
in the different block types.

Statistical analysis

Because the critical manipulation (of block type)
regarded the type of lures that could occur, we
restricted our analyses to lure trials. Generalized linear

mixed-effects models (GLMMs) with a binomial
distribution were used to analyses the percentage
false alarms (FAs), and linear mixed-effects models
(LMMs) to analyses reaction times (RTs) (correct
rejection trials only) in a procedure similar to the
approach described in Helbing, Draschkow, and Võ
(2020) and Draschkow and Võ (2017). Trials in which
the response times were faster than 200 ms or greater
than 3 standard deviations from the participant’s mean
were discarded from the analysis. This resulted in an
average loss of 1.4% ± 0.19% (m ± standard error of
the mean [SEM]) of trials. These analyses were run
using the lme4 package (version 1.1-17; Bates et al.,
2015). We used mixed-effects models because they hold
multiple benefits over a more traditional approach
to analysis of variance. Importantly for the current
study, these approaches are more reliable in unbalanced
designs when different conditions have different trial
numbers—for example, common versus rare lures
(Baayen, Davidson, & Bates, 2008). All GLMMs
and LMMs were fitted with the maximum likelihood
criterion. For the GLMMs, where we report regression
coefficients β with the z statistic and use a two-tailed
5% error criterion for significance, the p values for the
binary accuracy variable are based on asymptotic Wald
tests. For the LMMs, we report β with the t statistic and
apply a two-tailed criterion corresponding to a 5% error
criterion for significance. The p values were calculated
with Satterthwaite’s degrees of freedom method using
the lmerTest package (version 3.1-0; Kuznetsova,
Brockhoff, & Christensen, 2017). Pairwise tests after
significant interactions were further investigated using
the lsmeans package (Lenth, 2016) with Tukey post-hoc
correction.

In this experiment there were two main independent
variables of interest: lure type (common vs. rare) and,
block type (color-distinguishing and tilt-distinguishing).
The comparisons were modelled using sum contrasts, in
which the grand mean of the dependent measure served
as the intercept. For binary responses such as FAs in
the GLMM approach, the coefficients are represented
by logits. We began each model with a maximal
random-effects structure (Barr, Levy, Scheepers, & Tily,
2013) that included intercepts for each participant,
as well as by-participant slopes for the effects of
lure type and block type. Full models such as these
often fail to converge or lead to overparameterization
(Bates, Kliegl, Vasishth, & Baayen, 2015). Therefore
we used a principal component analysis (PCA) of
the random-effects variance-covariance estimates to
identify overparameterization for each fitted model and
removed random slopes that were not supported by
the PCA (i.e., did not explain significant variance in
the model) and did not contribute significantly to the
goodness of fit in a likelihood ratio (LR) test (Bates,
Kliegl, et al., 2015). For both the GLMM and LMMs,
this resulted in the removal of the by-subject slopes
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Figure 2. Target templates drive behavior. Observers were
quicker to react to targets compared to lures, indicating that
the target representation was driving behavior. The right panel
shows the difference in RT between targets and lures, with
individual subjects’ differences plotted as gray dots.

for lure type from the random effects, and therefore
the random-effects structures for the optimal models
included the subject intercepts, as well as by-subject
slopes for block type. Further details regarding the
models and model comparisons can be found in the
analysis script. Analysis scripts and data can be found
here, https://osf.io/x7u4q/.

To make sure the results did not depend on the
chosen approach, we also conducted traditional
repeated-measures analyses of variance for both
FA and RT. These showed equivalent results and
can also be found in the analysis script provided on
OSF on acceptance. The ggplot2 package (version
3.1.0; Wickham, 2009) was used for plotting results.
Furthermore, where relevant, the within-subject
standard error of the mean was calculated from
normalized data using the approach from Morey
(2008).

Results

Observers correctly identified the target in 93.5% ±
1.1 (m ± SEM) of match trials, indicating that they
had properly learned the shape-gratings associations,
and were able to complete the task to a high standard.
Moreover, when considering only correct trials,
observers were faster to affirm targets than to reject
lures (Figure 2) (β = 0.04, SE = 0.03, t = 13.08, p
< 0.001). This suggests they were (primarily) relying
on a positive template of the target rather than a
negative template of the potential lures, which is also
theoretically possible (Arita, Carlisle, & Woodman,
2012; Conci, Deichsel, Müller, & Töllner, 2019; Moher
& Egeth, 2012).

Having established that observers were able to do the
task to a high standard and were likely using positive

templates we now shift our focus to participants’
responses to the nonmatch (lure) stimuli, because
these were the subject of our primary experimental
manipulation. If participants are using a functional
template biased by which feature dimension is most
informative in the current context (here manipulated at
the level of blocks), then this template should become
optimized for rejecting the type of lure that was more
common in this context (block). In line with this
hypothesis, we found that observers were less likely to
erroneously identify a common (vs. a rare) lure as a
target (i.e., false alarm) (Figure 3a) (β = 0.13, SE =
0.05, z = 2.52, p = 0.01; rare lures: 10.02% ± 0.42%;
common lures: 8.06% ± 0.42%). This pattern was
similarly present for both visual features (Figure 3b):
we found no effect of block type (β = −0.03, SE =
0.07, z = −0.50, p = 0.62) and no interaction between
lure type and block type (β = 0.03, SE = 0.05, z = 0.56,
p = 0.57) (Figure 3b).

Analysis of reaction times yielded complementary
evidence. Observers were faster to reject common
lures (628 ms ± 3.62) compared to rare lures (654 ms
± 3.62) (Figure 3c) (β = 0.02, SE = 0.003, t = 4.23,
p < 0.001). We found no effect of block type (β =
0.001, SE = 0.005, t = 0.233, p = 0.82). However, for
RT, block type and lure type did show a significant
interaction (β = −0.008, SE = 0.002, t = −2.93, p =
0.003) (Figure 3d). Post-hoc comparisons revealed that
there was no significant effect of lure type on RT in
the tilt-distinguishing block (β = 0.0072, SE = 0.0078,
z = 0.918, p = 0.79), although there was a significant
effect of lure type in the color-distinguishing block
(β = 0.0398, SE = 0.0078, z = 5.06, p < 0.001). That
is, observers were faster in rejecting common lures
that differed from the template in color but not tilt
(as opposed to tilt but not color). This asymmetry is
possibly related to other findings that have reported
similar asymmetries between the prioritization of
different feature dimensions (Biderman, Biderman,
Zivony, & Lamy, 2017; Geng, Di Quattro, & Helm,
2017; Lee & Geng, 2019; Niklaus, Nobre, & van Ede,
2017), although we note that this asymmetry that we
observed in RT was not similarly present in the pattern
of false alarms.

In a secondary analysis we assessed whether the lure
effect on false alarms and reaction times was affected by
time in block—here operationalized as first and second
half of a block (Supplementary Figure S1). Time in
block had no effect on false alarms (β = −0.07, SE =
0.05, z = −1.46, p = 0.14) and did not significantly
interact with the lure type (β = 0.02, SE = 0.05, z =
0.30, p = 0.76) indicating that the effects of the lure
were similarly present in the first and second half of a
block (Supplementary Figure S1a). This was also true
for reaction times. That is, we found no main effect of
time in block on reaction times (β = 0.002, SE = 0.002,
t = 0.57, p = 0.566), and this factor did not interact

https://osf.io/x7u4q/
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Figure 3. Functional adaptation in attentional templates retrieved from long-term memory associations. (a) Observers made fewer
false alarms to common lures than rare lures. The right panel (violin plot) shows the effect of lure type on false alarms
(rare—common) for individual observers, represented as dots. The average effect is plotted as a black dot and error bars represent
the within-subject standard error (this is true for all panels). (b) The effect of lure type was similar across block types. (c) Participants
were quicker to correctly reject a common lure compared to a rare lure. The effect of lure type is plotted for individual observers in
the right panel. (d) The effect of lure type on reaction times was only significant in the color-distinguishing block. That is, observers
were significantly slower to respond to lures that shared their color with the target template when color was usually the
distinguishing feature.

significantly with lure type (β = 0.002, SE = 0.002,
t = .60, p = 0.55) (Supplementary Figure S1b).

Discussion

We provide clear evidence for a functional
interpretation of attentional templates based on
associative memories. When a common lure was
presented, participants were less likely to confuse
these for targets (decreased false alarms) and were
quicker to correctly reject these gratings, compared
to when a rare lure was presented. This indicates that
the template for the upcoming stimulus had been
adapted away from the common type of lures in a
block, such that the most diagnostic and therefore
informative feature dimension—for distinguishing
between targets and lures—was prioritized in the

template. We found this despite the fact that the relevant
feature dimension varied block wise (with blocks lasting
only a few minutes). Moreover, within each block, the
feature values of the relevant attentional templates
themselves changed from trial to trial, showing that
the prolonged and repeated use of the same template
is not necessary for a template to become adapted to
the current context. Additionally, it is relevant to note
that we found functional biases, even though observers
completed the task with high accuracy and the features
were easily discriminable.

Our results complement and extend previous work
on optimizing attentional templates to current task
demands, which had focused primarily on templates that
were explicitly provided at the beginning of a trial of
block of trials, such as in traditional working memory
or visual search tasks. For example, it has been shown
that observers can selectively encode only the relevant
feature of an object (Reeder et al., 2017; Serences et al.,
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2009) as well as update working memory content after
encoding, such that the representation is biased towards
the most relevant feature dimension (Hajonides, van
Ede, Stokes, & Nobre, 2020; Niklaus et al., 2017; Park,
Sy, Hong, & Tong, 2017). Moreover, when targets and
distractors are linearly discriminable within a certain
feature dimension, target representations are biased
away from the distractors (Bauer, Jolicoeur, & Cowan,
1996; Becker, Folk, & Remington, 2010; Geng et al.,
2017; Geng &Witkowski, 2019; Hodsoll & Humphreys,
2001; Navalpakkam & Itti, 2007; Yu & Geng, 2019).
Building on this previous work, we provide evidence
that attentional templates retrieved from associative
memory are also adaptable to a particular context—an
important advance because real-life attentional
templates are often based on associations in long-term
memory.

With the current design we attempted to minimize
other potential sources of behavioral biases. For
example, by introducing four distinct cues associated
with four distinct gratings, the chance that a particular
cue-grating repeats from one trial to the next is relatively
low. As such, we hoped to limit the effects of inter-trial
priming (Kristjánsson & Campana, 2010; Maljkovic
& Nakayama, 2000; Meeter & Olivers, 2006). Even
so, it is still possible that priming may interact with
the proactive biasing we find here. For example, if
a particular cue repeats, observers may not need to
retrieve the template from long-term memory, because
it is likely already available in short-term store. This
may exaggerate the difference between common and
rare lures. Future work could directly manipulate the
number of repetitions within a block to understand
how template biasing and priming interact.

Our results show that the attentional template
itself—not only a spatial priority map—may be
functionally biased toward the relevant feature
dimension. Information used to guide spatial attention
during visual search—attentional priority maps
(Itti & Koch, 2001; Wolfe, 1994)—and the template
information to which we match incoming sensory
information, are not often explicitly distinguished
within the literature (Wolfe, 2020). Within the context
of visual search, “dimension-weighting” has been
argued to interact with the attentional priority map to
guide spatial attention to a target (Liesefeld & Müller,
2019; Müller, Heller, & Ziegler, 1995). In the current
work, we used a task other than visual search, in
which a single stimulus was presented centrally, and
therefore did not require shifts in spatial attention,
nor a search among competing distractors. This
allowed us to isolate the influence of our experimental
manipulation of context, at the level of the
template.

The current work focused on biases within the
attentional template representing the target. Recently,
there has been evidence that negative templates—that

is, lure information that should be avoided—can also
help guide attention (Arita et al., 2012; Conci et al.,
2019; Moher & Egeth, 2012). In the current experiment,
the target information was always known while the lure
could have been one of two potential items. In line
with this, our results show that observers were faster to
respond to targets compared to lures, indicating that
they are likely responding on the basis of a (positive)
target template. Whether negative templates remain
subject to the same potential biases as positive templates
remains an interesting topic for future research.

The current task raises an interesting question
at which point the template becomes functionally
biased. First, it remains possible that the representation
is in fact biased within long-term memory to
overemphasize a particular feature dimension and then
this representation is biased back with the change of
block. In our design, we discouraged this possibility by
using relatively short blocks—each lasting only a few
minutes—so that observers would be required to adapt
quickly to the new surroundings. Moreover, a secondary
analysis revealed no difference in the biasing effect in
the first and second halves of each blocks. Nevertheless,
we cannot fully rule out that longer-term biases in the
stored template may have also contributed to (at least
part of) the reported effects. In future work if will be
of interest to investigate the relative contributions of
biases that gradually form in long-term memory versus
those that are instantiated after retrieval.

Even if we assume that participants relied on
veridical and stable cue-target representations stored
in long-term memory, there are still two viable stages
at which the observed functional adaptation may
occur: at the retrieval stage (retrieving primarily the
most diagnostic feature), or later, in the cue-target
interval, after the template has been brought into
working memory (Atkinson & Shiffrin, 1968; Fukuda
& Woodman, 2017), where it may be particularly
moldable (D’Esposito & Postle, 2015; Griffin & Nobre,
2003; Niklaus et al., 2017; Rerko & Oberauer, 2013).
Regardless of the answer to this interesting, but also
challenging, question, the current results demonstrate
that attentional templates retrieved from long-term
memory associations are flexible, functionally adapt to
the context in which they are retrieved, and are expected
to be used.

Keywords: target template, long-term memory,
working memory, paired associate, proactive, prediction,
preparation, vision, feature weighting
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