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The cyclic peptide Melanin Concentrating Hormone (MCH) is known to control a large num-
ber of brain functions in mammals such as food intake and metabolism, stress response,
anxiety, sleep/wake cycle, memory, and reward. Based on neuro-anatomical and elec-
trophysiological studies these functions were attributed to neuronal circuits expressing
MCHR1, the single MCH receptor in rodents. In complement to our recently published
work (1) we provided here new data regarding the action of MCH on ependymocytes
in the mouse brain. First, we establish that MCHR1 mRNA is expressed in the ependy-
mal cells of the third ventricle epithelium. Second, we demonstrated a tonic control of
MCH-expressing neurons on ependymal cilia beat frequency using in vitro optogenics.
Finally, we performed in vivo measurements of CSF flow using fluorescent micro-beads
in wild-type and MCHR1-knockout mice. Collectively, our results demonstrated that MCH-
expressing neurons modulate ciliary beating of ependymal cells at the third ventricle and
could contribute to maintain cerebro-spinal fluid homeostasis.
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INTRODUCTION
First identified in the early 80s from chum salmon pituitaries, the
melanin concentrating hormone (MCH) draw its name from its
capability to induced the concentration of melanin in the skin
melanophores (2). However, this function seems to be restricted
to teleosts [reviewed in Ref. (3)]. In contrast with high MCH
structural conservation, the neuronal distribution appears quite
different, reflecting evolutionary changes in the prosencephalon
across vertebrate species (4). In mammals, this cyclic peptide is
mainly expressed in neurons of the lateral hypothalamic area
(LHA), projecting widely throughout the brain (5); reviewed in
Ref. (6). Accordingly, MCH is involved in a broad spectrum of
cerebral functions [for recent reviews, see Ref. (7, 8)]. Nevertheless,
all of these seem to converge to the adaptation of global physio-
logic state to metabolic needs by promoting memory processes and
reward pathways activation on one hand and by decreasing arousal
and thermogenesis on the other hand. Activation of these cognitive
and neuroendocrine networks leads to an increase in food intake
and energy storage, respectively [reviewed in Ref. (9, 10)].

The structure of the Pmch gene locus appears to be complex
and sense/antisense transcripts could generate different protein-
derivatives. Indeed, the precursor ppMCH may be processed
mainly, but not exclusively, in two different peptides (MCH and

NEI) in the brain and in several intermediates, including the
dipeptide MCH-NEI, in peripheral organs (11–14). An additional
protein, named MGOP, may be produced by an alternative splic-
ing of the Pmch gene primary transcript in all cells producing
MCH (15, 16). Finally a set of proteins, involved in DNA repair,
may be synthesized by expression of the AROM/PARI gene located
on the complementary strand overlapping the Pmch gene (8, 17).
Based on this disparity in gene-products expression, it is quite
difficult to associate a single molecular substrate responsible to
the wide phenotypic changes observed in Pmch gene KO mice in
which the full exon-intron sequences of the Pmch gene as well as
the 3′UTR region of spliced AROM/PARI gene transcripts were
deleted. Meanwhile, the issue of developmental compensation (or
adaptation) in these genetic models of Pmch gene inactivation
should also be considered [see Ref. (9) for discussion of this point].

Efforts to identify the MCH receptor initially led to the discov-
ery of a spliced variant of the seven-transmembrane G-coupled
protein named SLC-1 (18) as a cognate MCH receptor and there-
after referred to as MCHR1 (19–23). MCHR1 is widely localized in
brain regions involved in the control of neuroendocrine, reward,
motivational, and cognitive aspects of feeding behavior (9, 10, 24–
26). Interestingly, MCHR1-deficient mice are lean due to hyper-
activity and increased metabolism (27). A second MCH receptor,
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named here MCHR2, was identified and characterized in human
tissues and cell lines (27–33). This MCH receptor displayed a brain
distribution that overlapped partially with that of MCHR1 in the
primate and fish brain (32, 34). However, MCHR2 is lacking in rat
and mouse genomes (35). Furthermore, in contrast to MCHR1
that signals to either Gai or Gaq, depending on the transfected or
native cell systems, MCHR2 signaling operates apparently exclu-
sively through Gaq protein [our unpublished data; reviewed in
Ref. (35–37)].

Based on neuro-anatomical mapping and electrophysiologi-
cal data, it was assumed that synaptic transmission represents the
main mode of action of MCH in the brain. However,non-neuronal
intercellular communication or “volume” transmission may also
be involved but evidence were lacking. In a recently published
study (1), we mapped numerous MCH fibers in close vicinity to
MCHR1 expressed into ependymocytes of the ventral part of the
third ventricle (3V). Developing new techniques to measure and
analyze the ependymal cilia beat frequency (CBF) in acute mouse
brain slice preparations, we also showed that the CBF is increased
by MCH application or LHA stimulation, an effect blocked by
a selective MCHR1 antagonist and absent in MCHR1-knockout
(MCHR1-KO) mice. In addition, using in vivo brain MRI, we
demonstrated that the volume of both the lateral and third ventri-
cles is increased in MCHR1-KO mice compared to their wild-type
(WT) littermates. Thus, our study revealed a previously unknown
function of the MCH/MCHR1 signaling system in non-neuronal
cells. Here, we first demonstrated MCH mRNA expression in the
ventral 3V ependymal cells isolated by laser-capture and in situ
hybridization. We then extended our previous work, by using
in vitro optogenetic activation or inhibition of MCH neurons.
Finally, we investigated in vivo tracking of fluorescent micro-beads
through the 3V in WT and MCHR1-KO mice. Collectively, we
demonstrate a dynamic control of MCH neurons on spontaneous
CBF of MCHR1 mRNA-expressing ependymal cells and discuss
the current strategies for measuring CSF flows in small animal
models.

MATERIALS AND METHODS
ANIMALS
The experiments were conducted with male C57BL/6J mice (for
laser-captured cell mapping, in situ hybridization and cellular
optogenetic measurements) and female KO MCHR1 mice (in vivo
CSF flow experiments) of 10–12 weeks of age. The animals were
obtained from heterozygous breeding in the local animal facilities
and maintained on a 12-h dark/light cycle (7 a.m./7 p.m.) with
food and water ad libitum. The MCHR1-KO mice were established
as previously described (38).

All the protocols were carried out in accordance with French
ethical guidelines for laboratory animals (Agreement N°75–178,
05/16/2000) and were approved by the IPMC care committee.
Attention was paid to use only the number of animals requested
and necessary to generate reproducible results.

LASER MICRO-DISSECTION OF THIRD VENTRICLE EPITHELIUM
After decapitation, each brain (n= 2) was dissected out in <2 min
and immediately frozen at −80°C using a Snapfrost (Alphelys,
France). Sections (10 µm thick) were cut on a cryostat (Microm

HM 560; object holder and chamber were kept at −21°C). Eight
sections passing through the posterior hypothalamus were col-
lected on pen membrane slides. Slides, continuously maintained
on dry ice, were dehydrated in three baths of increasing ethanol
baths (70, 95, and 100%) and two baths of fresh xylene (Roth,
France) for 5 min each. Sections were air dried and kept in the
vacuum of a dessicator until dissection.

Dissections were performed using a PixCell® (Arcturus Engi-
neering) with CapSure® HS LCM caps. The dissection time
never exceeded 20 min/slide, starting from when the slide was
removed from the dessicator. Laser parameters were calibrated
for each dissection by measuring the impact of shots on the
membrane of the slide adjacent to the tissue. The area of inter-
est was then dissected and laser-captured using UV laser to cut
the tissue and IR laser to capture the sample. Four samples were
collected per cap (micro-dissection of two slides in <40 min in
total) and only one cap per brain. As soon as the fourth sam-
ple was obtained, the cap was examined under the microscope to
ensure the absence of unwanted debris. The sample lysis and the
RNA extraction were performed using the RNAqueous®-Micro
Kit (Ambion, France) following the manufacturer’s instructions.
The quality of the samples was finally evaluated with the Agilent
2100 Bioanalyzer (Agilent Technology). A rin of 6.1 was twice
obtained.

After reverse transcription (Superscript III, Invitrogen), cDNA
corresponding to 1 ng of RNA was used as input in a
PCR reaction (GoTaq Green MasterMix, Promega, Charbon-
nières, France) for MCHR1 and HPRT as positive control
(MCHR1 F: 5′-GCTCTATGCCAGGCTTATCC-3′, MCHR1 R:
CAGCTGTCTGAGCATTGCTG-3′, amplicon size: 494 bp; HPRT
F: CTCCGGAAAGCAGTGAGGTAAG, HPRT R: GGAGGGA-
GAAAAATGCGGAGTG, amplicon size: 306 bp). Sample for
which reverse transcriptase was omitted was used as negative
control. PCR protocol used was designed as follow: initial denat-
uration: 95°C, 5 min follow by 40 cycles composed of 95°C, 30 s,
58°C, 30 s, 72°C, 1 min, and a final elongation for 7 min at 72°C.

IN SITU HYBRIDIZATION
Frozen sections were post-fixed in 4% paraformaldehyde in 0.1 M
phosphate buffer and digested with proteinase K (1 µg/mL, Roche)
for 30 min at 37°C. Slides were incubated for 8 min in 0.1 M
triethanolamine (TEA), pH 8.0, and then for 5 min at room tem-
perature in 100 mL 0.1 M TEA+ 500 µL acetic anhydride followed
by a decarboxylation in active diethyl pyrocarbonate (DEPC).

Sections were then rinsed briefly with 5× standard citrate
sodium (SSC) buffer then incubated for 2 h in prehybridization
buffer at 56°C. After rinsing in 0.2× SSC, the sections were
incubated overnight at 56°C, in humid chambers, with 50 µL
hybridization buffer containing 5% Denhardt’s and 50 ng labeled
RNA probes. After rinsing with 5× SSC, sections were incubated
successively in 2× SSC at 56°C (1 h 30 min) and 0.2× at room
temperature (5 min). They were incubated in anti-DIG Fab frag-
ments conjugated to alkaline phosphatase (1/1300, overnight) and
revealed with enzyme substrate NBT-BCIP (overnight, at room
temperature).

Two MCHR1 RNA probes were used; one probe was kindly pro-
vided by Drs Civelli and Chung (University of California, Irvine,
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CA, USA) and one made by reverse transcription/polymerase
chain reaction from mouse genomic DNA. Control hybridization,
including hybridization with sense DIG-labeled riboprobes was
realized and did not reveal any signal.

MEASURES OF CILIA BEAT FREQUENCY USING MCH NEURON-SPECIFIC
OPTOGENETIC EXCITATION OR INHIBITION
We have previously shown that electrical stimulation of the LHA
induced an increase in the CBF in the 3V (1). To further extend
and improve the specificity of the response, we used new mod-
els allowing the optogenetic control of MCH neurons activity.
All procedures and controls were previously published in (39).
Briefly, using cre-dependent Ef1a-DIO-ChETA-EYFP AAV medi-
ated transduction, the fast mutant of the light-activated Chan-
nel rhodopsin-2 (ChETA) or the chloride pump halorhodopsin
(NpHR) was specifically expressed in MCH neurons of two dif-
ferent groups of 3 week-old mice. Four weeks after stereotactic
injection of the AAV vectors in the LHA (AP: −1.45 mm, ML:
±1 mm, DV: −5.5 mm), brain slices were made and recordings
were made in CBF as described elsewhere (1) before, during, and
after stimulation of ChETA-expressing MCH neurons (473 nm,
stimulation frequency: 1, 5, 10, 20, and 40 Hz, pulse length: 10 ms,
total stimulation duration: 3 min) or NpHR (590 nm, continuous
stimulation during 8.5 s each 10 s, 5 min). For each slice and area
of recording, the instantaneous CBF was calculated. All samples
in which basal CBF was out of a range comprised between 5 and
20 Hz (considered as the natural basal frequency in healthy slices)
were not included. The mean of the basal frequency during the
first 5 min of recordings were used as a baseline for normalization
of the experimental values. Results are expressed as the percentile
variation of this baseline.

MEASURE OF CSF FLOW INDEX USING FLUORESCENT MICRO-BEADS
Littermate controls and female MCHR1-KO mice (aged 12 weeks
old) were anesthetized by intraperitoneal injection of ketamine
hydrochloride 50 mg/kg and xylazine 10 mg/kg and placed in a
stereotaxic frame tip of a 26 gage needle was brought to the follow-
ing coordinates relative to the bregma: 1.75 mm posterior, 2.5 mm
ventral, and 0 mm right and left. About 10 µL of polystyrene beads
(diameter 3 µm (sigma L4530) dilution 1:4 in 0.09% NaCl) was
injected in the third ventricle.

Fibered confocal fluorescence microscopy (FCFM) (CellviZio;
Mauna Kea Technologies, Paris, France) imaging was used to visu-
alize the in vivo movement of the polystyrene beads in the CSF flux.
FCFM provides an easy access to these regions of interest with low
disturbance of brain structure (40, 41). Small-diameter fiber-optic
probe consisting of tens of thousands of fibers was implanted in
the brain of the mice and connected to a Laser scanning unit
LSU-488 (FibroScan) that uses a laser source with a wavelength of
488 nm. We used a MiniZ probe of 300 µm diameter with a work-
ing distance of 70 µm. The probe was stereotaxically lowered in the
third ventricle at 2.5 mm ventral. Sensitive, single-pixel detection
of fluorescence stimulated by the photodiode laser pulse through
each fiber element, combined with the high scan rate allows the
visualization of beads movements. Four acquisition sessions of at
least 10 min was recorded for each animal at a frame rate of 11
frames/s.

STATISTICS
Variation in the CBF
Statistics were performed using Prism software (Graphpad Inc.,
La Jolla, CA, USA). The global mean for grouped time points
(baseline, stimulation, and recovery) were compared Using One
way ANOVA followed by Bonferroni’s multiple comparison test
(BMCT). N= number of mice, n= number of slices, n= number
of cells considered. p Value <0.05 were considered significant.

Measure of CSF flow index using fluorescent micro-beads
Movies were visualized on ImageCell™ viewer. The speed of the
beads was analyzed by tracking 10 beads/10 min films. The mean
speed for an animal was the mean of the four films speeds. The
movies displaying significant modifications of the speed over time
were excluded as probably corresponding to pressure due to probe
positioning or blood clot.

RESULTS
LASER MICRO-DISSECTION OF THIRD VENTRICLE EPITHELIUM AND
IN SITU HYBRIDIZATION
As illustrated in Figures 1A,B; ependymal cell layer was carefully
dissected and used for RNA extraction. RT-PCR results indicate
that mRNA coding for MCHR1 were present in the 3V epithelium
(Figure 1C). This was further confirmed by in situ hybridization
with two specific probes recognizing MCHR1 mRNA. Indeed,
numerous (but not all; see open arrowhead) ependymocytes
were labeled with antisense probe (Figure 1D), within the cyto-
plasm (Figure 1E), while sense probe did not stain any cell types
(Figure 1F). These results are in agreement with our immuno-
histochemical study (1) and recent data from Maratos-Flier’s lab
using a MCHR1-cre/tdTomato mouse strain (26).

MCH NEURON-SPECIFIC OPTOGENETIC TOOLS
The ChETA-NpHR system was used to dissect MCH neuronal
circuitry reaching 3V ependymal cells and controlling CBF.

The stimulation of ChETA-expressing MCH neurons in the
LHA induces an increase in the CBF reaching 134% of the basal
value (Figures 2A,B; 1 Hz, N= 5, n= 7, n= 10, F 5.069, 29= 0.0131,
BMCT: baseline vs. ChETA t = 2.896, p < 0.05). After 10 min
recovery, the subsequent stimulation at 5 Hz tended to increase
the CBF but did not reach the significance level (Figure 2B;
5 Hz, N= 5, n= 7, n= 10). For higher frequencies, no effect was
observed (not shown, see Discussion). On the other hand, the
stimulation of NpHR induced a marked decrease in the CBF
reaching 76% of the basal (Figures 2C,D; N= 4, n= 8, n= 15,
F 4.616, 44= 0.0154, BMCT: baseline vs. NpHR t = 3.027, p < 0.05).

MEASURE OF CSF FLOW INDEX USING FLUORESCENT MICRO-BEADS
In order to address the physiological relevance of MCH-driven
ciliary beating regulation, we conducted in vivo flow measure.
FCFM imaging was used to visualize the movement of the poly-
styrene beads in the CSF flux in vivo in groups of WT and KO
MCHR1 mice (n= 5 each). The visualization of fluorescent beads
movements in the third ventricle allow to approximate the speed
of the CSF flux using in vivo brain imagery (Figure 3).

Overall, no significant statistical difference in the mean speed
between the two groups was found. However, 3/5 animals in the
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FIGURE 1 | (A) Photomicrograph of the ventricular epithelium before laser
micro-dissection. (B) Photomicrograph of the ventricular epithelium after laser
micro-dissection. (C) Illustration of the RT-PCR showing the presence of
MCHR1 mRNA in the ventricular epithelium. RT+: after reverse transcription,
RT−: negative control of the reverse transcription. HPRT: positive control.
(D) Photomicrograph to illustrate the distribution of the MCHR1 in situ

hybridization signal in the periventricular hypothalamus. Ependymocytes
expressed the in situ signal (black arrowheads), but not all of them were
labeled (open arrowhead). (E) High magnification to illustrate cytoplasmic
expression of MCHR1 mRNA in discrete ependymal cells. (F) A negative
control using sense MCHR1 gene probe. Scale bar=25 µm in (A); Scale
bar=20 µm in (D); Scale bar=10 µm in (E) and (F).

KO group displayed a twofold increase in the mean speed by com-
parison with the WT group (that shows consistently low speed).
However, it should be stressed that we are measuring the bulk flow
driven by the arterio-venous pressure gradients and arterial pul-
sations and that the laminar flow (close to the ventricle wall and
therefore dependent upon cilia beating) remains too small to be
measured. Furthermore, we believe that the technical caveat of the
implantation of the probe and beads injection in vivo (blood clot,
exact position, size of the probe . . .) may induce a methodological
bias (see Discussion).

DISCUSSION
The MCH system is involved in a broad spectrum of function
through mainly the synaptic release of the peptide(s) and neuronal
activity modulation in mammalian brain. However, a growing
body of data indicates that MCH may also have non-neuronal
function, especially by regulating the activity of more or less spe-
cialized peripheral blood mononuclear cells [PBMCs (42)]. The
expression of ppMCH and/or MCHR1 genes in pancreatic islets
or in adipocytes (43–45) may highlight a metabolism-related func-
tion of MCH at the periphery. Nevertheless, such action may not
be totally independent of the intracerebral and/or spinal MCH
pathway (46). Based on our previous study (1) and the present
set of data, we demonstrate a new role for the hypothalamic pep-
tide MCH in modulation of CBF in the ventral part of the third
ventricle through activation of ependymal cells.

In combining the laser micro-dissection of ependymal epithe-
lium of the 3V followed by RNA extraction and RT-PCR experi-
ments and in situ hybridization data, we demonstrate the presence

of MCHR1 transcripts within the epithelium. This is consistent
with the data obtained by immunohistochemistry (1) or in a
MCHR1-Cre/tdTomato mouse model (26).

The optogenetic stimulation of the MCH neurons (through
ChETA activation) increased the CBF in the same extend than elec-
trical stimulation did, compared to basal conditions. This confirms
also with high temporal precision, the specificity of the response
observed in the 3V. Indeed, only ciliated cells lining the ventral 3V
that expressed MCHR1 were MCH-sensitive, while those from the
dorsal third ventricle or the lateral ventricles were not (1). The spa-
tial specificity of the MCH response adds a new level of complexity
to the previously described characteristics of ciliated ependymal
cells [orientation, size, beating mode of cilia along the ventricles
(47, 48)], and suggests that ciliary beating in cerebral ventricles is
fine-tuned to modulate CSF flow in response to metabolic, neu-
rohormonal, and neuroimmune changes. Moreover, our present
in situ hybridization experiments, previous immunohistochem-
ical data (1) and mapping using MCHR1-Cre/tdTomato mouse
(26) highly suggested a “cluster-like” distribution of the MCHR1
mRNA and proteins along the 3V. Since adjoining ependymal
cells are known to be coupled through GAP junctions (49), it
is tempting to speculate that the only few ependymal cells express-
ing MCHR1 may act as hubs responsible for the effect of MCH
neuronal stimulation on the whole epithelium in the 3V.

The results obtained following genetic invalidation and phar-
macological inactivation of MCHR1 suggested that the MCH
system could exert a tonic positive control on CBF (1). Here, we
demonstrate the validity of this hypothesis since the inhibition
of MCH neurons activity (through NpHR stimulation) directly
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FIGURE 2 | (A,C) Schematics showing the projection of MCH neurons
expressing ChETA (A) or NpHR (C) from the LHA to the ventricular epithelium
and their optogenetic stimulation paradigm. (B) Consequences of the
stimulation of ChETA in MCH neurons, by light pulses of 10 ms at a rate of 1
and 5 Hz as shown by the bars, on the CBF recorded in the ventral 3V

expressed as a percentage of the basal frequency. N: number of animals, n:
numbers of slices, n: number of recording area. *p < 0.05 (D) Consequences
of the stimulation of NpHR in MCH neurons as shown by the bars, in MCH
neurons on the CBF recorded in the ventral 3V. N: number of animals, n:
numbers of slices, n: number of recording area.

affects the CBF. To our knowledge, MCH is the only known mol-
ecule exerting a tonic positive effect on cilia beating in the brain.
Even more interestingly, this tonic control of MCH on the CBF in
the 3V does not seem to be compensated through adaptive mech-
anisms during development, since the basal CBF in MCHR1-KO
mice is also reduced (1).

Even if MCH neurons activity seems to be important in the reg-
ulation of cilia beating, we have not yet firmly established whether
the communication between MCH neurons and ependymal cells
involves a true asymmetric synapse or not. With respect to the
anatomical distribution of MCH fibers around the v3V, the com-
munication should more likely involve passing fibers “leaking”
MCH close to the epithelium basal pole and/or release of the pep-
tide directly into the CSF. Indeed, MCHR1 immunolabeling was
observed at both the apex and the basal poles of ciliated ependymal
cells as well as MCH fibers crossing the epithelium. The nature
of the contacts between ciliated cells and fibers remains to be
addressed using a detailed electronic microscopic analysis.

Genetic ablation of MCHR1 results in an increase in the vol-
ume of LVs and 3V (both ventral and dorsal) but no change in
4V as reported previously (1). In order to determine the flow of
CSF using a non-invasive method, we have tried to transpose clin-
ical tools (CINE-MRI) to mice. Unfortunately, the main limit of

such technique is the speed of the flow. Preliminary experiments
indicate that this speed is <10 µm s−1, preventing the use of
CINE-MRI in the mouse brain (Kober F., Troalen T., and Viola
A. CRMBM. Marseille; personal communication).

The most used methods to study the flow of CSF in rodents con-
sist in the injection of tracers (X-rays or MRI contrast agent) in vivo
(50), or the use of fluorescent micro-beads or china ink ex vivo on
dissected epithelia (51). Here, we show that it is possible to follow
the migration of fluorescent micro-beads through the v3V. Unex-
pectedly, our data indicate that, in MCHR1-KO mice, the speed
of the CSF flow tends to increase as compared to WT littermates,
without reaching the statistical significance level. This paradoxical
effect could be explained by the Poiseuille’s law which postulates a
direct link between the mean speed (V ) of a viscous liquid (such
as CSF) and the radius (r) of a small cylinder (such as a ven-
tricle) (V =DP*Π*r4/8h× l with h = viscosity, DP= difference
of pressure between the extremities of the cylinder, l = length, and
r = radius of the cylinder). Indeed, the flow measured at the center
of the ventricle would increase when the radius expands. This fits
quite well with an enlargement of the ventricle in the KO MCHR1
mice as observed using MRI (1). Another explanation for this dis-
crepancy would be that the optic fiber used for the recording may
block the CSF flow in the 3V of WT animals but not in MCHR1-KO
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FIGURE 3 | (A) Projections of 10 s acquisition movies illustrating the
fluorescent beads movement in the CSF of control (left) and KO MCHR1
(right) animals. In both cases, beads displayed a continuous and
orientated movement lasting for at least the recording time. (B) Mean

speed of the beads in control and KO MCHR1 animals. (C) Negative
controls. Visualizations of fluorescents beads in solution (top) and at the
surface of the living brain (bottom). No orientated movements were
detected.

(since the volume of this ventricle is enlarged in these animals).
Moreover, an increase in the CSF pressure into the ventricles could
not be excluded.

At this point, it seems important to dissociate the global flow of
CSF, mainly resulting from cardio-respiratory activity, to the lam-
inar flow imputable to cilia beating. This point is of prime impor-
tance since it has been shown that MCHR1-KO mice display an
increase in heart and respiratory rate (52). As a consequence, this
may be responsible for the increase in global CSF flow. Moreover,
because the volume of the ventricle is increased in MCHR1-KO
mice, according to the Poiseuille’s equation (see above), the speed
of the CSF close to the epithelium should be reduced as compared
to what is observed in the center of the ventricle. Because of the
cilia action, such an effect is reduced and the speed close to epithe-
lial cells is increased. Thus, in MCHR1-KO mice in which the CBF
is altered, an increase in the total CSF flow may compensate the
local decrease of the flow at the level of cilia. Taking into account
all of these parameters, it is not surprising to observe an increase
in CSF speed in the 3V.

Our data further suggest that motile ciliated cells of the cerebral
ventricles are chemosensory as primary cilia, similar to motile cili-
ate cells from the airway epithelia (53). Hydrocephalus is one of the
features of Bardet–Biedl syndrome (BBS), a genetic disease caused
by a mutation in one of several proteins involved in the develop-
ment of primary cilia, BBS1 being the most frequently affected in
humans (54). The characteristics of BBS include ventriculomegaly
of the lateral and third ventricles, particularly marked in knockin
mice expressing the mutated human BBS1 protein (55). As BBS1 is
involved in the trafficking of MCHR1 (54), this ventriculomegaly
may be partly due to a defect in MCHR1 expression by ciliated
ependymal cells, However, it is worth mentioning that the whole
distribution of MCHR1 throughout the brain of BBS mouse mod-
els is still lacking. The absence of MCHR1 targeting to primary
cilium in BBS models does not seems to affect the ciliogenesis
(54). In this context, we found no difference in the morphology
of the cilia between WT and MCHR1-KO mice, suggesting that
MCHR1 does not play an important role in the development of
cilia, but only in the modulation of the CBF, once the cilia are
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in place (although some compensatory changes could occur dur-
ing development). This fits quite well with the characterization
of MCHR1 mutants in ciliated hREP1 cells and the discovery of a
motif in the third intracellular loop that is mandatory for MCHR1
trafficking to the primary cilia but not ciliogenesis. Other GPCR
such as, somatostatin 3 receptor (SST3) and serotonin receptor 6
(5-HTR6) are specifically targeted to the primary cilia. Based on
the physiological roles of somatostatin, and since new genetically
engineered models such as SST3:Cre – cilia GFP mice (56) have
been generated, a complete study about SST involvement in CSF
and/or CBF regulation should be considered.

In conclusion, this paper and our previous study (1) point to
a new role for MCH in maintaining CSF flow and homeostasis in
the mouse brain. It is worth noting that the main group of MCH
neurons in primitive vertebrates (lampreys) and most fish species
(but teleosteans) are located very close (and also projected) to
the ventricular surface and could regulate general volume trans-
mission, like in rodents (4, 57). This convergent anatomy could
be associated with an ancestral function maintained during evo-
lution. Indeed, MCH neurons could anticipate and initiate the
acceleration of CSF circulation, for instance, under conditions of
metabolic necessity (glucose withdrawal, fasting, . . .). The strate-
gic location of the ciliated cells innervated by MCH fibers, at the
base of the third cerebral ventricle, could allow them to act as a
pump to initiate an increase in CSF flow, providing peptides and
other messengers to several brain areas and prolonging the effects
of these factors in conjunction with neuronal transmission. More-
over, if the same type of CSF flow regulation exists in humans,
this work suggests that the chronic administration of brain pen-
etrating MCHR1 antagonists may have long term side effects due
to alterations of CSF flows, limiting the probability of their use as
therapeutic agents.
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