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Abstract: An increasing number of people experience disorders related to the central nervous system
(CNS). Thus, new forms of therapy, which may be helpful in repairing processes’ enhancement and
restoring declined brain functions, are constantly being sought. One of the most relevant physiological
processes occurring in the brain for its entire life is neuroplasticity. It has tremendous significance
concerning CNS disorders since neurological recovery mainly depends on restoring its structural and
functional organization. The main factors contributing to nerve tissue damage are oxidative stress and
inflammation. Hence, marine carotenoids, abundantly occurring in the aquatic environment, being
potent antioxidant compounds, may play a pivotal role in nerve cell protection. Furthermore, recent
results revealed another valuable characteristic of these compounds in CNS therapy. By inhibiting
oxidative stress and neuroinflammation, carotenoids promote synaptogenesis and neurogenesis,
consequently presenting neuroprotective activity. Therefore, this paper focuses on the carotenoids
obtained from marine sources and their impact on neuroplasticity enhancement.

Keywords: marine carotenoids; neuroplasticity enhancement; fucoxanthin; astaxanthin; mytiloxan-
thin; siphonaxanthin; saproxanthin; myxol

1. Introduction

In the past few decades, the quality of human life has significantly improved due to
advances in medicine, lifestyle and nutrition changes. At the same time, it contributed
to the augmented lifespan and, therefore, the growing number of the elderly, in whom,
with age, ailments from miscellaneous central nervous system (CNS) diseases occur. In this
regard, scientists have started to put more emphasis on being better acquainted with the
processes leading to nervous tissue pathology, which would allow them to develop effective
drugs to improve neurological recovery. The studies on carotenoids with potent antioxidant
and anti-inflammatory power, which could be possible applications in neuro-intervention,
have been conducted for quite some time. Furthermore, recent results have indicated they
also own neuroprotective activity and stimulate synaptogenesis and neurogenesis, by, for
instance, inhibiting oxidative stress and neuroinflammation, which makes them important
compounds in neuroplasticity enhancement and CNS therapy [1].

The nervous system’s capacity to undergo maturation, modify its structure and func-
tion, adapting to both physiological and pathological variations in the environment, is
known as neuroplasticity. Without this ability, any brain would be unable to develop from
infancy through to adulthood or recover from injury [2]. It is a complex physiological pro-
cess, characterized by a limited scope, happening in the brain for its whole life. Therefore,
it comprises neurogenesis, synaptogenesis, and neurochemical variations of the CNS. Brain
plasticity is realized mainly by modulating genetic, molecular and cellular mechanisms that
influence synaptic connections and neural circuitry formation [3]. High clinical hopes in
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regulating neuroplasticity processes are raised by both pharmacotherapies and biological
therapies, which neurorestorative activity is realized through a synergistic effect occurring
between neurogenesis and synaptogenesis.

Neurogenesis, regulated by a wide range of factors, including neurotrophins, neu-
rotransmitters and growth factors, is one of the components of brain plasticity. Neurons,
in that process, are generated from neural stem cells (NSCs) and integrated into existing
neuronal circuits [4]. NSCs are required for the adequate functioning of neurogenesis by
retaining their self-renew moldability and generating neuronal precursors throughout life.
In the adult brain, neurogenesis is mainly localized in the subventricular zone (SVZ) and
the subgranular zone (SGZ), which are responsible for memory, learning, and olfactory sen-
sation [5]. However, with age, the ability of the newly formed nerve cells to survive as well
as the rate of neurogenesis decreases. Adulthood neurogenesis perturbation contributes to
various human disorders, such as cognitive impairment or neurodegenerative diseases [6].
In turn, synaptogenesis, which creates new neural connections, occurs throughout life. In
adults, synaptogenesis remains a local event, founded on creating new connections and
improving existing synaptic pathways [7].

Growth factors, including brain-derived neurotrophic factor (BDNF), nerve growth
factor (NGF), and fibroblast growth factor (FGF), play prominent roles in modulating
brain plasticity by activating signaling pathways. Examples include: phosphoinositide-
3-kinase–protein kinase B/protein kinase B (PI3K/Akt), mitogen-activated protein ki-
nase/extracellular signal-regulated kinase 1/2 (MAPK/Erk), and phospholipase C/inositol
trisphosphate/Ca2+/calmodulin-dependent protein kinase II (PLC/IP3/CAMKII), in-
volved in neuron proliferation and survival as well as neuroprotection [8–11]. Mature forms
of neurotrophin bind to a member of the tyrosine kinase receptor family, the tropomyosin
receptor kinase (Trk) and to a representative of the tumor necrosis factor receptor superfam-
ily, p75 receptor. They regulate survival, proper development, normal neuronal function,
and synaptic strength and plasticity through them [12,13]. Trk receptors (TrkA, TrkB and
TrkC) are composed of ligand-binding domains, the transmembrane domain and the cy-
toplasmic domain. Those domains contain several sites of tyrosine phosphorylation that
recruit intermediates in intracellular signaling cascades [14]. The direct proteins binding
to Trk receptors leads to tyrosine kinases activation and, in consequence, activates several
proteins, including Ras, Ras-related protein 1 (Rap-1), as well as pathways regulated by
MAPK, PI3K, and PLC-γ [15]. Unlike the Trk receptors, which autophosphorylate after
ligand engagement, the p75 receptor does not contain a catalytic domain to autoactivate.
Therefore, it functions mainly via interactions with other effector proteins, mainly by sig-
naling, promoted by the Trk receptors and modulating their functions [16]. Ras proteins
activate the PI3K/Akt pathway causing the activation of the expression of genes involved
in brain plasticity or MAPK/Erk pathway. That leads to the transcription of protein factors
engaged in neurogenesis and synaptogenesis, including cAMP response element-binding
protein (CREB), Myc, and ribosomal S6 kinase (RSK) [17].

PI3K activation, stimulated by Ras, is a critical signaling pathway responsible for
neurons survival [18]. PI3K generates phosphatidyl inositides accountable for activating
protein kinase Akt, also termed protein kinase B (PKB). It has an influence on many proteins
involved in regulating cell survival. For instance, PKB inhibits apoptosis by Bcl2-associated
agonist of cell death (BAD) phosphorylation [19]. Akt also influences the nuclear factor
kappa B (NFκB) pathway. After stimulation with specific or unspecific signals (oxidative
stress, inflammatory cytokines), nuclear factor kappa B inhibitor (IκB) phosphorylated
by the IKK complex leads to the ubiquitination and proteasomal degradation of the IκB
protein and the NFκB stimulation. That mechanism activates the transcription of various
target genes, many of which are inflammatory and immunoregulatory, which modulates
the neurons’ survival [20].

Akt is associated with both inhibition and promotion of apoptosis, by phosphorylating
the transcription factor forkhead 1 (FKHRL1), which regulates apoptosis-promoting pro-
teins expression, and by the negative regulation of glycogen synthase 3β kinase (GSK-3β),
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respectively. Furthermore, PI3K signaling may also be initiated in the Ras-independent
manner when PI3 kinase binds to the growth factor receptor-bound protein 2 (Grb-2)-
associated-binding protein 1 (Gab-1) activated by phosphorylated Grb-2 [15,21].

MAPK/Erk pathway, induced by Ras, is activated by the Src homology and containing
protein (Shc)/Grb-2/son of sevenless (SOS). Besides, it can also be stimulated by Trk,
which phosphorylates fibroblast growth factor receptor substrate 2 (FRS-2), causing its
binding to the adapter molecule crk, which associates with the guanyl-nucleotide exchange
factor (C3G), that in turn stimulates Rap1. Protein Rap1 activates the Erk kinase signaling
pathway. The Erk kinase, through the RSK and MAP pathway, phosphorylates CREB
and other transcription factors, regulating genes expression responsible, among others,
for the neurons’ survival [15]. In addition, the Trk receptor phosphorylation leads to the
PLC-γ1 activation, causing diacylglycerol (DAG) and IP3 formation [22]. IP3 induces Ca2+
reservoirs release and thus increases its cytoplasmic level, indirectly prompting the action of
many enzymes, including CAMK and calcium-modulated protein (calmodulin)-dependent
phosphatase [23]. In contrast, DAG stimulates DAG-dependent protein kinase C isoforms
(PKCδ) activity, which induces the MAPK/Erk pathway [24].

Since multiple brain processes are affected by natural substances like carotenoids,
including neurogenesis, synaptic plasticity, and neuronal connectivity, the therapy, based
on these compounds, seems to be a promising treatment strategy for CNS diseases. Fur-
thermore, several carotenoids, generously present in marine organisms and easily di-
gestible, exhibit positive effects on brain function enhancement. Therefore, this work
aims to review the latest research on the use of carotenoids from marine sources in
neuroplasticity enhancement.

2. Neurorestorative Actions of Marine Carotenoids

Basically, carotenoids consist of a polyisoprenoid structure, a long-conjugated chain
of double bond and an end group at both ends of the chain [25]. They can be categorized
into carotenes, containing a hydrocarbon chain and xanthophylls, oxygen derivatives of
carotenes, forming hydroxyl, epoxide, and keto groups [26]. The functions of carotenoids
from aquatic habitats are largely specified by their molecular properties such as size, geom-
etry, functional groups, and other traits [25] Kliknij lub naciśnij tutaj, aby wprowadzić tekst.
Most of them are lipophilic and can cross the blood-brain barrier (BBB), which is funda-
mental during neuroplasticity enhancement, treatment of brain injuries or the prevention
of brain disorders with these molecules [27,28]. The typical structure of carotenoids and
different end groups are shown in Figure 1.

In humans, carotenoids play different significant functions in the brain and have
several medicinal properties, including neuroplasticity enhancement [29–32]. They wield
essential roles in immunity, take part in the antioxidant defense system, improve brain func-
tion, and are linked to a reduced risk of acquiring chronic diseases. The pharmacological
properties, such as antioxidant, anti-inflammatory, and anti-apoptotic potentials of marine
carotenoids, endorse their protecting effectiveness against oxidative stress, neuroinflamma-
tion and mitochondrial dysfunction, which are known to be implicated in brain injuries
or neurodegenerative diseases pathophysiology [33]. Marine carotenoids are suggested
to impact gene expression and cell function through multiple mechanisms, especially by:
interacting with several transcription factors, including BDNF, NGF, NFκB; modulating
signaling pathways, such as the NFκB, MAPK, and the nuclear factor erythroid 2-related
factor 2 (Nrf2), associated with inflammatory and oxidative stress responses; and scaveng-
ing of reactive oxygen species (ROS) [34]. Hence, these compounds can act either directly
on biological molecules and systems or indirectly through the expression of different genes
engaged in, among others, antioxidant responses.

Due to their conjugated double-bond structure, carotenoids from the aquatic environ-
ment are strong scavengers of singlet oxygen and peroxyl radicals. They act as chemical
quenchers of singlet oxygen. Three major types of reactions of free radical scavenging
by carotenoids are: electron transfer between the free radical and carotenoid, whereby a
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carotenoid radical cation or carotenoid radical anion is formed; radical adduct formation;
hydrogen atom relocation leading to a neutral carotenoid radical [35].
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In addition to their scavenging function toward ROS, carotenoids may also operate
through more indirect tracks, including Nrf2, NFκB, or MAPK signaling pathways [36,37].

The Keap1-Nrf2 pathway plays a vital role in the cellular defense against ROS. More-
over, Nrf2 signaling is an important molecular mechanism for neuroprotection and it
modulates the activation of immune cells, including microglia. Under normal conditions,
Keap1 promotes ubiquitination and degradation of Nrf2, thus maintaining it in an inactive
form in the cytosol. During redox imbalance, the Keap1-Nrf2 association is disrupted, Nrf2
ubiquitination is inhibited, leading to its accumulation in the cell and translocation to the
nucleus. There, it binds to the antioxidant response element (ARE), leading to antioxi-
dant and cytoprotective enzymes expression. Marine carotenoids interact with Keap1 by
changing its conformation, resulting in enhancement of antioxidant activity [38–40].

NFκB is accountable for the transcription of various genes that regulate inflammatory
responses. Under resting conditions, NFκB is bound to IκB, which resides in the cytoplasm.
However, during chronic neuroinflammation, carotenoids or their derivatives may block
NFκB activation by interaction with cysteine residues of the IKK and/or NFκB subunits.
That NFκB activation blocking causes the target genes transcription repression and thus
diminishes inflammation and increases neurons survival [41].

In addition to the NFκB pathway, the anti-inflammatory effects of marine carotenoids
are also found through regulating other pathways, including Akt and MAPK pathways,
which control synaptic plasticity in the adult brain. Carotenoids from aquatic habitats may
increase the phosphorylation of Akt, and phosphorylated Akt regulates Nrf2 and NFκB,
influencing gene expression [42,43]. Thereby it alleviates oxidative stress or inflammation-
associated damage in brain cells [44]. In the MAPK/Erk pathway, phosphorylated Erk
translocates into the nucleus where it activates transcription factors such as Elk-1 and Msk.
That activation of the transcription factors regulates synaptic plasticity and, consequently,
it may contribute to the neuroplasticity enhancement [45,46].

Besides, marine carotenoids may impact the level of several neurotrophic factors,
including NGF or BDNF. BDNF, the major neurotrophin in the brain, being able to activate
intracellular signaling via binding to its receptors, is critical in the proper functioning of
the nervous system because it regulates neuronal survival and differentiation, learning and
memory. Additionally, BDNF plays a role in proteins’ transcription and translation, which
are engaged in synapse development. BDNF is also an underlying agent in the pathology
of neural diseases like Alzheimer’s disease, schizophrenia and depression [47,48]. In
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turn, NGF plays a crucial role in developmental and adult neurobiology for its significant
regulatory activity at nerve cells survival, growth, and differentiation in the CNS [49].
Carotenoid supplementation might increase systemic levels of BDNF reduced during
neuroinflammation, and the plausible mechanism for this effect is marine carotenoids
anti-inflammatory capability [50–52]. They also promote the secretion of NGF and BDNF
from NSCs [42]. BDNF can block neuronal apoptosis by inducing phosphorylation of Akt
during excitotoxicity [53]. In contrast, NGF regulates apoptosis by activating PI3K/Akt
and MAPK/Erk pathways [54]. NGF may interact with TrkA and activate Erk signaling to
phosphorylate some proteins, as Bcl-2-like protein 11, and inactivate their pro-apoptotic
function [55].

Carotenoids derived mainly from marine sources, such as astaxanthin (AST), fucoxan-
thin (FUC), but also the rare siphonaxanthin or myxol, have lately shown antioxidant and
inflammatory effects, which help enhance cognitive function and neuroprotection. Since
carotenoids are hydrophobic antioxidants, their main action mechanism is found within
biological membranes and depends on their structural features and membrane composition.
The results showed that AST, having two polar hydroxyl groups, is anchored across the
membranes with polar functional groups oriented outside. Hence it exhibits more effec-
tive protection against oxidation by peroxyl radicals than β-carotene or lutein, which are
oriented parallel to the membrane surface [56]. Recent reports claim that AST delays or
ameliorates cognitive impairment associated with normal ageing or alleviates various neu-
rodegenerative diseases’ pathophysiology [57,58]. AST proved its neuroprotective potential
by preventing brain damage in progeny exposed to prenatal epilepsy seizures by inducing
the expression of CREB and BDNF in the hippocampus of newborn rats [59]. Additionally,
another typical marine carotenoid—FUC reduced Aβ-induced damage in a cultured cell
model through apoptotic factors downregulation, inflammatory cytokine-mediating action
inhibition, and simultaneous ROS reduction [60].

Besides, other carotenoids also positively impact CNS recovery. High levels of lutein
and zeaxanthin within the brain can improve cognitive function in the elderly by their neu-
roprotection ability to neuronal mortality reduction [61]. Additionally, β-carotene exhibited
its potential in the treatment of acute spinal cord injury, the inhibition of the NFκB pathway
reduced the progression of secondary injury events [62]. Moreover, lycopene proved to
improve neurological function recovery by suppressing neuronal death and neuroinflam-
mation in spinal cord ischemia/reperfusion injury rat models [63]. The schematic depiction
of marine carotenoids actions on signaling pathways related to neuroplasticity is presented
in Figure 2.

Increased ROS causes oxidative stress inside cells. Marine carotenoids can lower ROS
level, thereby mitigating cellular damage and inhibiting inflammatory responses as well
as participating in the maintenance of neuronal plasticity. In the MAPK/Erk pathway,
phosphorylated Erk translocates into the nucleus where it activates transcription factors
responsible for synaptic plasticity regulation. Certain carotenoids from aquatic ecosys-
tems increase the phosphorylation of Akt, and phosphorylated Akt regulates Nrf2 and
NFκB, influencing gene expression. Thereby it alleviates oxidative stress or inflammation
associated damage in brain cells. Under natural conditions, Nrf2 is kept inactive by its
repressor protein Keap1 in the cytosol. During redox imbalance, the Keap1-Nrf2 linkage is
disrupted, and marine carotenoids seem to change Keap1 conformation, resulting in Nrf2
liberation and translocation to the nucleus. There, it binds to the ARE, causing antioxidant
and cytoprotective enzymes expression. Under resting conditions, NFκB is bound to IκB
(inhibitors of NFκB), which resides in the cytoplasm. However, during exposure to specific
or unspecific signals (oxidative stress, inflammatory cytokines), the IKK complex phos-
phorylates IκB protein which leads to its ubiquitination and proteasomal degradation and
the NFκB pathway activation. NFκB translocates into the nucleus, where it could bind to
DNA sequences, activating the transcription of various target genes, many of which are
inflammatory and immunoregulatory. During chronic neuroinflammation, blocking NFκB
activation, for instance, by some marine carotenoids, will lead to the transcription of the
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target genes repression and thus reduce inflammation and increase neurons survival. In
addition, these carotenoids may impact the level of several neurotrophic factors which can
regulate survival signaling pathways.
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Akt—protein kinase B; ARE—antioxidant response element; crk—CT10 regulator of kinase; C3G—
guanyl-nucleotide exchange factor; DAG—diacylglycerol; Erk—extracellular signal-regulated kinase;
FRS-2—fibroblast growth factor receptor substrate 2; Grb-2—growth factor receptor-bound protein
2; IκB—inhibitor of NFκB; IKK—IκB kinase; IP3—inositol trisphosphate; Keap1—kelch-like-ECH-
associated protein 1; MAPK—mitogen-activated protein kinase; MEK—mitogen-activated protein
kinase kinase; NFκB—nuclear factor kappa B; Nrf2—nuclear factor erythroid 2-related factor 2;
PI3K—phosphoinositide-3-kinase–protein kinase B; PKC—protein kinase C; PLC—phospholipase
C; Raf—rapidly accelerated fibrosarcoma; Rap1—Ras-related protein 1; ROS—Reactive oxygen
species; Shc—Src homology and containing protein; SOS—son of sevenless; Trk—tropomyosin
receptor kinase.

Importantly, it has been shown that marine carotenoids may modulate autophagy,
which is associated with the neutralization of damaged organelles, including misfolded



Int. J. Mol. Sci. 2022, 23, 1990 7 of 17

proteins in the CNS [64]. Some carotenoids, depending on the conditions and the type
of research material, showed a different regulating potential of autophagy. Lutein in rat
Müller cells inhibited autophagy through the mTOR pathway [65], while in retinal pigment
epithelial cells it activated autophagy through Beclin-1 overexpression [66]. Similarly,
crocin, depending on the amount of oxygen, influenced autophagy in two ways: hypoxia
activated it, while reperfusion extinguished it [67]. The autophagy-inhibiting potential is
also shown by astaxanthin [68] and lycopene [69], while FUC demonstrates the autophagy-
promoting activity [70]. This inconclusive evidence of carotenoids modulating autophagy
implies further research into the phenomenon. This seems to be particularly important in
relation to supporting the management of neurodegenerative diseases.

3. Marine Carotenoids

Marine and oceanic fauna and flora represent an enormous wealth of potential thera-
peutic agents, and amongst them, over 250 nautical carotenoids, which, generally, serve as
natural, lipid-soluble pigments responsible for nature’s varied and vivid colors [71]. Hu-
mans cannot synthesize carotenoids de novo, therefore they must be obtained through the
diet and converted into functional metabolites. Moreover, considering their low bioavail-
ability in humans, different strategies, for instance, encapsulation in liposomes, micelles,
or nanogels, increasing their absorption efficiency in the digestive tract have been devel-
oped [72,73]. Bioactive metabolites of marine algae, fungi, diatoms, and other marine
organisms have been identified as pharmaceuticals with a wide variety of uses [71]. The
significant role of marine carotenoids in neuroplasticity is underlined by the fact that there
are currently several clinical studies conducted on the effects of carotenoids on cognitive
impairment, neuroprotection, oxidative stress, and neurodegenerative diseases [74–76].

3.1. Fucoxanthin

One of the most promising carotenoids to be used in CNS diseases is FUC, the source
of which is brown algae, mainly Sargassum siliquastrum, Undaria pinnatifida, Hijikia fusiformis,
Alaria crassifolia, Laminaria japonica, and Cladosiphon okamuranus [77]. FUC is a naturally
occurring compound with a brown color, showing the activity of provitamin A. This xan-
thophyll contains in its structure an epoxy group and conjugated carbonyl groups in the
polyene chain. This structure translates into the antioxidant properties of FUC [78,79]. The
biological activity of FUC is associated with a strong anti-inflammatory [80,81], antiox-
idant [82], anticancer and cell cycle suppressing [83,84], antidiabetic [85], hepatoprotec-
tive [86] and cardioprotective effects [87].

The neuroprotective effect of FUC has been confirmed in several in vitro and preclini-
cal studies. It is proposed that Nrf2 signaling is the most important molecular mechanism
for neuroprotection in FUC [88–90]. Hu et al. [88] evaluated the neurorestorative properties
of FUC in a rat stroke model. The animals were administered this carotenoid at a dose of 30,
60, and 90 mg/kg 1 h prior to ischemia induction, and then rat cortical neurons were har-
vested and treated with 5, 10, and 20 µM FUC. It was observed that FUC dose-dependently
reduced neurological deficits and infarct volume. Moreover, FUC blocked apoptosis by
reducing the elevated cleaved caspase (C-CASP) 3 and Bcl-2/Bax ratio and also decreased
oxidative stress by increasing SOD activity. The neuroprotective properties of FUC were
confirmed in an in vitro study where a dose-dependency reduction of ROS accumulation
and apoptosis was demonstrated through activating the Nrf2/HO-1 pathway initiated by
Nrf2 nuclear translocation and increased levels of HO-1 [88]. Wu et al. [89] also suggested
an impact of FUC on the activation of Nrf2 signaling, albeit by inhibiting the interaction of
the Keap1 repressor protein with Nrf2. In 6-hydroxydopamine (6-OHDA) induced PC12
cells, FUC reduced ROS accumulation, cell apoptosis and membrane potential interference,
as well as dose-dependently enhanced the activity of antioxidant enzymes: glutamate-
cysteine ligase modifier subunit, nicotinamide heme oxygenase-1, and glutamate-cysteine
ligase catalytic subunit. The FUC was then administered to the zebrafish treated with
6-OHDA. It was observed that FUC improved the granular region of the brain injury and
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enhanced the total swimming distance of the larvae [89]. Activation of the Nrf2/ARE
pathway was also confirmed in a study by Zhang et al. [70], who found that FUC sup-
pressed secondary brain injury, cerebral edema, neurological deficits, and apoptosis in a
mouse traumatic brain injury (TBI) model. Moreover, in primary neurons, FUC promoted
neuronal survival and inhibited oxidative stress by activating Nrf/ARE signaling, while
in Nrf−/− knockout mice, the neuroprotective effect of FUC was abolished, and activa-
tion of autophagy was observed [70]. Furthermore, in vitro studies demonstrated that
FUC attenuated LPS-induced neuroinflammation by decreasing secretion of inflammatory
mediators, including tumor necrosis factor α (TNF-α), NO, interleukin (IL) 1β, IL-6, and
prostaglandin E2 (PGE2) [90]. Suppression of MAPK/AP-1 and Akt/NF-κB pathways,
reduction of expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2
(COX2) are also involved in the anti-inflammatory activity of FUC [90]. Moreover, FUC
was also observed to suppress neuroinflammation by affecting NLRP3 inflammasome
by inhibiting C-CASP 1. Expression and oligomerization of that apoptosis-associated
speck-like protein containing a C-terminal caspase recruitment domain (ASC) are the ma-
jor components of the inflammasome. Interestingly, it was proposed that FUC may also
modulate the initiation step of the inflammasome signaling pathways as FUC was noted to
reduce pro-IL-1β and phosphorylated IκBα expression [81]. Lin et al. [91] showed that FUC
attenuates cognitive impairment induced by scopolamine in a mouse Alzheimer’s Disease
(AD) model. Treatment of mice with scopolamine increased acetylcholinesterase (AChE)
activity, as well as decreased BDNF expression and choline acetyltransferase activity, which
was reversed by FUC. Moreover, it was shown that FUC directly inhibited AChE (IC50
81.2 µM) in a non-competitive manner, and based on molecular docking. It was found
that FUC interacted with the peripheral anionic site of AChE [91]. A growing body of data
from animal studies demonstrates the enormous potential of FUC in preventing disease or
managing human health. Nevertheless, despite significant progress in characterizing its po-
tential health-promoting effects, much research is still required to establish the appropriate
protocol for human administration.

3.2. Astaxanthin

AST (3,3’-dihydroxy-β, β-carotene-4,4’-dione) is a natural xanthophylls [92,93]. Its
predominant source in the diet are fish and seafood, mainly crawfish, crabs, shrimps,
salmon, and pink trout [93–95]. The natural sources of AST are the algae Haematocco-
cus pluvalis [96,97], Chlorella zofingensis, as well as the yeast Xanthophyllomyces dendror-
hous [77,95,96]. Eight isoprene units containing 40 carbon atoms form the compound’s
chemical structure. The polyene carbon chain is terminated at both ends with β-ionone
rings, each of which has one ketone group and one hydroxyl group in its structure. These
groups are responsible for AST’s greater stability and polarity in relation to other known
carotenoids [93]. It was proven that carotenoids containing a greater number of oxygen
molecules with the same number of double bonds are characterized by higher photosta-
bility and more tremendous antioxidant potential [98]. The chemical structure of AST is
responsible for its physicochemical and health-promoting properties. The hydrophobic
carbon chain containing 9 conjugated double bonds and 2 unconjugated β-ionon rings
is accountable for the quenching of ROS. The presence of oxygen in the end rings influ-
ences the hydrophilic properties of astaxanthin, contributing to the neutralization of free
radicals and other oxidative substances in the aquatic environment. Such a hydrophilic-
hydrophobic-hydrophilic structure of AST is analogous to the cell membrane, which allows
it to be distributed across its entire width, enabling the removal of free radicals and ROS
both on the surface of the membrane and inside it [92,93]. AST is characterized by a greater
resistance to light and high temperature compared to other carotenoids and a free, rapid
crossing of the BBB in animals [97].

The promising pro-health actions of AST include antioxidant, anti-inflammatory, anti-
tumor, hepato-, cardio, and neuroprotective effects [77–79,93–98]. The potent antioxidant
effect of AST manifests in high oxidative potential, production of chelate complexes with
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metals, and in the presence of metal ions generation of neutral radicals and aggregation into
ester forms [99]. Wu et al. [100] assessed the effect of AST (intragastric administration; at
the dose of 0.02% of daily diet 3 times a week) on D-galactose-induced brain aging in rats. It
was observed that AST suppressed oxidative stress by enhancing the activity of antioxidant
enzymes, including superoxide dismutase (SOD) and glutathione peroxidase, enhancing
total antioxidant capacity and thiol levels. In addition, a reduction in the levels of antioxi-
dant damage markers such as malondialdehyde (MDA), 8-hydroxy-2-deoxyguanosine, and
protein carbonyl groups was observed in the brains of rats. Furthermore, AST augmented
an anti-apoptotic index—Bcl2/Bax ratio as well as suppressed neuroinflammation as ex-
pressed by decreased COX2 expression. Moreover, it was found that the neuroregenerative
properties of AST were associated with a reduction in histopathological changes in the hip-
pocampus and an increase in BDNF expression in both the hippocampus and the brain of
aging rats [100]. In a recent study, Aslankoc et al. [101] found that AST (oral administration,
100 mg/kg for 7 days) was protective against methotrexate damage in the hippocampus,
cerebral cortex, cerebellar cortex, and blood in rats. In the control group, there was in-
creased oxidative stress in the hippocampus, cerebral cortex, and blood, manifested by an
increase in the total oxidative state (TOS) and a decrease in total antioxidant status (TAS),
in contrast to the study group, in which AST alleviated oxidative stress. Moreover, AST
suppressed histopathological changes in the hippocampus, cerebral cortex, and cerebellar
cortex, including congestion, edema, and degenerative changes noted in the controls. In
addition, AST was demonstrated to have anti-apoptotic and anti-inflammatory proper-
ties related to increased expression of myelin basic protein (MBP) and decreased CASP
3 levels, growth related oncogene (GRO), granulocyte colony-stimulating factor (GCSF),
and iNOS [101]. Zhao et al. [102] suggested that AST could be a potential therapeutic
agent for the treatment of neuropathic pain. C57BL/6 mice with spinal nerve ligation were
administered intraperitoneally with AST at a dose of 5 mg/kg or 10 mg/kg from the 5th
postoperative day for 23 days. It was shown that AST partially relieved neuropathic pain,
and the analgesic effect was demonstrated on day 7. Subsequently, an in vitro study (spinal
dorsal horns taken 11 days after spinal nerve ligation) found that AST reduced microglia
activation and the expression of proinflammatory cytokines leading to inhibition of neu-
roinflammation. The anti-inflammatory effect of AST was manifested by the inhibition of
p38 and Erk1/2 phosphorylation, as well as NFκB p65 nuclear translocation [102].

The promising use of AST in enhancing cognition is still being intensively researched.
AST (administered orally at a dose of 25 mg/kg 5 times a week for 25 days) was shown to
ameliorate memory impairment induced by doxorubicin in rats. Moreover, AST restored
doxorubicin-induced histological changes in brain tissue, including degeneration and nu-
clear pyknosis in fascia dentata, hilus, and subiculum of the hippocampus, as well as focal
hemorrhage in the area that separates the hippocampus from the striatum. Moreover, it
was observed that the neuroprotective effect of AST is associated with a decrease in AChE
activation, inhibition of oxidative stress, and overactive apoptotic processes [103]. In turn,
Zhu et al. [104] assessed the effects of AST on cognition, oxidative stress, and neuroinflam-
mation in mice with vascular dementia. AST (at a dose of 50 mg/kg, 100 mg/kg 200 mg/kg
for 30 days) was shown to attenuate cognitive deficits in a dose-dependent manner as well
as reduce oxidative stress, as observed by increasing SOD activity and reducing MDA.
Moreover, a decrease in IL-1β expression and an enhancement of IL-4 expression were
noted in the study group [104]. A recent study by Loganathan et al. [105] demonstrated that
the astaxanthin-s-allylcysteine (AST-SAC) diester has a neuroprotective effect in alleviating
cognitive deficits in diabetic rats by preventing spatial memory loss, as well as reducing
brain tissue damage by inhibiting AChE activity, mitochondrial dysfunction, and oxidative
stress. Moreover, in an in vitro study (SH-SY5Y neuronal cells treated with high glucose
concentration), AST (at a dose of 5 µM, 10 µM and 15 µM) in a dose-dependent manner
promoted neuronal viability by reducing the expression of pro-apoptotic proteins, leading
to inhibition of apoptosis, increasing the level of endogenous antioxidant compounds re-
ducing ROS generation, and by preventing mitochondrial dysfunction. The mechanism of



Int. J. Mol. Sci. 2022, 23, 1990 10 of 17

preventing mitochondrial dysfunction goes on through modulating the membrane potential
and the activity of oxidative phosphorylation complexes [105]. A randomized clinical trial,
which enrolled 96 people (age 45–65) with mild memory impairment, investigated the effect
of the AST-rich Haematococcus pluvialis extract. It was shown that in the group receiving
AST at a dose of 6 mg/day and 12 mg/day for 12 weeks, improvement in performed tasks
was significantly faster. That improvement was manifested by increased psychomotor
speed, which is a marker of physical and mental coordination. Importantly, this study did
not report any side effects from AST [106].

In addition to the research concerning the neuroprotective properties of AST alone
in the treatment of CNS diseases, combination therapies are currently under considera-
tion. Ata Yaseen Abdulqader et al. [107] assessed the effect of using AST in combination
with valproic acid (VPA) in rats with pentylenetetrazole-induced epilepsy. VPA was
shown to counteract the histopathological damage and behavioral disturbances induced
by pentylenetetrazole. In contrast, AST alone (oral administration at a dose of 100 mg/kg)
showed antiepileptic properties and increased anti-inflammatory activity compared to
VPA alone. On the other hand, the use of AST/VPA combination therapy intensified the
anti-epileptic effect, which was noted on the basis of the reduction of oxidative stress, the
level of glutathione and TNF-α. Importantly, AST/VPA augmented the improvement in
animal behavioral changes compared to VPA alone [107].

3.3. Siphonaxanthin

Siphonaxanthin (3,3′,19-trihydroxy-7,8-dihydro-8-oxo-a-carotene), a keto-carotenoid
present in edible green algae including Codium fragile, Caulerpa lentillifera, and Umbraulva
japonica, constitutes approximately 0.03–0.1% of their dry weight [108]. Siphonaxanthin con-
tains an additional hydroxyl group that could contribute to its strong apoptosis-inducing
effect [109]. The biological functions of this ketocarotenoid are associated with antioxidant
activity [110], anti-inflammatory effect [111], suppression of cell viability, induction of apop-
tosis, more potent anti-angiogenic activity than FUC [112–114], and antiobesity [115,116].
However, additional in vivo studies, are needed to validate siphonaxanthin’s bioavailability
and biological action.

Dambeck and Sandmann [110] showed that siphonaxanthin exerts an efficient outcome
against the radical formation and lipid peroxidation [110]. Studies performed on the
transfected human monocytic cell line, which was treated with siphonaxanthin at 1.0 µM
concentration for 24 h, showed the anti-inflammatory effect of this carotenoid, manifested
by the significant inhibition of the LPS- and TNF-α-induced NFκB activation. Moreover,
pretreatment with siphonaxanthin at 1.0 µM concentration significantly suppressed the
IL-1β-induced NFκB activation [117]. Ganesan et al. [113] revealed that siphonaxanthin
might inhibit FGF-2 signaling. Human endothelial cells treated with siphonaxanthin at 0.1
and 0.5 µM concentration for 6 h exhibited the inhibition of FGF-2-induced intracellular
proliferation and survival signals by down-regulating the FGF-2-induced phosphorylation
of Akt and the Erk1/2 [113]. FGF signaling often leads to the concurrent activation of both
the Raf/MAPK and the PI3K/Akt pathways, which, as was mentioned, are crucial for
neurons survival or synaptic plasticity [118]. In addition, this carotenoid, at a concentration
of 20 µM, reduced human leukemia cell viability (p < 0.05) within 6 h of treatment, inducing
the apoptosis by decreasing expression of Bcl-2 and increasing activation of CASP 3 [112].

3.4. Mytiloxanthin

Mytiloxanthin (3,3′,8′-trihydroxy-7,8-didehydro-β,κ-caroten-6′-one), a metabolite of
FUC, is another carotenoid with high antioxidant properties. Mytiloxanthin is widely
distributed in marine mussels, oysters, and tunicates [77,119]. As it was mentioned before,
carotenoids singlet oxygen-quenching activity depends on the number of conjugated double
bonds, polyene chain structures, and functional groups, therefore Mytiloxanthin, which has
more conjugated double bond than FUC, is suggested to have stronger quenching activity
for singlet oxygen.
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Maoka et al. [120] investigated the anti-oxidative activities of mytiloxanthin, they
revealed that it exhibits a high quenching activity of singlet oxygen (61.6%) similar to that
of AST (61.0%). Moreover, the researchers showed this compound has more powerful
inhibitory activity on lipid peroxidation (20% formation of lipid hydroperoxide) than AST
(24%), FUC (32%), and β-carotene (38%), at a final concentration of 167 µM [120].

3.5. Saproxanthin and Myxol

The two monocyclic carotenoids, seldom found in nature, (3R)-Saproxanthin and
(3R,2′S)-Myxol, are produced by Saprospira grandis, marine bacterial strain 04OKA-13-27 and
Anabaena variabilis ATCC 29413, marine bacterial strain P99-3, YM6-073, respectively [121].
These tetraterpenes are reported to possess neuroprotection against L-glutamate toxicity,
lipid peroxidation prevention, and have powerful antioxidant potential, for instance, by
their orientation in the head-group region of the phospholipids that form the bilayer, which
leads to the reinforcement and stabilization of biological membranes. Therefore, these
carotenoids may induce a reduction of membrane permeability to oxygen and may enhance
protection against radical-induced peroxidation [122,123].

As was revealed by Shindo et al. [121] the antioxidant activity of saproxanthin and
myxol is stronger than that of β-carotene or zeaxanthin. The team used the rat brain ho-
mogenate model to evaluate the inhibitory activities against lipid peroxidation by saprox-
anthin, myxol, and zeaxanhin. Saproxanthin showed the most potent effect with IC50 value
2.1, whereas myxol and zeaxanhin were 6.2 and 13.5 µM, respectively. Furthermore, the
researchers tested saproxanthin and myxol inhibitory activities against L-glutamate toxicity
in embryonic rat retinal neuron hybrid cells, and their concentration necessary to reduce
glutamate-induced cell death by 50% (EC50 values) was 3.1 and 8.1 µM, respectively. At
the same time the protective effect of AST and β-carotene was >500 and >100 µM, respec-
tively [121]. The results show that these rare carotenoids might be expected to be useful for
ameliorating tissue damage resulting from free radicals’ generation and subsequent cell
membrane peroxidative deterioration, as well as possessing potent neuroprotective effect
against L-glutamate toxicity and they may be helpful in cerebral ischemic disease treatment.

The biological effect of marine carotenoids described above are summarized in the
Tables 1 and 2.

Table 1. In vitro studies of biological roles of marine carotenoids.

Carotenoid Effect Model Bioactive
Concentration Target Ref.

Fucoxanthin

neuroprotection rat cortical neurons 5, 10 and 20 µM Nrf2 signaling [88]

neuroprotection PC12 cells 0.5, 1, 2 and 5 µM Nrf2 signaling [89]

anti-neuroinflammation BV-2 microglial cells 5, 10, and 20 µM MAPKs and
NF-κB signaling [90]

anti-neuroinflammation

bone marrow-derived
macrophages, bone

marrow-derived dendritic
cells, astrocytes

40 µM NF-κB and NLRP3
inflammasome signaling [81]

Astaxanthin
anti-neuroinflammation BV2 cells, PC12 cells,

primary astrocytes 5 or 10 µM MAPKs and
NF-κB signaling [102]

neuronal viability human neuronal cell line
SH-SY5Y 5, 10 and 15 µM pro-apoptotic proteins [105]

Siphonaxanthin

anti-neuroinflammation human monocytic cells 1 µM for 24 h NF-κB signaling [117]

neuron survival
synaptic plasticity human endothelial cells 0.1 and 0.5 µM for 6 h FGF-2 signaling [113]

anti-proliferative human leukemia cells 20 µM Bcl-2, CASP 3 [112]

Saproxanthin
and Myxol neuroprotection embryonic rat retinal

neuron hybrid cells
3.1 and 8.1 µM,

respectively L-glutamate toxicity [121]
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Table 2. In vivo and clinical studies of biological roles of marine carotenoids.

Carotenoid Effect Model Bioactive Concentration Target Ref.

Fucoxanthin

neuroprotection rat stroke 30, 60 and 90 mg/kg Nrf2 signaling [88]

neuroprotection zebrafish 6.25, 12.5, 25 and
50 µg/mL Nrf2 signaling [89]

neuroprotection traumatic brain injury mice 50, 100 and 200 mg/kg Nrf2/ARE signaling [70]

cognitive impairments
attenuation Alzheimer’s Disease mice 50, 100 and 200 mg/kg AChE, BDNF [91]

Astaxanthin

antioxidation
anti-neuroinflammation,

neuroregeneration
rats’ brain 0.02% of daily diet,

3 times a week
antioxidant enzymes

COX2, BDNF [100]

anti-apoptotic,
anti-inflammation,

oxidative stress
alleviation

rats 100 mg/kg for 7 days MBP, CASP 3, iNOS [101]

neuropathic pain
alleviation C57BL/6 mice 5 or 10 mg/kg for 23 days MAPKs and NF-κB

signaling [102]

neuroprotection rats 25 mg/kg 5 times a week
for 25 days AChE [103]

oxidative stress
alleviation vascular dementia mice 50, 100 and 200 mg/kg

for 30 days SOD, MDA, IL-4, IL-1β [104]

psychomotor speed
improvement

people with mild memory
impairment

6 and 12 mg/day for
12 weeks – [106]

Antiepileptic
anti-inflammation epileptic rats 100 mg/kg – [107]

4. Conclusions

There is considerable scientific and social interest in the use of natural compounds in
the prevention and treatment of many diseases, including neurological disorders. In recent
years, the demand for biologically active nutraceuticals implies the search and develop-
ment of natural sources of these molecules. This led to an interest in marine compounds as
unused and new natural sources. Marine sources are a great wealth of bioactive substances
that have a beneficial effect on the human body, including carotenoids, which has been
indicated in many scientific reports. There is strong scientific evidence that the marine
carotenoids fucoxanthin and astaxanthin support the CNS. In turn, noteworthy as raising
high hopes are mytiloxanthin, saproxanthin, and myxol. The enhancement of neuroplastic-
ity by marine carotenoids is mainly related to anti-inflammatory and antioxidant effects.
Nevertheless, activation of pathways related to neurogenesis and synaptogenesis mean
that these compounds appear to have great therapeutic potential. However, it is necessary
to conduct further preclinical and clinical studies that will be able to accurately determine
the mechanism of their action, as well as dosing in particular CNS diseases.
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