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Abstract

Many traits of biological and agronomic significance in plants are controlled in a complex manner where multiple genes and
environmental signals affect the expression of the phenotype. In Oryza sativa (rice), thousands of quantitative genetic
signals have been mapped to the rice genome. In parallel, thousands of gene expression profiles have been generated
across many experimental conditions. Through the discovery of networks with real gene co-expression relationships, it is
possible to identify co-localized genetic and gene expression signals that implicate complex genotype-phenotype
relationships. In this work, we used a knowledge-independent, systems genetics approach, to discover a high-quality set of
co-expression networks, termed Gene Interaction Layers (GILs). Twenty-two GILs were constructed from 1,306 Affymetrix
microarray rice expression profiles that were pre-clustered to allow for improved capture of gene co-expression
relationships. Functional genomic and genetic data, including over 8,000 QTLs and 766 phenotype-tagged SNPs (p-value
, = 0.001) from genome-wide association studies, both covering over 230 different rice traits were integrated with the GILs.
An online systems genetics data-mining resource, the GeneNet Engine, was constructed to enable dynamic discovery of
gene sets (i.e. network modules) that overlap with genetic traits. GeneNet Engine does not provide the exact set of genes
underlying a given complex trait, but through the evidence of gene-marker correspondence, co-expression, and functional
enrichment, site visitors can identify genes with potential shared causality for a trait which could then be used for
experimental validation. A set of 2 million SNPs was incorporated into the database and serve as a potential set of testable
biomarkers for genes in modules that overlap with genetic traits. Herein, we describe two modules found using GeneNet
Engine, one with significant overlap with the trait amylose content and another with significant overlap with blast disease
resistance.
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Introduction

The past century has seen major advances in our understanding

of genotype-phenotype relationships underlying Mendelian and

complex traits controlled primarily by large-effect genes. However,

methods for discovery of the genetic factors controlling complex

traits are not fully mature, limiting our ability to use genetic-based

methods for understanding some diseases and for breeding of

certain traits in plants and animals. In plants such as Oryza sativa

(rice), quantitative trait loci (QTL) mapping analysis has been a

key method for identifying genomic positions associated with traits

of interest. While QTL mapping analysis has been successful in

associating some traits with large-effect genes [1,2], it has failed to

identify the genetic factors for traits comprised primarily of small-

effect genes. In a 2009 review on the status of QTL analysis for

rice, Yamamoto et. al. suggest the need for integration of genomics-

based methods to improve the sensitivity for discovery of small-

effect genes [3]. Association mapping studies such as recent

Genome-wide Association Studies (GWAS) studies for rice [4,5]

offer greater potential for finding QTLs with large and small-effect

genes but in both cases, identification of the underlying genes, as

well as the functional network in with they participate may not be

known. Gene co-expression networks, integrated with genetic data

(e.g. from QTL mapping, GWAS), and functional genomic

information, offer the potential to identify gene sets underlying

complex traits. This combination of network biology, genetics and

genomics data is a recent area of study known as systems genetics

[6,7].

Gene co-expression networks, or relevance networks [8,9], are

increasingly common tools that describe complex gene expression

relationships. Co-expression networks consist of a set of nodes

interconnected by edges. In gene co-expression networks genes are

nodes and edges (or lines) connect two nodes when their

expression levels are significantly correlated across a set of

expression measurement samples (e.g. Pearson’s correlation

coefficient (PCC)). Co-expression networks have specific topolog-

ical properties similar to most naturally occurring networks: they

are often scale-free, hierarchical and small world [10]. Typically,

construction of gene co-expression networks uses microarray-

derived expression profiles as input, although RNA-seq datasets

have recently been used [11,12]. A wealth of publicly available
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expression datasets are currently available in repositories such as

the NCBI Gene Expression Omnibus (GEO; [13]), Short Read

Archive (SRA; http://www.ncbi.nlm.nih.gov/Traces/sra/), Ar-

rayExpress from the European Bioinformatics Institute [14], and

other sources. The samples submitted to these repositories (e.g.

microarrays and RNA-seq datasets) include a record of the

experimental conditions (i.e. genotype, environment, tissue,

developmental stage). After network construction, highly-connect-

ed genes are circumscribed into gene modules. Modules are sets of

nodes that tend to be more highly connected amongst themselves

than with other nodes in the network. Nodes within a module tend

to be involved in similar biological processes, therefore, modules

that contain genes with no known function can be ascribed

putative function through ‘‘guilt-by-association’’ inferences [8,15].

Many co-expression networks for plants are currently available

[16,17,18,19,20,21,22,23,24,25,26,27,28,29]. Also, the utility of

co-expression networks has spurred development of numerous

online web resources available for exploration of gene interaction

relationships in plants [22,23,25,26,30,31,32,33,34].

A deepening view of gene output captured in public expression

profiles can be mined to build as holistic a view as possible of gene

interaction for an organism. Typically, when co-expression

networks are constructed input samples (such as microarrays or

RNA-seq datasets) are either segregated using a knowledge-

dependent method [29,35] or combined into a single input set

[23,25,34]. However, there are limitations to both approaches for

maximal discovery of an organism’s interactome. Segregating

samples using a knowledge-dependent approach relies on human

knowledge, and sometimes imprecise and inconsistent vocabularies

to identify conditions. Even for highly controlled experiments,

unknown variables in each sample set increase noise within the

dataset, thus limiting capture of co-expression relationships.

Combining all samples into a single compendium exacerbates

the problem, especially as the sample set contains measurements

from a highly diverse set of conditions [36]. While a completely

holistic, ‘‘pan’’ co-expression network is not possible (as we cannot

measure every gene in every experimental condition), improved,

knowledge-independent methods are needed to detect co-expres-

sion relationships for all conditions using smarter dataset sorting

approaches.

Therefore, the objective of this work was to build a high

resolution series of rice gene co-expression networks using an

optimized RMTGeneNet network construction pipeline [37] to

bring a high-level, holistic view of the interaction space of rice–one

of the most important staple food crops in the world. Knowledge-

independent methods for network construction and module

discovery were employed to overcome knowledge-bias in the

detection of rice gene interaction. Prior to co-expression network

construction, we used K-means clustering of input microarray

samples. This approach attempts to maximize capture of gene

interactions that otherwise would be hidden in noise if all samples

were used as a single input set. Our approach generated multiple

co-expression networks from the full set of Affymetrix GeneChipH
Rice Genome arrays available in NCBI GEO at that time–one for

each K-means cluster. We refer to each network as a Gene

Interaction Layer (GIL). Using this improved capture of gene co-

expression in the GIL collection, we aimed to integrate genetic

data from QTL mapping experiments and Genome Wide

Association Studies (GWAS) to highlight network modules with

potential quantitative phenotype association. To help explore the

rice GIL collection and associated genetic signals, we created a

new online data mining resource called GeneNet Engine for

exploration of network modules with potential association to

genetic traits. Genes within significant network modules serve as

potential candidates underlying complex genetic traits and

potentially contain small effect genes.

Results

Network Construction
Prior to network construction, 1,306 microarrays were down-

loaded from NCBI GEO [13] and pre-processed including

normalization, outlier detection and removal of control and

ambiguous probesets. Ambiguous probesets are those that map to

more than one locus on the rice genome. In total, 123 control

probesets and 4,772 ambiguous probesets were removed, as well as

19 outlier microarrays. Microarrays were then clustered into 25

groups using K-means clustering (Hartigan and Wong implemen-

tation from the kmeans function of the R statistical package [38]).

K-means is a cluster analysis method that groups input micro-

arrays into k sets in such a way that the sum of squares within the

group is minimized. Thus for the microarrays used for this project,

the 25 groups contained microarrays whose expression level at

each probeset were most similar to others in the group. A co-

expression network for each K-means cluster was then constructed

using the RMTGeneNet package [37]. RMTGeneNet first

generates pair-wise Pearson Correlation Coefficients (PCC) for

all genes and then uses Random Matrix Theory (RMT) [39] to

identify an optimal threshold for culling PCC values. Of the 25

clusters, the RMT method generated 22 co-expression networks,

or Gene Interaction Layers (GILs). Three clusters failed to

generate networks. One cluster had fewer microarrays than a

required cutoff of 25, and the RMT method failed to identify a

threshold for two others. The number of input microarrays per

GIL ranged from 19 to 231 with an average size of 53.8 and a

median of 39 (Table 1). The probesets of the input microarrays of

each GIL were mapped to 46,498 of the 57,133 genes (81%) on

the Michigan State University’s (MSU) v6.0 Rice genome [25].

The collection of GILs contains 282,484 edges among 16,664

nodes (genes) and together captures 35% of the measurable genes

of the array and 29% of the total genes of the MSU v6.0 genome.

For all GILs, the PCC threshold was quite high, ranging from 0.91

to 0.99 indicating that all relationships (edges) are highly co-

expressed.

Gene Module Detection and Co-Similarity
The link community method [40] was used to find modules, or

sets of nodes (genes) that are more highly connected with each

other than with the rest of the network. The link community

algorithm was employed using the linkcomm R package [41]. The

method allows for nodes to be present in more than one module

thus supporting the theory that genes can be multi-functional. In

total, 6692 link community modules (LCM) were discovered.

Modules were named using a three-part schema separated by an

underscore (e.g. OsK25v1.0_G0011_LCM020), where the first

part ‘OsK25v1.0’ represents the O. sativa GIL collection version

1.0 (derived from presorting with K-means 25), a second part

prefixed with the letter ‘G’ indicates the GIL to which the module

belongs and the third part prefixed by ‘LCM’ indicates the unique

module within the GIL. The average number of modules per GIL

was 302.8 and the median 284.5 (Figure 1). The collection of GILs

represents interactions between 35% of the measurable genes and

some of those genes are present in more than one GIL. As shown

in Figure 1A, the majority of nodes are present in only a single

GIL (6,608 nodes, 40%), and the number of times a node appears

in multiple GILs decreases. Edges tend to be more unique per GIL

as 201,121 (71%) are only found in a single GIL and the number

Rice Systems Genetics Discovery Toolkit
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Table 1. Network details from k-means clustered microarray samples into 25 groups.

Network Input Arrays Outlier Arrays Total Edges Total Nodes RMT Threshold ,k.a Modules

G0001 22 0 Failed to construct: RMT could not find threshold

G0002 81 0 19,338 2,890 0.91 13.38 569

G0003 73 2 36,346 3,155 0.92 23.04 676

G0004 14 Failed to construct: too few arrays

G0005 26 0 14,641 1,991 0.97 14.71 290

G0006 32 0 38,331 1,914 0.97 40.05 355

G0007 90 0 12,059 2,806 0.91 8.60 370

G0008 65 3 18,383 3,276 0.91 11.22 476

G0009 25 0 3,579 1,366 0.99 5.24 173

G0010 16 1 Failed to construct: RMT could not find threshold

G0011 74 0 10,411 1,624 0.96 12.82 397

G0012 40 0 29,971 3,622 0.93 16.55 522

G0013 37 0 2,366 896 0.98 5.28 150

G0014 118 3 6,738 1,963 0.90 6.87 330

G0015 21 0 9,374 1,034 0.98 18.13 256

G0016 21 1 2,358 1,670 0.97 2.82 129

G0017 24 0 8,688 1,607 0.96 10.81 194

G0018 36 0 8,434 1,660 0.95 10.16 216

G0019 19 1 4,689 3,022 0.97 3.10 234

G0020 73 3 6,268 2,308 0.91 5.43 260

G0021 231 2 227 204 0.98 2.23 24

G0022 58 0 7,516 2,007 0.92 7.49 279

G0023 54 3 34,398 1,596 0.94 43.11 302

G0024 39 0 5,880 2,512 0.95 4.68 325

G0025 57 0 2,489 1,167 0.98 4.27 135

Total 1,346 19 282,484 n/ab 6,662

Microarrays are from the NCBI GEO platform GPL2025.
aThe average degree of a GIL.
bThe total number of nodes is 16,664 across all GILs and nodes may be present in multiple GILs.
doi:10.1371/journal.pone.0068551.t001

Figure 1. Redundant Edges and Nodes. The number of times that a A) rice gene (node) or B) co-expressed gene pair (edge) appears in different
GILs.
doi:10.1371/journal.pone.0068551.g001
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of times an edge appears in more than one GIL is significantly less

(Figure 1B).

To obtain a measure of similarity between modules across all

GILs, a correlation between Kappa scores (measuring functional

similarity between two modules) and Jaccard indices (measuring

similarity of node composition) was performed. First, functional

enrichment analysis of the modules was performed using terms

from the Gene Ontology (GO; [42]), InterPro [43] and KEGG

[44]. Only terms enriched within a module with a Fisher’s p-value

of 0.01 or less were considered enriched. Next, full pair-wise

comparisons between modules with 30 or more nodes from all

GILs were performed using both Kappa statistics and a Jaccard

similarity test. Only enriched functional terms were used with the

Kappa test. Kappa scores range from 21 to 1 with values less than

0 indicating no significant similarity of function and a score of 1

indicating identical similarity of function. A Jaccard index ranges

from 0 (indicating no nodes in common) to 1 (all nodes in

common). Figure 2 shows a scatterplot of Jaccard similarity

coefficients versus Kappa scores with R2 = 0.5 (p-value ,2.2e-16)

indicating a good degree of correlation between the node

composition of modules and the enriched function of modules.

A meta-network of LCM modules was then created using the

similarity scores as described previously. In theory, a Kappa score

greater than 0 can be considered meaningful however in practice

higher values are often used for greater stringency. We used a

Kappa score threshold of 0.5, which corresponds to a Jaccard

score of approximately 0.3 in the scatterplot of Figure 2. Edges

were added to the meta-network between pairs of modules with a

Kappa score of 0.5 or greater. Figure 3 shows a diagram of the

LCM module meta-network. In this network, the nodes are LCM

modules and edges indicate a high degree of similarity (Kappa

.0.5 and Jaccard .0.3). The edges are color-coded according to

the GIL to which the modules belong. If two modules from

different GILs shared an edge, then the edge is black. The meta-

network contains 13,578 edges across 4,965 LCM modules (75%

of all LCM modules). The number of edges in the meta-network

that connect LCM modules of the same GIL is 12,253 (90%) with

1,325 (10%) connecting two different GILs.

Interactive Systems-Genetics Exploration Tool
To integrate genetic data with GILs, and to construct an online

resource for exploration of genotype-phenotype relationships, the

physical positions of significant genetic data from QTLs and

GWAS studies were obtained. Over 8,000 QTL intervals, along

with their corresponding genomic coordinates were downloaded

from Gramene’s QTL database [45]. Also a 300 kb LD window

surrounding significant SNPs (p-value ,0.0001) from a recent

GWAS study by Zhao et al were used [4]. Genes overlapping both

QTL and GWAS SNP intervals were putatively assigned the trait.

These associations as well as all GILs were input into an online

database called GeneNet Engine which is available online at

http://sysbio.genome.clemson.edu. The data is housed in a

Chado database schema [46] with custom tables and visualized

using Tripal [47]. Next all available rice SNPs from NCBI’s

dbSNP [48] database were uniquely mapped to the rice genome

and loaded into the database so that an end-user can identify

proximal biomarkers for genotype-phenotype hypothesis testing.

Users can query the database using a locus name, module name,

functional term, or trait of interest to examine the possibility that

one or more modules may play a role in a particular function.

Supplemental Figure S1 provides a screen shot of the search

engine.

The GeneNet Engine also provides a module explorer. The

module explorer (Supplemental Figure S5) consists of a set of tabs

that provides network visualization (‘Module View’ tab), a genome

network visualization (‘Genome View’ tab), lists of module nodes,

edges, functionally enriched terms, a form for specifying traits to

select (‘Filter by Trait’ tab), a list of all overlapping traits and

genetic features, and a form for generating a list of potential SNP

biomarkers that flank highlighted nodes within a specified window

size. In the network module view, an interactive module is

provided using Cytoscape Web [49]. Users are presented a

network module with which they can move nodes, and zoom in

and out. Clicking a node will provide functional annotations about

the node (locus details box in Supplemental Figure S2). In the

‘Filter by Trait’ tab, users can dynamically alter the module view

or genome view by selecting one or more specific traits, a genetic

Figure 2. Jaccard vs Kappa Scatterplot. Jaccard (similarity of node composition) and Kappa (similarity of functional annotation) statistics were
performed, pair-wise, for all modules across all GILs. A) The scatterplot of Jaccard coefficient vs Kappa k for all modules with 30 or more nodes. B)
Residual plot of Jaccard coefficient vs Kappa k.
doi:10.1371/journal.pone.0068551.g002
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feature type (e.g. QTL or GWAS SNP) and by limiting the

number of overlapping traits an edge must pass through to be

highlighted (Supplemental Figure S3). Additionally, circular plots

are available in the ‘Genome View’ tab allowing visitors to

visualize the network within the context of the chromosomal

coordinates as well as visualization of QTL or GWAS SNP regions

that overlap with nodes in the module. Examples of circular plots

for the module OsK25v1.0_G0002_LCM0431 can be seen in

Figure 4. For reference, the module view is present in Figure 4A.

Figures 4B–F highlight changes in the genome view as filtering

parameters are changed. Figure 4B shows overlapping edges with

QTLs for plant height. Edges with at least one node within a QTL

region are colored red. In cases where there are large QTLs or

where QTLs cover large swaths of the genome, almost all of the

edges are red. Figure 4C shows the same plot but only with a single

QTL set for plant height. These QTL are all from the same

genetic map and fewer overlaps are present. Figure 4D shows the

same module overlapping genetic features for the trait amylose

content. While not as dense as QTLs for plant height they do

overlap a large portion of the module. Therefore, a limit that an

edge must pass through at least 3 different genetic features was

imposed for the image in Figure 4E. Figure 4F contains the plot for

Figure 3. Gene Module ‘‘meta-network’’. The nodes in the meta-network are LCM modules from all GILs that have a pair-wise Kappa score
. = 0.5 and Jaccard coefficient . = 0.3. Edges are colored if both nodes in the edge belong to the same GIL. Each GIL is assigned a unique color.
Edges where each node belongs to a different GIL are black. Nodes are grey.
doi:10.1371/journal.pone.0068551.g003
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amylose content overlapping QTLs from a single genetic map.

Users can obtain p-values for the filters they employ by looking on

the ‘Genetic Features’ tab of the Module Explorer.

Discussion

The primary objectives of this project were three-fold. The first

objective was to use all publicly available microarray-based RNA

expression profiling data in NCBI GEO to generate co-expression

networks for O. sativa that could capture as many gene interactions

as possible. Second, was to integrate, on a massive scale, network

nodes with results from genetic analyses such as QTL mapping

experiments and GWAS studies with the expectation that network

modules could serve as a genome reduction strategy for finding

genes that may be associated with a given trait. The final objective

was to construct a systems genetics data mining platform for

discovery of relationships between network modules and genetic

traits and the reagents that could be readily used for hypothesis

testing.

One major challenge mentioned in the Introduction was that of

overcoming an increase in noise due to increases in conditions

under which gene expression is measured. Performing a gene pair-

wise correlation across all input samples only allows for genes that

are similarly expressed across all conditions to be found. Gene

correlations expressed in only a few microarrays will not be found

due to dilution. A larger and more diverse input dataset would

result in a smaller network [36]. Additionally, thresholding

methods such as ad hoc methods [8,50,51,52] have been used to

allow for flexible thresholding but, they provide little statistical

guidance and can incorporate non-significant relationships. To

capture all relationships in the dataset, we avoided methods that

require bait genes, such as linear regression [16]. Rank-based

methods [9,15] did offer an attractive feature in that they allow for

dynamic thresholding. Dynamic thresholding does not apply a

constant threshold across the entire set of PCC values, but rather

examines the neighborhood around each gene to determine a local

threshold. Partial Correlation and Information Theory (PCIT)

[36] and supervised machine learning [53,54] also generate high-

quality networks with dynamic thresholding, but were not

currently adaptable to our network pipeline. By pre-clustering of

microarrays based on gene expression pattern alone, we are able

to use Random Matrix Theory (RMT) to provide thresholding for

a highly significant set of relationships for each GIL. A unique

RMT threshold is determined for each GIL, thus our approach

behaves similarly to a dynamic thresholding method but without

dependence on global PCC values such as the case with rank-

based methods. Because RMT is knowledge-independent and is

not biased towards prior and possibly incomplete knowledge, we

were able to capture a very high quality set of relationships derived

solely on the underlying expression values. While we used K-

means clustering for pre-sorting, any number of data clustering

methods could be used.

The availability of rich genetic data for rice was a key

motivation for this study. We used approximately 8,000 genome

mapped QTLs from Gramene. The Gramene curators painstak-

ingly mapped markers for all QTLs to the MSU v6.0 genome

assembly, thus providing genomic coordinates for the QTLs. The

precise genes causal for many of the traits underlying these QTLs

are unknown. Therefore, we simply assigned the QTL trait to all

genes underlying the QTL intervals. Given the imprecision of

QTL mapping, and our assigning a trait to all genes underlying a

SNP or QTL region, we introduce many false positive gene-

phenotype associations. The visualizations and lists provided on

the GeneNet Engine (Figures 5 and 7) will highlight all genes and

edges from a network module that overlap with a QTL or GWAS

SNP, but most likely will include false positives by random chance

alone. The probability that a network module could contain a

gene underlying a region for a genetic feature can be quite high,

especially in the case of large QTLs, many QTLs for the same trait

or where the module is large. Additionally, other factors such as

tandem array genes (TAGs) can bias correspondence p-values due

to overlap redundancy. TAGs typically are involved in similar

function or pathways and hence would be co-expressed and

typically present in the same module. TAGs therefore would bias

p-values calculations that expect a normal distribution. Despite

these challenges we simply provide a Fisher’s test as a probability

metric for false positives. However, we caution that this is only

meant as a guide for filtering modules of interest, and further work

is needed to identify an appropriate method for p-value

calculation.

Because we mixed microarrays with probesets mostly derived

from O. sativa spp japonica we obtained network relationships likely

to be enriched for the japonica subspecies as a whole and not

specifically for a single genotype. However, the microarray

platform has been used for multiple subspecies and varieties of

rice. Therefore, it may be possible that a network module may

represent pathways specific to an individual or subspecies, and

other modules could be specific to other subspecies. Moreover, a

module could be a conglomeration of interactions across a set of

individuals or subspecies. As evidence for this, a linear relationship

exists between the square root of the number of QTLs (across all

studies) and the amount of genome space they cover (Figure 5).

This seems to confirm the notion that hundreds (or potentially

thousands) of genes may contribute to a trait, and as more

genotypes are analyzed, the more genes that are captured by

QTLs. The GWAS study by Zhao et. al. also suggests that different

groups of genes control the same trait in different subpopulations

[4]. Therefore, it would seem that the collection of all QTLs for a

given trait becomes an approximation of a pan-QTL set for the

species. Similarly, the GIL collection is an approximation of a pan

co-expression network.

To demonstrate the use of the GeneNet Engine, we use as an

example the trait amylose content. It is well understood that the

Waxy gene (Wx) plays a major role in amylose content [55]. This

gene resides on chromosome 6 of Oryza sativa and is at locus

LOC_Os06g04200 on the MSU v6.0 genome. A recent study of

171 rice accessions shows that two SNPs in the Waxy gene account

for 86.7% of the variation in amylose content [56], indicating it is

Figure 4. Circular Genome Plots of Network Module OsK25v1.0_G0002_LCM0431. The chromosomes of rice are shown as the outer circle.
Gray arcs are edges of the module. Endpoints of each edge are fixed on the physical location in the genome where the node (gene) is found. Red arcs
are edges that overlap a genetic feature. The colored tiles along the chromosomes represent genetic features (e.g. QTLs or regions around significant
SNPs in GWAS). A) Network view of the module. Red nodes overlap with genetic traits for amylose content, green nodes do not. B) Circular plot of the
module with all genetic features for plant height. C) Plot with QTLs from a single genetic map (Cornell 9024/LH422 RI QTL 1996) and edges
highlighted red where an edge overlaps at least two QTL. D) Plot of the all genetic features for amylose content where edges overlap with at least 1
genetic feature. E) Plot of all genetic features for amylose content with overlap of at least 3 genetic features. F) Plot of module edges with QTLs from a
single genetic map (CNHAU Zhen97/H94 QTL 2005) with overlap of at least 3 genetic features. The inset graph shows the connectivity of the
overlapping nodes.
doi:10.1371/journal.pone.0068551.g004
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a large effect gene. Recently, Zhao et. al. included amylose content

as a trait in their GWAS study and significantly identified 68 SNPs

associated with amylose content with a mixed model p-value ,1e-

4 [4]. In an effort to find small effect loci that may affect variation

in amylose content, a search was performed using the GeneNet

Engine. Using the search page a filter was entered that provided

the Waxy gene locus, LOC_Os06g04200, as well as overlap with

the amylose content trait. In this case, the genetic feature was

Figure 5. Number of QTLs per Trait vs Genome Coverage. The scatterplot shows the relationship between the total percent covered of the
physical genome versus the square root of the number of experiments per trait for QTL data from Gramene. Inset shows plot of residuals.
doi:10.1371/journal.pone.0068551.g005

Figure 6. A Significant Module for Amylose Content. Module OsK25v1.0_G0023_LCM0301 significantly overlaps with 15 different genetic
features (2 SNPs, 13 QTLs, p-value = 1.9e-4) and is significantly enriched for Bifunctional trypsin/alpha-amylase inhibitor helical domain and starch
synthase. A) Red circles indicate nodes that overlap with genetic features and green nodes do not. B) The distribution of module edges along the
genomic chromosomes. GWAS SNPs are barely visible as tick marks whereas QTLs are visible as small colored blocks along the chromosomes. Edges
are red if one node lies within the region of a genetic feature.
doi:10.1371/journal.pone.0068551.g006
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limited to a ‘GWAS SNP’. The result yielded 6 modules from the

Rice GIL collection and one from a previous global rice network

[25] which has also been added to the GeneNet Explorer. Most of

the network modules were small (between 5–15 nodes). In the GIL

collection, the largest module was OsK25v1.0_G0023_LCM0301,

with 30 nodes, and it had the largest average connectivity

(,k. = 17.47) indicating that the nodes were more highly

interconnected than the other 5 modules. The GeneNet Engine

provides a Fisher’s p-value as a simple means for filtering modules

that may have a high probability of false positives. As mentioned

previously, this p-value is simply a guide and does not necessarily

imply a high probability of causality for the trait. The top enriched

functional terms for all 7 modules included seed storage protein

(IPR006044), alpha-amylase inhibitor (IPR013771), and transcrip-

tion factor CBF/NF-Y (IPR003958). All 6 GIL collection modules

were present in GIL G0023 except for one (enriched for

Transcription factor CBF/NY-Y) which was present in GIL

G0003. Starch synthase (K00703) was also enriched in all 7

modules. All 6 of the Rice GIL modules overlapped with only 1 or

2 GWAS SNPs, with p-values quite high (from 0.2 to 0.03),

indicating a high probability of false positives. However, after

including overlapping genes underlying QTLs using the ‘Filter by

Trait’ tab in the Module Explorer, the p-values were all lower and

the most highly connected GIL module,

OsK25v1.0_G0023_LCM0301, overlapped with 13 QTLs and 2

GWAS SNPs (15 genetic features) with a p-value of 1.9e-4

(Figure 6). The module from the global network was much larger,

overlapped 4 GWAS SNPs and 34 QTLs but had a high

probability of false positives (p-value = 0.03). While p-values were

not significant for some of the smaller modules, it would seem that

any of these modules could be potential candidates to explore

small-effect variation in amylose content. Potentially, combining

several of these modules may provide, as a group, a set of possible

small-effect candidate genes. The OsK25v1.0_G0023_LCM0301

module seemed most suited for exploration as it is relatively small

(only 30 genes) had a significant p-value (1.9e-4) and all nodes were

highly connected indicating a high degree of cooperation. The

effects of these genes may be examined through additional lab

experiments, such as where plants with mutations can be grown

and phenotyped. As a direct means for verification through

experimentation, GeneNet Explorer can provide a list of SNPs

that could potentially serve as biomarkers. For module

OsK25v1.0_G0023_LCM0301, over 4200 SNPs were obtained,

all within 50 kb of genes that overlapped genetic features for

amylose content.

As a second example we use the trait for blast disease resistance.

The Pi-ta gene is known to be associated with blast resistance [57].

The locus for this gene on the MSU v6.0 genome is

LOC_Os12g18360, but unlike the example for amylose content,

it does not appear in any network modules. Additionally, 200

QTLs are present for blast disease resistance which covers a large

portion of the genome. Therefore, the chance that any module

would overlap with the set of QTLs for blast disease resistance is

high. However, only 16 GWAS SNPs were associated (mixed

model p-value ,0.0001). Therefore, a search was entered into

GeneNet Engine to find modules overlapping with the blast

disease resistance trait but only that overlapped with GWAS SNPs.

Additionally, a limit of 10 nodes was included to limit the

appearance of smaller modules. A total of 242 matching modules

were returned. Results were sorted by an increasing node size and

examined to find modules overlapping more SNPs than other

modules of similar size. The module OsK25-

v1.0_G0008_LCM0015 had a module size of 25 nodes and

overlapped with 3 SNPs while others of similar size overlapped

with 1 or 2. Figure 7 shows the network view and genome plot for

this module which has a false positive Fisher’s p-value of 5.9e-4.

The module is enriched primarily for an Ankyrin repeat

(IPR002110), but also for Syntaxin (IPR006011, IPR006012,

SNARE proteins) and for disease resistance protein (IPR000767).

There are several Ankyrin repeat containing proteins that are

involved in many biological processes but they are also known to

participate in disease resistance, such as in the case of the

Figure 7. A Significant Module for Blast Disease Resistance. Module OsK25-v1.0_G0008_LCM0015 significantly overlaps with 3 different
GWAS SNPs (p-value = 5.9e-4) and is functionally enriched for Ankyrin, Syntaxin and disease resistance protein. A) Red circles indicate nodes that
overlap with genetic features and green nodes do not. B) The distribution of module edges along the genomic chromosomes. GWAS SNPs are barely
visible as tick marks and edges are red if one node overlaps the region surround a GWAS SNP.
doi:10.1371/journal.pone.0068551.g007
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OsBIANK1 gene which is expressed during infection of Magnaporthe

grisea, the blast disease fungus [58,59]. Additionally, Syntaxin

SNARE has been shown to participate in resistance to pathogens

through membrane-vesicle fusion in the delivery of anti-pathogen

compounds [57]. The evidence provided by the overlap of 3

module nodes with 3 of the 16 SNPs (p-value = 5.9e-4) associated

with blast disease resistance in addition to the functional

annotations make the OsK25-v1.0_G0008_LCM0015 a good

candidate for further study of potential genes that participate in

resistance to blast fungus infection. Any of the genes in this module

could potentially serve as small effectors of the trait.

The methods for discovery of significant modules for both

examples above were somewhat different. In the first example a

known gene was used to guide discovery of interesting modules,

whereas for the second a significant module was found by

browsing through a few hundred results. As seen in Figure 4, a

module can overlap with many genetic features from multiple

traits (e.g. plant height and amylose content). This should be

expected naturally as genes are known to be multi-functional, but

most likely many of these overlaps are false positives. Therefore,

the GeneNet Engine will calculate p-values for false positives

dynamically as users change filtering parameters in the Module

Explorer, thus allowing users to explore different filters. Also, as

mentioned previously, the more experiments across genotypes the

more likely the QTLs will cover more of the genome, creating

more false positives raising p-values for all modules that overlap

with the trait. In these cases, users may want to focus on modules

that overlap with individual genetic maps. Users can filter by

genetic map in the ‘Filter by Trait’ tab of the GeneNet Explorer

(Supplemental Figure S3). Therefore, it may be necessary to apply

various searching approaches to find modules of interest for a

specific trait, but as demonstrated in the two examples, interesting

modules for further testing can be found.

The rice K-means 25 GIL collection and the GeneNet Engine

are the first release of a large-scale, integrated systems-genetic

resource for plants to help with prediction of genes underlying

complex traits. However, several improvements can be made. The

choice of a K value of 25 was selected by using the common ‘‘rule

of thumb’’ function of k = !(n/2). However, we were only able to

capture 35% of the measurable genes on the Affymetrix GeneChip

array. This fell short of our goal to capture near 100% of the

measurable genes; however this level of coverage is possible. In

another study where the approach of pre-clustering was applied to

Arabidopsis thaliana, approximately 98% of genes were capture in

the GIL set (unpublished data). For that study, a K value was

selected by iterating through different K sizes to maximize gene

capture. It would be beneficial to find a more appropriate value of

K for constructing a rice GIL collection that captured relationships

from more genes in the array, with the potential of capturing all of

them. Alternatively, other more dynamic pre-clustering methods

may be used other than K-means to improve interaction capture.

Additionally, it may be beneficial to augment module detection

to take into account overlap with genetic features. For this project

we used the link community method for module discovery [40].

This method and many others rely on parameter settings that can

be more or less inclusive. Therefore, network modules are a

function of not only the underlying connectivity but the

parameters used during execution of the algorithm. Generating

modules that optimally capture a specific biological process is

challenging and one set of parameters may capture well some

processes but not others. In the first example for amylose content,

all 6 modules overlapped with genetic traits for amylose content,

had the Waxy gene and all had similar functional enrichment. All

modules were relatively small with the exception of the largest

module, OsK25v1.0_G0023_LCM0301, and all modules, except

one, came from the GIL G0023. This concurs with the fact that

GILs tend have modules of similar function. As seen in the

scatterplot of Figure 2 and the meta-network of Figure 3, network

modules tend to be most similar to other modules within the same

GIL. It would seem, therefore, that the module detection

algorithm could potentially take advantage of genetic and

functional relatedness to stitch together potentially more signifi-

cant modules. But, in summary, a more flexible and dynamic

module creation method may improve the creation and identifi-

cation of gene sets underlying complex traits.

Conclusion
Here we present the Rice GIL collection of networks that are a

first attempt at using pre-clustering of O. sativa RNA expression

profiles to capture all co-expression relationships measured by the

full compendium of publicly available microarrays at NCBI GEO.

Our goal has been to guide network construction and module

discovery solely through the evidence of gene expression. The

knowledge-independent approach reduces bias towards our

limited knowledge of the underlying biological processes. We

integrate experimentally validated genetic data from over 8,000

rice QTLs from Gramene and significant SNPs from a recent rice

GWAS study to create a platform for discovery of network

modules that may be associated with trait causality. The platform

is made available in the form of an interactive website named

GeneNet Engine found at http://sysbio.genome.clemson.edu.

The value in this approach is two-fold. First, it brings to light

potentially small-effect genes (those that are connected in the

module) and serves as a filtering technique to locate genes that

underlie genetic features for complex traits such as QTLs. We

anticipate that significant or interesting modules from GeneNet

Engine can be used for further lab-based experimentation which

can translate to quicker discovery of genes underling complex

traits and perhaps future application in rice breeding.

Materials and Methods

Construction of the Rice GIL Networks
Before construction of the Rice GIL networks, all available

microarrays from the Affymetrix GeneChipH Rice Genome array

were obtained from NCBI GEO [13]. At the time, 1306 were

retrieved. All microarrays were then pre-processed with RMA

normalization [60] using RMAExpress [61] and outliers were

detected using the arrayQualityMetrics package [62] for BioCon-

ductor [63]. Microarrays that failed at least two of the three outlier

test were removed. The output consisted of an m6n expression

matrix where m is the number of micorarrays and n is the number

of probesets on the array. Next, control probes were removed from

the matrix as well as ambiguous probes that mapped to more than

one gene.

After pre-processing the microarrays in the expression matrix

were then grouped. The kmeans function of R (using the Harding

and Wong implementation [38]) was used to segregate micro-

arrays into sets where the sum of squares of each probeset is

minimized. A value of k = 25 was determined using the common

‘‘rule of thumb’’ function of k = !(n/2), and hence 25 clusters of

samples were generated. Twenty-two separate networks were then

constructed by first passing each group through the same pre-

processing, quality control pipeline described previously: samples

within a group were normalized, outliers were removed and

control and ambiguous probesets were removed. The construction

method required that a network have at least 25 microarray

samples. The list of microarray samples, the K-means cluster (and
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GIL) that each belongs to and characteristics of each sample are

provided in Supplemental Table S1.

Next, the co-expression network for each k-means group was

constructed using the RMTGeneNet software package [37].

RMTGeneNet is a software package written in the C program-

ming language that quickly generate correlation matrices and

network adjacency matrices. RMTGeneNet first performs pair-

wise correlation analysis for every probeset on the array,

generating an m6m similarity matrix of correlation values ranging

from 21 to 1. Next, it employs Random Matrix Theory (RMT)

[39] to find an optimal threshold. According to RMT, the more

random a matrix, the more the nearest-neighbor spacing

distribution (NNSD) of eigenvalues appears Gaussian. The less

random, the more Poisson-like it appears. RMT determines a

threshold for the similarity matrix by measuring when the NNSD

ceases to appear Poisson (p-value = 0.001). An adjacency matrix is

constructed by setting all values less than the threshold to zero. In

total, 22 adjacency matrices were produced: one for each K-means

cluster. Finally, probesets were mapped to genes in the MSU Rice

v6.0 [64] assembly of the Oryza sativa genome, and 22 gene co-

expression networks, or Gene Interaction Layers (GILS), were

constructed. GILs were generated in parallel using Clemson

University’s Palmetto computation cluster.

Module Discovery
After construction of the 22 GILs, modules were determined

using the link-community method [40]. This approach allows a

gene to be present in multiple modules. This approach is more

reasonable for multi-functional genes and does not restrict genes to

a single module such as other methods (e.g. MCL [65]). We used

the linkcomm function for R [41] to generate LCM modules for all

22 GILs.

Functional Enrichment
All modules from all GILs underwent functional enrichment

analysis to look for significantly over-represented terms in relation

to the genomic background. Terms from the Gene Ontology [42],

and InterPro [43] databases mapped to genes were obtained

directly from the MSU website and KEGG [44] terms were

mapped to genes using the KEGG Automatic Annotation Server

[66]. Functional enrichment was performed using a DAVID-like

[67,68] Perl script developed in-house. Terms enriched with a

Fisher’s test p-value ,0.01 where kept.

Genome Mapping of Genetic Data
Genetic data from the Gramene QTL database [45,69], and

from a recent GWAS study [4] were used in this study for

associating traits with network modules. Gramene curators used

marker information to map over 8,000 QTL regions from various

studies to positions on the Oryza sativa MSU v6.0 genome

sequence. We then putatively associated all genes underlying the

QTL regions the QTL trait. QTLs that only mapped to a single

marker and were therefore smaller than 5 bp were enlarged to

2 Mb (the median size of QTLs from Gramene). For the GWAS

study, only significant SNPs (p-value ,0.0001) from the mixed

model analysis were used. Genes within a 300 kb window around

the SNP were putatively associated with the SNP trait. The range

of 300 kb flanking was used because this was the estimated average

linkage disequilibrium for Oryza sativa japonica reported in the

GWAS study (the largest of the three subspecies). The trait names

used for both the QTLs and SNPs are from Gramene’s Trait

Ontology (TO) [70]. The TO terms used for both QTLs and

SNPs were provided by Gramene. Additionally, traits from the

Tos17 retrotransposon study [71,72] were also included in this

study but were associated to network modules using the same

process as for functional enrichment described previously. The

process was the same as described for the global network for Oryza

sativa [25]. The gene assignments to Tos17 phenotypes as well as

enrichment are present in the GeneNet Engine but are not

discussed in this manuscript.

Data Storage and Visualization
All genomic, genetic and network data was stored within a

Chado database [46]. Custom tables were created for storing

network data (nodes, edges, and modules). Materialized views were

constructed to enable faster searching. Visualization of genomic,

genetic and network data was implemented using Tripal [47], an

open-source publicly available construction toolkit for online

genomic and genetic databases. A custom Tripal extension module

was written specifically for this project and used for display of

network data, as this functionality was not already part of Tripal.

Cytoscape Web [49] was used for the network module visualiza-

tion and the d3 JavaScript library (http://d3js.org) was used for

drawing the circular genome plots. Network modules from all 22

GILs are searchable on the GeneNet Engine v0.9 site at http://

sysbio.genome.clemson.edu. The Tripal Network extension mod-

ule is freely available, but is under active development and is

therefore available upon request.

Use of SNPs
SNPs from NCBI’s dbSNP database [48] for Oryza sativa were

obtained through bulk download from dbSNP’s FTP site. SNPs

were then mapped to the MSU v6.0 build of the Oryza sativa

genome using blat [73]. Only SNPs that mapped once to the

genome with a minimum percent identity of 0.98 across the full

length of the SNP flanking sequence were kept (approximately 2.8

million). These SNPs were loaded into the database and are

intended to serve as potential biomarkers.

Supporting Information

Figure S1 The GeneNet Engine v0.9 Search Form. The

search form can be used to locate network modules by species,

network name, module name, specific gene, functional annotation

terms, traits, and simple topology.

(TIF)

Figure S2 The GeneNet Engine Module Explorer.
Contains an interactive module viewer, a genome viewer with

circular plots of the module, edge and node lists, functional

enrichment report and trait selection tool to filter reports and

views by specific genetic traits.

(TIF)

Figure S3 Filter by Trait Tab of the Module Explorer.
Users can alter the module explorer to identify edges overlapping

genetic features. Users can select features by trait name, genetic

feature type, genetic maps (if applicable) and specify the amount of

overlap required.

(TIF)

Table S1 NCBI GEO microarray samples assigned to K-
means clusters.

(XLSX)
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