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Abstract: Objective: This study aims to identify an immune-related signature to predict clinical
outcomes of oral squamous cell carcinoma (OSCC) patients. Methods: Gene transcriptome data
of both tumor and normal tissues from OSCC and the corresponding clinical information were
downloaded from The Cancer Genome Atlas (TCGA). Tumor Immune Estimation Resource algorithm
(ESTIMATE) was used to calculate the immune/stromal-related scores. The immune/stromal scores
and associated clinical characteristics of OSCC patients were evaluated. Univariate Cox proportional
hazards regression analyses, least absolute shrinkage, and selection operator (LASSO) and receiver
operating characteristic (ROC) curve analyses were performed to assess the prognostic prediction
capacity. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) function annotation were
used to analysis the functions of TME-related genes. Results: Eleven predictor genes were identified
in the immune-related signature and overall survival (OS) in the high-risk group was significantly
shorter than in the low-risk group. An ROC analysis showed the TME-related signature could predict
the total OS of OSCC patients. Moreover, GSEA and GO function annotation proved that immunity
and immune-related pathways were mainly enriched in the high-risk group. Conclusions: We
identified an immune-related signature that was closely correlated with the prognosis and immune
response of OSCC patients. This signature may have important implications for improving the
clinical survival rate of OSCC patients and provide a potential strategy for cancer immunotherapy.

Keywords: oral squamous cell carcinoma; immunotherapy; signature; prognosis; survival

1. Background

Oral squamous cell carcinoma (OSCC) is one of the most common malignancies arising
in the oral cavity worldwide, and the incidence of OSCC has been increasing by at least 1%
annually, especially in China [1,2]. Common treatment options for OSCC include surgery,
chemotherapy, radiotherapy, immunotherapy, and these treatment methods have reduced
the mortality rate of OSCC partly [3,4]. However, despite the rapid progress in the treatment
of OSCC, its mortality and incidence are still rising due to the tumor heterogeneity [5].
Therefore, in order to improve the survival rate of OSCC, the development of new predictive
biomarkers to accurately predict the prognosis is of great significance for OSCC patients [6].

Immunotherapy is one of the recent breakthroughs in cancer therapy and becoming
a new promising approach in cancer treatment, including OSCC [7,8]. However, due
to tumor heterogeneity and multifaceted immunosuppressive signals within the tumor
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microenvironment (TME), the efficacy of cancer immunotherapy is limited [9,10]. TME
refers to the cellular environment where tumor cells reside, and is composed of tumor cells,
immune cells, fibroblasts, stromal cells, endothelial cells, and other components [11–13].
TME plays a regulatory role in tumorigenesis and in the interactions between cancer cells and
surrounding components (such as cancer-associated fibroblasts, T cells, B cells, macrophages,
and lymphocyte), which promotes tumor development and metastasis [8,14,15].

Immune and stromal cells are two most abundant cell types and their degree of
infiltration in the TME has a clinical prognostic value in many cancer types [10,16,17].
Therefore, a deeper understanding of the cell components (including immune cells and
stromal cells) and the immunosuppressive status of the TME is critical for improving the
efficacy of immunotherapy [18]. The Estimation of Stromal and Immune cells in Malignant
Tumor tissues using Expression data (i.e., ESTIMATE) algorithm is used to estimate the
levels of infiltrating stromal and immune cells by calculating stromal/immune/ESTIMATE
scores [19]. At the same time, the therapeutic efficacy of immunotherapy in OSCC is
relatively limited. Therefore, it is crucial to identify a more individualized prognostic
signature and develop a more accurate immunotherapy for patients with OSCC. Recently,
immune-related signatures have been developed and used to predict prognosis in certain
cancers [20], and some also have been reported in OSCC (such as those based on epithelial-
mesenchymal transition, stemness of cancer, or immunosuppression genes) [2,17,21,22].
However, there is no reliable immune-related signature based on TME for predicting the
prognosis of OSCC patients currently.

In this study, the stromal and immune scores of 319 patients from the TCGA OSCC
database was determined using the ESTIMATE algorithm. A total of 562 upregulated and 31
downregulated immune-related genes were identified. Moreover, a functional enrichment
analysis showed that the immune-related genes mainly played a critical role in immune
response, activation/proliferation of immune-related cells, and chemokine activity. Finally,
a prognostic 11 genes model, i.e., AC103563.1, CCL22 (C-C motif chemokine ligand 22),
FLT3 (FMS-like tyrosine 3), GALR2 (galanin receptor 2), IGKV1D.8, IGLV1.36, IGLV4.60,
IL10 (interleukin 10), LINC00861, LINC01508, and MS4A2 (membrane-spanning 4 domains,
superfamily A, number 2) was constructed and confirmed to be significantly associated
with the overall survival (OS) of OSCC patients. In conclusion, we screened the immune-
related signature and explored the relationship between the screened immune-related
signature and the prognosis of OSCC patients, and we aimed to use this signature as a
potential prognostic biomarker and immune therapeutic target for OSCC patients.

2. Methods
2.1. OSCC Datasets Acquisition and Handing

The RNA-sequence dataset (TCGA, OSCC, n = 319) was obtained from the Na-
tional Cancer Institute GDC Data Portal (https://portal.gdc.cancer.gov/) (accessed on
3 December 2020). Patients with complete follow-up data and survival status information
were included in this analysis. Immune and stromal scores were calculated using the
ESTIMATE algorithm [19].

2.2. Screening of Differentially Expressed Genes (DEGs)

The package “limma” in R (version 4.0.2) was used to screen for differentially ex-
pressed genes (DEGs) between OSCC tissue and normal tissues. FDR < 0.05 and
|log2FoldChange| > 1 was considered as threshold values for the identification of DEGs.
A heatmap was used to visualize the expression profiles of the DEGs. Venn diagrams were
used to show the overlaps among the DEGs [23].

2.3. Functional Enrichment Analyses and Functional Annotation of DEGs

Gene Ontology (GO), including biological processes (BPs), molecular functions (MFs),
and cellular components (CCs) were determined using the R package “ggplot2”, “cluster-
Profiler” and “enrichplot”, respectively. The Kyoto Encyclopedia of Genes and Genomes
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(KEGG) was used for the enrichment analysis of pathways [24]. The Search Tool for
Retrieval of Interacting Genes/Proteins (STRING) (https://string-db.org) (accessed on
3 December 2020) was used to predict the functional interaction of proteins. Cytoscape soft-
ware was used to analyze the interaction scores of the PPI network nodes, and scores > 0.95
were considered the key PPI nodes [25].

2.4. Construction of the Immune-Related Prognostic Signatures

OSCC patients (n = 319) were divided into high-risk and low-risk groups based on
immune and stromal scores estimated by ESTIMATE. The Cox proportional hazards re-
gression model was used to predict the OS of OSCC patients. p < 0.05 was statistically
significant. Univariate Cox proportional hazards regression analyses were used to analyze
the survival-related DEGs. The survival-related DEGs were put into the Cox proportional
hazards model survival analysis with a least absolute shrinkage and a selection opera-
tor (LASSO) penalty. Finally, the TME-related prognostic signature was constructed by
weighting the Cox regression coefficients to calculate a risk score for each patient. Using
the cut-off value with the median value of the risk score, patients were classified as low-risk
and high-risk.

2.5. Statistical Analysis

Univariate and multivariate Cox proportional hazards regression analyses were per-
formed using the R package “survival”. A LASSO Cox survival analysis was performed
using the R package “glmnet”, and a 1000-fold cross-validation was used. The R package
“time-ROC” and “time AUC” were used to determine the ROC curves and area under the
curve (AUC) for the predictive ability of the TME-related signatures. A heatmap was used
to visualize the expression profiles of the DEGs. The alluvial diagrams were analyzed using
“ggalluvial” in R. p-value < 0.05 was considered to be statistically significant and R software
(New Jersey, USA, version 3.6.2) was used to perform the statistical analysis. The R code
used in this study was showed in Text S1.

3. Results
3.1. Stromal and Immune Scores Were Correlated to Clinical Features of OSCC Patients

The clinical data of 319 patients with OSCC downloaded from the OSCC-TCGA
RNA-seq database were analyzed in the present study. To explore the relationship between
stromal and immune scores and the clinical characteristics of OSCC patients, a total of
19,467 genes were extracted from the OSCC-TCGA RNA-seq database. It is well-known
that stromal and immune cells are two main types of nontumor components in the TME
and have been identified to be of value for the diagnosis and prognostic evaluation of tumor.
Therefore, the stromal and immune scores of 319 OSCC patients were determined using the
ESTIMATE algorithm, and higher immune and stromal scores in the TME resulted in more
stromal and immune components in the TME. Furthermore, the ESTIMATE score is the sum
of the immune score and the stromal score and represents the combined ratio of the two
components in the TME. Thus, these three scores represent the proportion of stromal cells,
the proportion of immune cells, and the purity of tumor in the immune microenvironment,
respectively [19,26,27]. In the present study, the stromal scores ranged between −1947.438
and 1969.731, immune scores ranged between −392.987 and 2705.005, and ESTIMATE
scores ranged between −2340.425 and 4674.735. The OSCC patients were categorized into
high and low scores groups based on the stromal, immune, and ESTIMATE scores firstly,
and a Kaplan-Meier (KM) survival analysis was used to calculate the OS (overall survival)
of OSCC patients. We found that the OS of lower stromal, immune, and ESTIMATE scores
of OSCC patients was relatively shorter (Figure 1a–c). Furthermore, based on the clinical
data extracted from the TCGA-OSCC database, we found that the stromal, immune, and
ESTIMATE scores in T3 and T4 OSCC patients were relatively lower than those in T1
and T2 OSCC patients (Figure 2a–c). Moreover, we also compared the stromal, immune,
and ESTIMATE scores with the gender of OSCC patients, and we found that there was
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no significant difference between stromal, immune, and ESTIMATE scores with genders
(Figure 2d–f). We also noticed that there were no significant differences in stromal, immune,
and ESTIMATE scores with tumor grades (Figure 2g–i). The above results indicate that
stromal, immune, and ESTIMATE scores were relatively associated to the clinical features
of OSCC patients.
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Figure 1. The relationship between stromal/immune/ESTIMATE scores and survival rate of OSCC
patients. (a) KM survival analysis of OSCC patients based on their stromal scores. (b) KM survival
analysis of OSCC patients based on their immune scores. (c) KM survival analysis of OSCC patients
based on their ESTIMATE scores. Red line represents the survival curve of OSCC patients with higher
values of stromal scores, immune scores, and ESTIMATE scores (n = 159). Blue line represents the
survival curve of OSCC patients with lower values of stromal scores, immune scores, and ESTIMATE
scores (n = 159).

3.2. Identification of TME-Related Differentially Expressed Genes

In order to determine the exact changes in gene expression profiles related to immune
and stromal components in TME, we investigated the TME-related differentially expressed
genes (DEGs) with high and low immune and stromal scores in OSCC patients with the R
package “limma”. A total of 1625 DEGs were obtained from the immune score (high and low
score samples), with 1227 genes upregulated and 398 genes downregulated (Figure 3a,c,d).
Similarly, 1589 DEGs were obtained from the stromal score, with 1506 upregulated genes
and 83 downregulated genes (Figure 3b–d). A Venn diagram analysis showed that there
were 562 upregulated genes shared by high scores and 31 downregulated genes shared by
low scores in immune and stromal scores, and these DEGs (a total of 593 genes) might be
the determinants of TME status (Figure 3c,d). These data indicated that TME-related DEGs
had been obtained and identified.
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Figure 2. The relationship between stromal/immune/ESTIMATE scores and clinical features
of OSCC patients. (a) Relationship between stromal scores and TNM stages of OSCC patients.
(b) Relationship between immune scores and TNM stages of OSCC patients. (c) Relationship be-
tween ESTIMATE scores and TNM stages of OSCC patients. Sample numbers of each group are as
follows: T1, n = 19; T2, n = 54; T3, n = 59; T4, n = 158. (d) Relationship between stromal scores and
genders of OSCC patients. (e) Relationship between immune scores and genders of OSCC patients.
(f) Relationship between ESTIMATE scores and genders of OSCC patients. Sample numbers of each
group are as follows: female, n = 101; male, n = 218. (g) Relationship between stromal scores and
tumor grades of OSCC patients. (h) Relationship between immune scores and tumor grades of OSCC
patients. (i) Relationship between ESTIMATE scores and tumor grades of OSCC patients. Sample
numbers of each group are as follows: G1, n = 51; G2, n = 195; G3, n = 63; G4, n = 2.
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Figure 3. Venn diagram and heatmap analysis of the differentially expressed genes (DEGs) based on
the immune and stromal scores. (a) Heatmap analysis of the DEGs between the higher stromal scores
and lower stromal scores in OSCC patients. (b) Heatmap analysis of the DEGs between the higher
immune scores and lower immune scores in OSCC patients. (c) Venn diagrams analysis the number
of upregulated genes of higher stromal scores in OSCC patients and upregulated genes of higher
immune scores in OSCC patients. (d) Venn diagrams analysis of the number of downregulated genes
of higher stromal scores in OSCC patients and downregulated genes of higher immune scores in
OSCC patients.

3.3. Functional Annotation of TME-Related DEGs

To explore the biological functions of the above TME-related DEGs, GO and KEGG
enrichment analyses were performed using the R package “cluster Profiler”. As shown
in Figure 4a, the top 10 GO terms of the up- and downregulated DEGs were related to
different biological processes (BP), cellular components (CC), and molecular functions
(MF). Interestingly, the top five terms related to the biological process included lympho-
cyte activation, regulation of lymphocyte-mediated immunity, phagocytosis, complement
activation, and B cell-mediated immunity (Figure 4a, top panel). In addition, the top five
terms related to a cellular component included immunoglobulin complex, external side
of plasma membrane, plasma membrane signaling receptor complex, T cell receptor, and
immunoglobulin complex and circulating (Figure 4a, middle panel). The top five terms
related to molecular functions included antigen binding, immunoglobulin receptor binding,
carbohydrate-binding, immune receptor activity, and cytokine receptor activity (Figure 4a,
bottom panel). On the other hand, the top 30 KEGG pathways for the DEGs related to
the up- and downregulated DEGs included immune/inflammation-related pathways, in-
cluding B cell receptor signaling pathway, T cell receptor signaling pathway, intestinal
immune network for IgA production, natural-killer-cell-mediated cytotoxicity, and C-type
lectin receptor signaling pathway (Figure 4b). The above data indicate that the signaling
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pathways and biological behaviors enriched by immune-related DEGs are related to the
tumor microenvironment or immune functions.

Vaccines 2022, 10, x FOR PEER REVIEW 6 of 16 
 

 

higher immune scores and lower immune scores in OSCC patients. (c) Venn diagrams analysis the 

number of upregulated genes of higher stromal scores in OSCC patients and upregulated genes of 

higher immune scores in OSCC patients. (d) Venn diagrams analysis of the number of downregu-

lated genes of higher stromal scores in OSCC patients and downregulated genes of higher immune 

scores in OSCC patients. 

3.3. Functional Annotation of TME-Related DEGs 

To explore the biological functions of the above TME-related DEGs, GO and KEGG 

enrichment analyses were performed using the R package “cluster Profiler”. As shown in 

Figure 4a, the top 10 GO terms of the up- and downregulated DEGs were related to dif-

ferent biological processes (BP), cellular components (CC), and molecular functions (MF). 

Interestingly, the top five terms related to the biological process included lymphocyte ac-

tivation, regulation of lymphocyte-mediated immunity, phagocytosis, complement acti-

vation, and B cell-mediated immunity (Figure 4a, top panel). In addition, the top five 

terms related to a cellular component included immunoglobulin complex, external side of 

plasma membrane, plasma membrane signaling receptor complex, T cell receptor, and 

immunoglobulin complex and circulating (Figure 4a, middle panel). The top five terms 

related to molecular functions included antigen binding, immunoglobulin receptor bind-

ing, carbohydrate-binding, immune receptor activity, and cytokine receptor activity (Fig-

ure 4a, bottom panel). On the other hand, the top 30 KEGG pathways for the DEGs related 

to the up- and downregulated DEGs included immune/inflammation-related pathways, 

including B cell receptor signaling pathway, T cell receptor signaling pathway, intestinal 

immune network for IgA production, natural-killer-cell-mediated cytotoxicity, and C-

type lectin receptor signaling pathway (Figure 4b). The above data indicate that the sig-

naling pathways and biological behaviors enriched by immune-related DEGs are related 

to the tumor microenvironment or immune functions. 

 
Figure 4. Gene enrichment analysis of the DEGs based on the immune and stromal scores in OSCC
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scores in OSCC patients. Top panel is the biological process analysis of GO enrichment. Middle panel
is the cellular component analysis of GO enrichment. Bottom panel is the molecular function analysis
of GO enrichment. (b) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of
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3.4. Protein-Protein Interaction (PPI) Analysis of the TME-Related DEGs

To study the interaction between DEGs, and systematically conduct a comprehensive
study on the crossover gene, all 167 intersection genes were uploaded to the Search Tool
Retrieval of Interacting Genes (STRING) database to construct a PPI network. In our
study, CYTOSCAPE software was used to construct a PPI network based on the STRING
database, and the interaction between 593 DEGs (in Figure 3c,d, there were 562 upregulated
genes shared by a high score and 31 downregulated genes shared by a low score in
immune and stromal scores, and a total of 593 DEGs) was analyzed. Then, we performed a
univariate COX regression analysis to identify that 23 genes (identified by PPI analysis)
were strongly associated with OSCC patients’ survival, and each of these 23 genes was
independently associated with OSCC patients’ prognosis (Figure 5). The top 30 genes in
the network and each node’s number included ATP8B4, CD53, LILRB2, ITGAX, CD3G,
IGHV3-11, SUCNR1, P2RY13, GPR183, GALR2, FPR3, CCR8, CCL13, C5AR1, ADORA3,
P2RY12, CXCR3, CX3CR1, CCR4, ADRA2A, CCR1, FPR1, CCR2, CCR5, ITGB2, FCER1G,
C3AR1, C3, and FPR2 (Figure 6).
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Figure 6. The top 30 key genes analyzed by PPI which associated with the prognosis of OSCC
patients, including ATP8B4, CD53, LILRB2, ITGAX, CD3G, IGHV3-11, SUCNR1, P2RY13, GPR183,
GALR2, FPR3, CCR8, CCL13, C5AR1, ADORA3, P2RY12, CXCR3, CX3CR1, CCR4, ADRA2A, CCR1,
FPR1, CCR2, CCR5, ITGB2, FCER1G, C3AR1, C3 and FPR2.
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3.5. Construction of the Risk Score Prognosis Model

To analyze the survival-related immune-DGEs, univariate Cox proportional hazards
regression model survival analyses were performed, and a total of 23 prognostic genes
were identified as survival-related DEGs: AC093278.2, AC103563.1, AL365361.1, BTLA,
CCL22, CCR4, CD5, CELF2, F5, FCRL3, FLT3, GALR2, IGKV1D-8, IGLV1-36, IGLV4-60, IL10,
LINC00861, LINC01508, MS4A2, P2RY14, P2RY8, PPP1R16B, and RUBCNL (Figure 7). The
least absolute shrinkage and selection operator (LASSO) was then used to exclude the
overfitting false positives data (Figure 7a,b). Finally, a prognostic model with 11 survival-
related DEGs was constructed for predicting the OS of OSCC patients. The risk scores were
calculated for each patient as follows: risk score = −0.0418 × (expression of AC103563.1)
− 0.0289 × (expression of CCL22) − 0.2829 × (expression of FLT3) + 0.03681 × (expression
of GALR2) + 0.0048 × (expression of IGKV1D.8) + 0.0067 × (expression of IGLV1.36)
− 0.0139 × (expression of IGLV4.60) − 0.0456 × (expression of IL10) − 0.2040 × (expression
of LINC00861) + 0.1421 × (expression of LINC01508) − 0.0245 × (expression of MS4A2).
The median value was taken as the cutoff, the OSCC patients with higher risk scores than
the median value were classified in the high-risk group, and the OSCC patients with lower
risk scores than the median value were classified in the low-risk group.
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Figure 7. Univariate Cox and LASSO Cox survival analysis for the DEGs based on PPI analysis in
OSCC patients. (a) Univariate Cox survival analysis of the DEGs. (b,c) LASSO Cox analysis identified
23 DEGs with the prognostic value and 23 DEGs were identified as prognostic factors of OSCC
patients. Protective factors mean the genes’ HR was <1, while risk factors mean the genes’ HR was >1
in OSCC patients.
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3.6. Survival Analysis of the 11-Gene Immune-Related Signature

To test the effect of the above model on the evaluation of OSCC patients in the future,
we analyzed the outcome survival (OS) of the high-risk group and the low-risk group of
OSCC patients. The risk distribution, survival status, and gene expression pattern are
shown in Figure 8a–c. The scatter plot (Figure 8a) shows that most of the patients in
the high-risk score group died and most of the patients in the low-risk group survived
during 15 years of follow-up. Moreover, the gene expression pattern (Figure 8b,c) shows
that the high- and low-risk groups we categorized had corresponding risk scores. The
heatmap (Figure 8d) showed that seven immune-related DEGs (AC103563.1, CCL22, FLT3,
IGLV4.60, IL10, LINC00861, and MS4A2) were highly expressed in the low-risk group while
four immune-related DEGs (GALR2, LINC01508, IGKV1D.8 and IGLV1.36) were highly
expressed in the high-risk group. To determine the relationship between immune-related
DEGs and OS in OSCC patients, we used the Kaplan-Meier method to plot the survival
curves using data obtained from the OSCC-TCGA database. The Kaplan-Meier plots
showed that patients in the high-risk score group had a significantly poorer OS than those
in the low-risk score group (Figure 8e). Moreover, the AUC for 1-year, 2-year, and 3-year
PFS were 0.64, 0.63, and 0.65, respectively (Figure 8f). Thus, these data suggested that the
11-gene immune-related signature performed well for predicting OS in OSCC patients.
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Figure 8. Prognostic effect of the immune-related signature. The survival status (a), risk scores
(b,c) of OSCC patients, and heatmap of immune-related DEGs expression pattern (d). Kaplan-Meier
survival curve (e) for OS of the low-risk and high-risk groups of OSCC patients. (f) Prognostic value
evaluation of the 11-gene signature using time-specific ROC curves and dynamic AUC lines analysis.
The time-dependent ROC curves are based on 1, 2, and 3 years of follow-up and the dynamic AUC
lines of OSCC patients.
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3.7. Validation of an External GEO Cohort

To verify the clinical value of the 11-gene TME-related signature for predicting OS in
OSCC patients, we used an external GEO-OSCC cohort (GSE65858) to validate our study.
The 11-gene TME-related signature was constructed in GSE65858, and the risk scores were
analyzed by the same methods. High- and low-risk OSCC groups were classified according
to the median risk score. A Kaplan-Meier curve analysis showed that the low-risk score
was closely associated with a longer overall survival time (Figure 9d), which was consistent
with that the TCGA cohort (Figure 8d). In addition, the ROC curve showed an AUC
value was 0.55 at 1, 2, and 3 years (Figure 9e), which was consistent with that the TCGA
cohort (Figure 8e). Thus, the results showed that the 11-gene TME-related signature could
effectively predict the prognosis of OSCC patients partly.
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analysis with risk scores (d), and ROC curve (e) are shown.

4. Discussion

In the present study, differentially expressed immune-related genes in oral squamous
carcinoma cancer (OSCC) samples were identified and were used to construct a signature
with 11 immune-related genes, which performed well in predicting the outcomes of OSCC
patients, respectively.

OSCC ranks as the eighth most common form of oral malignancy, with an estimated
500,000 new cases being reported annually, and OSCC is associated with a high grade, rapid
progression, poor treatment effects, and bad outcomes [28]. The clinical treatment of OSCC
is often a combination of surgical resection with chemotherapy; however, the effect of these
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treatments is very limited and the 5-year survival rate of OSCC patients remains lower than
50% [29,30]. There are several ways to predict the prognosis of OSCC patients, including
but not limited to the following: (1) TNM stages; (2) tumor grade; (3) the number of lymph
node metastasis; (4) the expression level of key proteins, such as epidermal growth factor
receptor and P53 [31–33]. However, a unified and effective standard still lacks to determine
the prognosis of OSCC patients.

The TME is the cellular environment in which tumor cells live, which consists of an
extracellular matrix, soluble molecules, and tumor stromal cells [10]. The TME plays a
vital role in OSCC progression and consists of tumor cells and other components, such
as immune cells, stromal scores, tumor-associated macrophages (TAMs), and carcinoma-
associated fibroblasts (CAFs) [34,35]. Moreover, tumor development, progression, and
responses to immunotherapies are regulated by cytokines, immune infiltration, TAMs, and
CAFs within the TME [36,37]. It is well known that immune cells and stromal cells are
two main types of nontumor components in the TME and have been proposed to be of
value for the diagnosis and prognostic evaluation of tumors [38]. Recently, ESTIMATE has
been used as a tool for inferring immune, stromal, and immune scores in the TME, and
the estimation is based on the expression signals of gene sets that characterize stromal and
immune cells. Therefore, in this study, we developed an immune-related signature based
on stromal and immune scores to predict the prognosis of OSCC patients, which could
improve the response rate to immunotherapy. In addition, ESTIMATE is an algorithm that
has been used to calculate the immune and stromal scores in several cancers, including
pancreatic ductal adenocarcinoma [39], colorectal cancer [40], and OSCC [17,21,22].

In the present study, we conducted a comprehensive analysis between the immune
cells and immune-related genes and the clinical indexes and outcomes of OSCC patients.
We found the following findings: (1) The clinical indexes (such as TNM stages, grade
stages, and genders) of OSCC patients were associated with the stromal, immune, and
ESTIMATE scores, but the correlation was not significant (Figure 1). However, high stromal,
immune, and ESTIMATE scores correlated with a relatively longer OS of OSCC patients,
indicating that the TME components, especially the stromal and immune cells affected
the clinical outcomes of OSCC patients (Figure 2). (2) In total, 593 DEGs were identified
from the comparison of high versus low stromal and immune scores groups based on
the median value of immune and stromal scores as the standard cutoff to divide patients
into high-score and low-score groups. Then, the results of GO terms showed that the
DEGs in the high-score group regulated the T cell receptor complex and immunoglobulin
complex (Figure 3a). Moreover, GO and KEGG pathway enrichment data indicated that
the DEGs in the high-score group also regulated the T cell receptor signaling pathway
and viral myocarditis (Figure 3b). (3) LASSO and random forest (RF) algorithm analyses
identified the 11 prognostic immune-related genes (AC103563.1, CCL22, FLT3, GALR2,
IGKV1D.8, IGLV1.36, IGLV4.60, IL10, LINC00861, LINC01508, and MS4A2) (summarized
in Tables S1 and S2). In particular, high levels of GALR2, LINC01508, IGKV1D.8, and
IGLV1.36 were found to be negatively correlated with the OS of OSCC patients, while
high levels of AC103563.1, CCL22, FLT3, IGLV4.60, IL10, LINC00861, and MS4A2 were
positively correlated with the OS of OSCC patients. (4) To verify the clinical value of the
11-gene immune-related signature for predicting OS in OSCC patients, we used an external
GEO-OSCC cohort (GEO65858) for the validation in our study. Altogether, the results
showed that the 11-gene TME-related signature could effectively predict the prognosis of
OSCC patients.

The clinical implications of these 11 key genes have been reported in different types of
cancers. For instance, CCL22 (C-C motif chemokine 22) controls T cell immunity by recruit-
ing regulatory T cells to the tumor tissue and promoting regulatory T cell communication
with dendritic cells in TME [41]. Higher infiltration rates of CCL22+ cells are reported
to be associated with poor outcomes in cervical cancer patients [42]. Moreover, studies
have shown the efficacy of flt3-L and CD40-L combination immunotherapy on prostate
tumor growth in TME [43]. Moreover, FLT3 is a potential targeted protein and has been
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reported as an immune-related prognostic gene in lung adenocarcinoma [44], indicating
the clinical value of FLT3. Furthermore, galanin receptor 2 (GALR2) is a G protein-coupled
receptor that induces tumor growth and proliferation in SCCHN (squamous cell carci-
noma of the head and neck) [45], and GALR2 has been identified as a novel target and
biomarker for prostate, colon, and breast cancer screening [46]. In addition, IL10 is an
important immune regulatory cytokine in TME [47], and a recent study has shown that
IL10 promotes cancer cell metastasis and proliferation via immunosuppression, and also
has a predictive value in clear cell renal cell carcinoma [48]. Recently, a study has shown
that the MS4A2 (membrane-spanning 4 domains, superfamily A, number 2) gene is located
on chromosome 11q13, a region that is linked to asthma-related phenotypes, and it plays
an important role in the regulation of human mast cell proliferation and survival [49].
However, very few studies report the role of MAS4A2 in TME. Other immune-related
genes are relatively novel and scattered evidence has been reported for their roles in
human diseases. For example, IGLV1-36 gene is a potentially therapeutic option for PO-
EMS (polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin
changes) syndrome [50]. Moreover, the downregulation of LINC01508, a long noncoding
RNAs, contributes to cisplatin resistance in ovarian cancer [51]. Additionally, another
recent study has shown that the LINC00861/miR-513b-5p axis inhibits cancer cell pro-
gression through the PTEN/AKT/mTOR signaling pathway in cervical cancer cells [52].
Furthermore, LINC00861 is also used as a biomarker to predict survival in patients with
ovarian cancer [53], the early diagnosis of Parkinson’s disease [54], and breast cancer [55].
However, few studies have reported the role of AC103563.1, IGKV1D.8, and IGLV4.60 in
TME (especially in OSCC), which will be our future directions.

Similar studies have also been shown in OSCC. For instance, Li et al. selected eleven
immunosuppression genes (ISGs), including INHBB, BGLAP, CTLA4, CALCA, CXCL8,
IL22, FGFR3, HPRT1, ORMDL3, SPHK1, and TLR3, which showed a prognostic potential
for OSCC [21]. In this study, a deep-learning-based model showed two subgroups of OSCC
samples, while subtype Sub1 displayed a more aggressive phenotype with poor progno-
sis, with immune-cells-associated pathways and enriched cancer-progression-pertinent
pathways. In addition, to test if the stemness and immune-relevant genes were involved
in oral cancer, Lin et al. established an eight-gene risk model (ESCO2, CCNA2, COL5A3,
RCN3, LMCD1, FMNL3, MMP14, and HEYL), which performed well in predicting overall
survival and recurrence-free survival in OSCC patients [17]. Further investigations showed
that the eight-gene signature was highly linked to immune suppression. However, we
used different methods to independently establish our gene signature, including a protein—
protein interaction analysis, GO and a KEGG enrichment analysis. More importantly, our
11-gene signature involved either LincRNA and a few novel genes, which could potentially
contribute to oral cancer progression and treatment resistance in the TME. Altogether, our
studies and others have all provided potentially promising ways to obtain a prognosis for
OSCC patients.

However, our study still has limitations. For example, the OSCC TME-related sig-
nature was not verified by biological experiments both in vivo and in vitro, but in our
ongoing projects, these immune-related genes and their potential mechanisms in OSCC
are being verified. Moreover, due to the limited samples in the OSCC subgroups, the
prognostic value of the immune-related signature in some OSCC subgroups did not show
any statistical significance. Therefore, a large cohort of OSCC patient samples is needed for
future validations.

5. Conclusions

In summary, we proposed a signature of 11 immune-related genes based on the TME
in OSCC, which could be used as an independent prognostic biomarker for OSCC patients.
The signature of 11 immune-related genes had a predominant performance in obtaining
the prognosis of OSCC patients, and it could achieve a more personalized and precise
immunotherapy effect in OSCC.
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