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INTRODUCTION – THE LONG AND WINDING ROAD OF TNFa IN
CANCER THERAPY

The potent pro-inflammatory cytokine tumor necrosis factor a (TNFa) has been connected to
cancer progression and treatment ever since its discovery as a major factor contributing to the anti-
tumor activities of Coley’s toxins (1, 2). TNFa cloning in 1984/1985 (3, 4) and of its TNFR1 and
TNFR2 receptors in 1990 (5–8) was followed by a spurt of studies demonstrating that TNFa has
anti-malignancy activities. The beneficial effects of TNFa were observed in vivo primarily when the
cytokine was administered at relatively high concentrations locally and repeatedly; the cytokine
inhibited tumor growth by damaging the tumor vasculature and by directly inducing cancer cell
killing, at times clearly seen when NF-kB and JNK activation was impaired (3, 9–16). Moreover,
TNFa could improve the efficacy of drugs/chemotherapy in cancer treatment, e.g., by promoting
blood vessel permeability (16, 17).

In clinical trials (primarily in sarcomas), TNFa was often administered locally, in order to
generate high tumor concentration of the cytokine; although these trials have led to tumor
regression (to various extents in the different trials), usually they did not have a pronounced
ability to induce complete remission (16, 18, 19). To enable local activity of TNFa, antibody-TNFa
fusion proteins (immunocytokines) were also assayed, with a relatively good efficacy in mouse
cancer models, and in a small cohort of glioblastoma patients (20–23). Other cancer clinical studies
have used systemic administration of TNFa, demonstrating low efficiency and giving rise to
multiple side effects (15, 24, 25).

In parallel to these findings, other reports have emerged, connecting the presence of TNFa in
tumors with pro-malignancy effects, and demonstrating that higher endogenous TNFa expression
levels were associated with more advanced disease in cancer patients (2, 26–31). TNFa was found to
be expressed in tumors from early stages of disease and on, and its continuous presence contributed
to chronic inflammation, considered the Seventh Hallmark of Cancer (31–38). Moreover, the
expression of TNFa by tumor cells, leukocytes and stromal cells has led to production of
inflammatory chemokines that recruited leukocytes with pro-metastatic effects (26, 28, 31, 35,
38–41). Immune-suppression was also connected to TNFa presence in cancer and studies in animal
models have greatly supported its tumor- and metastasis-promoting roles (2, 42–46).

Adding to these observations, numerous studies indicated that TNFa can act directly on cancer
cells to promote their pro-metastatic characteristics and functions, including the generation of
cancer stem cells, epithelial-to-mesenchymal transition, invasion, resistance to therapy and
metabolic changes (27–31, 37, 47–51).

As research in this direction advanced, TNFa has been identified as a most powerful pro-cancer
cytokine in many malignancies, suggesting that inhibitors of TNFa and/or its receptors (TNFR)
could be applied in cancer treatment, alone or together with other modes of therapy.
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THE COMPLEXITY OF THE TNFa-TNFR
NETWORK – WHAT IS THE ROAD
MADE OF?
In trying to understand the opposing observations on TNFa in
cancer, it is important to consider that the TNFa-TNFR network
includes many different members, generating intricate
interactions that are spatially and temporally regulated, leading
to diverse consequences under different conditions.

Many reviews have described in detail the complexity and
flexibility of the TNFa-TNFR network [e.g., (27, 52–54)]. In a
nutshell, the system is identified by the following characteristics:
(1) It includes a soluble and a membrane form of TNFa
(mTNFa): while the receptor TNFR1 (p55) binds soluble TNFa
and mTNFa, TNFR2 (p75) is fully activated by mTNFa; (2)
TNFR1 is constitutively expressed by almost all cells, whereas
TNFR2 expression is noted primarily in hematopoietic,
endothelial and neuronal cells. (3) TNFa binding to its
receptors gives rise to their trimerization, followed by unique
signaling patterns of each of the receptors. Following the
formation of a core signaling complex and regulation by
additional intracellular components/events, TNFR1 can induce
cell apoptosis and necroptosis via activation of its death domain;
however, under different settings, TNFR1 can lead via activation of
the NF-kB, JNK and p38 pathways to transcription of potent pro-
inflammatory genes, cell survival, proliferation and motility.
TNFR2, on the other hand, ultimately leads to expression of
pro-inflammatory genes, cell survival and proliferation by
activating canonical and non-canonical NF-kB pathways; (4)
TNFR1 and TNFR2 can interact at several levels, including the
ability of TNFR2 to promote the pro-apoptotic activities of TNFR1
(55, 56). (5) TNFR1 and TNFR2 have soluble forms (sTNFR1 and
sTNFR2), whose activities and clinical implications are far from
being fully resolved. It was suggested that at high concentrations
the soluble receptors serve as sinks that reduce TNFa levels and
thus inhibit its activities, while low levels of the soluble receptors
enhance TNFa functions (57, 58), possibly through induction of
reverse signaling following binding to mTNFa (27, 54, 59).

This very diverse array of molecular elements and events
suggests that at particular settings, members of the network can
lead to opposing effects. For instance, activation of TNFR1 by TNFa
can lead to tumor cell death but under a different set of conditions it
can contribute to cancer inflammation and enhance tumor
progression. A similar enigma was observed for TNFR2+ tumor-
infiltrating lymphocytes (TILs): TNFR2-mediated signals support
the survival/activation of CD4+ T regulatory cells (Tregs) and
aggravate disease course (46, 60–67); however, in triple-negative
breast cancer (TNBC) patients, TNFR2+ TILs were associated with
improved patient survival. In parallel, mouse studies have connected
reduced TNBC growth after chemotherapy with elevated presence
of CD8+ TNFR2+ TILs, presumably cytotoxic T cells (CTLs) (68,
69), agreeing with TNFR2 being required for cytotoxic activities of
CD8+ T cells (66). Moreover, unlike several publications connecting
TNFR2 expression by cancer cells to pro-tumor phenotypes (63,
70–72), TNFR2 was found to be protective in breast cancer, as
demonstrated by using a mouse model with the loss of one of the
TNFR2 alleles (73).
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The balance and interactions between the different members of
the TNFa-TNFR family – as well as their cross-talk with other
factors of the TME and with different therapy modes –may dictate
the path that this network takes in terms of cancer progression.
THE TNFa-TNFR ROAD IN CANCER
THERAPY – THE POSSIBLE INTER-
CONNECTION OF THE “ THERAPY” LANE
AND THE “TARGET” LANE

The information obtained so far regarding the roles of TNFa and
its receptors in cancer has split the scientific and clinical
communities between those who consider TNFa as “therapy”
and those who regard the different members of the TNFa-TNFR
family as “targets”. In practice, it is possible that these two lanes
of the TNFa-TNFR road are strongly connected to each other.
For example, when TNFa fails to limit metastasis in a specific
setting, this may be due to selection of cytotoxicity-resistant cells
that also have acquired stronger pro-metastatic functions, such
as increased invasiveness or production of angiogenic factors.
Moreover, many reports have demonstrated that cells treated by
TNFa acquired chemoresistance, endocrine resistance and
reduced sensitivity to other therapy modes (27, 30, 47, 50, 74).

These observations connect the limited therapeutic potential
of TNFa to selection of cancer cells that express improved pro-
metastatic functions, leading to enhanced tumor progression.
Thus, treating cancer patients with TNFa may eventually give
rise to devastating metastasis-promoting effects, and may prove
harmful rather than beneficial.

This scenario, and the strong evidence on the pro-metastatic
roles of TNFa and its receptors in many cancer types, suggest
that the pro-cancer and pro-metastatic functions of the TNFa-
TNFR network dominate over their protective functions in
malignancy. Supporting this possibility are many studies of
patients suffering of autoimmune/inflammatory diseases,
demonstrating that inhibition of the TNFa-TNFR pathway
was not significantly associated with increased tumor risk or
recurrence (with some, yet unsubstantiated, reservations
regarding non-melanoma skin cancer and lymphoma) (75–81).

Taken together, the findings obtained so far suggest that when
the TNFa-TNFR network is considered in cancer therapy, the
“target” approach may apply better than the “therapy” tactic. Yet, to
date, only a very limited number of clinical studies had analyzed the
therapeutic value of TNFa-TNFR antagonists in cancer treatment.
In several phase I and phase II trials, patients at locally advanced or
metastatic stages of different malignant diseases were treated by
antibodies against TNFa (infliximab) or soluble TNFR2
(etanercept). Partial or complete responses were noted only in a
renal cell carcinoma study, but disease stabilization was observed in
some of the patients in the other studies (82–85). In addition, a
recent phase Ib clinical trial demonstrated relatively high response
rates following the use of the TNFa inhibitor certolizumab together
with anti-PD-1 and anti-CTLA-4 in melanoma patients (86).

Overall, as these clinical trials have been performed under
unfavorable conditions – the cohort patients were at the most
May 2022 | Volume 13 | Article 903679
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advanced stages of disease, and their immune system has been
already manipulated by repeated therapies – their findings
suggest that TNFa-TNFR-directed treatments may be effective
in cancer. It is possible that if inhibitors of the TNFa-TNFR
family members will be given the most optimal conditions to act,
and if the targets will be carefully selected, better therapeutic
indices could be achieved.
DISCUSSION – THE (PERSONALIZED)
ROAD AHEAD

To reach the aim of safe and effective use of TNFa-TNFR
manipulations in cancer therapy, we need to consider the
possibility that one type of TNFa-TNFR-directed therapy is
not suitable to all cancer types and to all cancer patients;
moreover, a specific therapy mode that applies to one cancer
type/subtype may be detrimental in another.

Rather, the typical characteristics of tumor heterogeneity –
inter-tumor and intra-tumor – call for a personalized approach
that will carefully adjust the therapy mode and the treatment
conditions to each malignancy type. First, it may be important to
pre-select the patients who will most probably benefit from the
modulation of TNFa-TNFR family members, and to start
therapy as early as possible, to prevent the pro-metastatic
activities of the network. For example, favorable candidates for
treatment may be patients diagnosed at the early stage of breast
Frontiers in Immunology | www.frontiersin.org 3
ductal carcinoma in situ, whose tumors express TNFa (about
half of the patients) (31).

Then, the roles of each family member should be precisely
identified in each cancer type/subtype, prior to treating patients with
modulators of the pathway. This can be well-exemplified by taking
the TNFR2+ TIL population as a test case: the fact that unlike
published reports on the Treg identify of CD4+ TNFR2+
lymphocytes (46, 60–67), TNFR2+ TILs were connected to
improved survival in TNBC patients and with potential cytotoxic
activities of CD8+ TNFR2+ TILs in mouse TNBC tumors (68, 69),
suggests that targeting TNFR2 in chemotherapy-treated TNBC
patients may be harmful; administration of TNFa inhibitors may
reduce the proliferation of CD8+ TNFR2+ CTLs and limit the
potential of raising potent immune activities against the cancer cells.
The detrimental consequence that may be driven by such
treatments may explain the findings obtained in TNFa-/- mice
that could not mount T cell-mediated anti-tumor effects (87).
Rather, the use of TNFR2 agonists (53, 54) may apply in order to
promote the proliferation of cytotoxic CD8+ TNFR2+ TILs;
alternatively, selective inhibitors of TNFR1 [(once clinically-
approved (53, 54)] may be best suited in therapy as they may
limit the chronic inflammation that is strongly induced by TNFa in
the tumors.

Thus, when manipulation of members of the TNFa-TNFR
family is considered in cancer therapy, one needs to determine
many aspects in a most specific manner (Figure 1): who are the
patients who can benefit from the treatment? Which TNFa-
FIGURE 1 | Targeting members of the TNFa-TNFR family in cancer: The personalized road. The TNFa-TNFR network brings together complex interactions between
the soluble and membrane forms of TNFa, as well as TNFR1 and TNFR2 with their diverse binding preferences to each of the TNFa forms, complex signaling
cascades and soluble variants. This intricate system of ligands and receptors can lead to different consequences in various malignancies, raising the need to carefully
identify specific players in each and every disease type, and possibly also in patients who were diagnosed with the same type of cancer. Thus, a personalized
approach should be designed in order to establish the most appropriate and efficient therapeutic mode in cancer, vis-à-vis the use of modifiers of TNFa and its
receptors. For example, the properties of one malignant disease (“Blue patients” in the Figure) in terms of TNFa-TNFR family members may considerably differ from
the characteristics of another cancer type (“Orange patients”). To precisely identify who can benefit from treatments directed to any of the family members, it is
necessary to determine the expression patterns of each partner in each patient; then, based on analyses of each malignancy and its subtypes, it is necessary to
determine their roles in different disease stages, their impacts on different cell types in the tumor (cancer cells, endothelial cells, leukocytes, stromal cells), as well as
their interactions with other TME factors and potential efficacy when combined with other cancer therapies. The information obtained by research of the different
aspects and elements stands in the basis of a personalized approach that will target members of the TNFa-TNFR family or exploit them (e.g., by increasing the
proportions/activities of beneficial TNFR2+ CD8+ TILs) that would reach an outmost efficacy in cancer therapy.
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TNFR family member – in its membrane or soluble form – or its
down-stream intracellular regulators, should be targeted? Do the
various network members affect similarly different types of cells
in a specific tumor type/subtype: cancer cells, endothelial cells,
leukocytes and others? How TNFa activities are affected by other
factors of the TME and regulate them [e.g., estrogen, EGF and
TGFb (30, 49, 50, 88, 89)]? Can TNFa-TNFR-directed therapies
reach improved impacts when administered with other
treatments, as reported recently to be the case with immune
checkpoint blockades (86, 90, 91)?

To conclude, the two seemingly opposing effects of the
TNFa-TNFR network on cancer progression may be actually
inter-connected, and eventually the pro-metastatic functions of
the TNFa-TNFR family members possibly dominate their anti-
malignancy effects. Moreover, the “one therapy mode suits all”
approach in targeting the TNFa-TNFR pathway in cancer needs
to be re-evaluated, and emphasis should be given to extensive
research that will identify the most appropriate therapeutic
mode for each malignancy type/subtype, in a specific and
personalized manner.
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