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Abstract 

How do we learn associations in the world (e.g., between cues and rewards)? Cue-reward asso-
ciative learning is controlled in the brain by mesolimbic dopamine1–4. It is widely believed that 
dopamine drives such learning by conveying a reward prediction error (RPE) in accordance with 
temporal difference reinforcement learning (TDRL) algorithms5. TDRL implementations are 
“trial-based”: learning progresses sequentially across individual cue-outcome experiences. Ac-
cordingly, a foundational assumption—often considered a mere truism—is that the more cue-
reward pairings one experiences, the more one learns this association. Here, we disprove this 
assumption, thereby falsifying a foundational principle of trial-based learning algorithms. Spe-
cifically, when a group of head-fixed mice received ten times fewer experiences over the same 
total time as another, a single experience produced as much learning as ten experiences in the 
other group. This quantitative scaling also holds for mesolimbic dopaminergic learning, with 
the increase in learning rate being so high that the group with fewer experiences exhibits dopa-
minergic learning in as few as four cue-reward experiences and behavioral learning in nine. An 
algorithm implementing reward-triggered retrospective learning explains these findings. The 
temporal scaling and few-shot learning observed here fundamentally changes our understand-
ing of the neural algorithms of associative learning. 

Introduction 

The neurobiological study of reward learning is dominated by the hypothesis that dopamine signals a 
temporal difference RPE5 and that the brain implements TDRL6,7. TDRL has been hugely influential in 
the study of cue-reward learning, explaining numerous behavioral phenomena as well as dopamine 
dynamics across learning1,8–16. A major advance of TDRL over previous formal descriptions of reward 
learning such as the Rescorla-Wagner model17 is the ability to account for the passage of time during 
the experience of cues and rewards. However, common TDRL formulations of animal learning only 
model time during a “trial period”, an experimenter defined period from a cue through an outcome (e.g., 
reward delivery or omission), and do not consider the inter-trial interval (ITI)5–7,15. Thus, they implicitly 
assume that learning occurs in trials, and that the rate of learning is determined only by the trial period.  

However, many fields have consistently noted that learning becomes more effective when experiences 
are more temporally spaced. This concept is so widely known that students are regularly advised that 
study sessions spread over time are more effective than “cramming” before an exam. Such spacing 
effects have been demonstrated across many domains of learning in species ranging from humans 
through invertebrates18–26, including mammalian cue-reward learning27–33. In addition to these qualita-
tive observations, it has even been suggested that associative learning is timescale invariant, in which 
the number of experiences required for learning is a function of the ratio between ITI and the cue-
reward delay (ITI/trial ratio)34–36. However, most demonstrations of the effectiveness of spaced versus 
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massed cue-reward learning examine massed learning with a short ITI relative to the cue-reward de-
lay27,32 (ITI/trial ratio less than 10). Demonstrations like these do not rule out TDRL because under 
these conditions, extensions of TDRL that account for the ITI37 can produce faster learning with longer 
ITIs (Extended Data Fig 1, 60 s vs. 6 s). Thus, to rigorously examine the predictions of the dominant 
neurobiological “trial-based” models, experiments testing categorical, falsifiable predictions shared by 
TDRL implementations should be identified. 

Here, we show using simulations that when the ITI is sufficiently long relative to the cue-reward interval, 
a TDRL implementation accounting for ITI37 predicts virtually no additional gain in learning rate (Ex-
tended Data Fig 1B, C). Indeed, when the ITI/trial ratio was compared between 48 and 480, there was 
virtually no improvement in the rate of learning for the more spaced condition. Thus, a falsifiable pre-
diction of this TDRL model is that learning should not be affected by increasing ITIs when ITI/trial ratios 
are already as large as 48. However, most prior studies of trial spacing with long ITIs examined ITI/trial 
ratios less than 4827–30,32, thereby necessitating further empirical tests. 

Temporal scaling in behavioral learning 

To directly test categorical, falsifiable predictions of these implementations of TDRL, we tested whether 
increases in ITI affect learning beyond large ITI/trial ratios. To this end, we classically conditioned thirsty 
head-fixed mice with similar parameters as the two longer ITI simulations described above. Mice were 
conditioned to associate a brief auditory tone (0.25 s, 12 kHz) with the delivery of sucrose solution 
reward (15% w/v, 2-3 µL) through a spout positioned in front of their mouth (Fig 1A). Two groups of 
mice were presented with this same trial structure, with one group, Typical ITI mice (Typ ITI), experi-
encing 60 s ITIs (ITI/trial ratio = 48) and another group, Extended ITI mice (Ext ITI), experiencing 600 
s ITIs (ITI/trial ratio = 480). Both groups were trained for ~1hr per day. So, Typ ITI were presented 50 
cue-reward pairings a day, while Ext ITI mice were presented 6 cue-reward pairings a day (this ac-
counts for a fixed reward consumption period; see Methods). Both groups of mice were conditioned for 
at least 8 days. The head-fixed preparation is critical to test ITI/trial ratios of 48 and 480. By directing 
the mouse’s attention to the spout, brief cues can be used, which allows for conditioning with very short 
trial periods relative to ITI. This approach also enables conditioning to begin without the need for pre-
training mice to collect rewards, which can lead to the formation of other learned associations. Further-
more, head-fixation ensures equivalent experiences of cue and reward delivery since animals with dif-
ferent ITIs are equally positioned relative to reward spout.  

Using these groups of mice, we tested between two hypotheses (Fig 1B). Hypothesis 1 is based on 
TDRL, which predicts that once the ITI is sufficiently longer than the trial, trial-by-trial learning should 
be equivalent (Extended Data Fig 1C). Because Typ ITI mice will experience 10 times more cue-reward 
pairings, they will show greater evidence of learning at the end of conditioning than Ext ITI mice. Hy-
pothesis 2 is that prior suggestions of faster learning in “spaced learning”28,29,32 (but see38) apply even 
when the ITI is much longer than trial duration (ratio of 48 vs 480). Here, we present a strict version of 
this hypothesis in which the group that experiences 10 times fewer trials learns 10 times more per trial. 
Stated differently, Hypothesis 2 is that deleting 9 out 10 experiences for Typ ITI mice, and thereby 
extending the ITI 10 times, has no influence on overall learning. 

We measured behavioral learning using cue-evoked anticipatory licks before reward delivery39–41. Mice 
from both groups began to show cue-evoked licks in the first few days of conditioning (Fig 1C, Extended 
Data Fig 2A). When looking at cue-evoked licking as a function of cue-reward experiences, however, 
Ext ITI learned and reached asymptotic behavior in many fewer trials than Typ ITI mice (Fig 1D). By 
trial 40, Ext ITI mice showed significantly more cue-evoked licking (Typ ITI: 1.1 ± 0.4 Hz, Ext ITI: 3.7 ± 
0.3 Hz, <0.0001; Fig 1D, Extended Data Fig 2B) and were significantly more likely to respond to the 
cue (Typ ITI: 0.29 ± 0.06, Ext ITI: 0.92 ± 0.04, <0.0001; Extended Data Figs 2C, 2D) than Typ ITI mice. 
This behavior is consistent with Hypothesis 2 that lengthening the time between cue-reward experi-
ences improves learning even in conditions when the ITI is orders of magnitude longer than the trial 
duration (Fig 1B).  
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To fully compare learning rates between groups, we determined the first trial at which each individual 
showed evidence of learning using the cumulative sum of cue-evoked licks3,30,42–45 (see Methods; Fig 
1E, Extended Data Fig. 2). Remarkably, Ext ITI mice learned in ~9 trials on average (8.8 ± 0.6), signif-
icantly less than the 94 (94 ± 7) trials needed for Typ ITI mice to learn (p<0.0001; Fig 1F). By length-
ening the ITI by a factor of 10, cue-reward learning required 10 times fewer trials, showing a quantitative 
scalar relationship between ITI duration and per-trial learning. This scalar relationship was not just 
limited to the learned trial number, as a single trial for Ext ITI mice was worth 10 trials for Typ ITI mice 
throughout the learning process (Figs 1G, 1H, Extended Data Fig 4A, B). Because Ext ITI mice have 
the same experience as Typ ITI but with the deletion of 9 out of 10 trials (i.e., 10 times the ITI), the 
overlap of the learning curves demonstrates that those “deleted” trials have no effect on learning.  

Further suggesting that learning between groups was simply scaled, average asymptotic cue-evoked 
lick rates (Typ ITI: 4.06 ± 0.54 Hz, Ext ITI: 3.80 ± 0.26 Hz, p = 0.66; Fig 1I), the likelihood of responses 
to the cue (Typ ITI: 0.77 ± 0.08, Ext ITI: 0.92 ± 0.03, p = 0.098; Extended Data Fig 4C), and the abrupt-
ness of change, a measure of the steepness of individual animal learning curves (Typ ITI: 0.18 ± 0.02, 
Ext ITI: 0.18 ± 0.02, p = 0.97; Extended Data Fig 4D), were all similar between groups at the end of 
conditioning. Interestingly, despite similar average rates of asymptotic cue-evoked licking, Typ ITI mice 
showed significantly more variance in individual behavior compared to Ext ITI at the end of conditioning 
(p<0.01; Figs 1H, 1I; two Typ ITI mice did not learn the cue-reward association, Extended Data Fig 3C). 
This variance was also seen in the number of trials to learn when comparing mice that did show evi-
dence of learning (p<0.0001; Fig 1F). This shows that individual variability in learning is driven in part 
by the environment and is not just a reflection of innate abilities.  

This scalar relationship between ITI duration and learning is categorically inconsistent with trial-based 
accounts of learning. However, Ext ITI mice differ from Typ ITI mice in both duration of ITI and in number 
of trial experiences a day. This could lead Ext ITI mice to experience cues and rewards as more salient 
due to their sparsity and correspondingly higher level of novelty, despite being identical to those expe-
rienced by Typ ITI mice. As more salient stimuli can lead to greater conditioning in trial-based accounts 
of learning46,47, this is a possible way in which trial-based accounts of learning could explain our results. 
To test this hypothesis, we conditioned a third group of mice (Typ ITI-few) with the same ITI as Typ ITI 
mice (mean: 60 s) and the same number of trials per day as Ext ITI mice (six). Across trials, learning in 
these mice progressed similarly to Typ ITI mice (Extended Data Fig 5). Late in conditioning, Typ ITI-
few licked significantly less to the cue than Ext ITI mice (Typ ITI-few: 0.7 ± 0.3 Hz, Ext ITI: 3.7 ± 0.3 Hz, 
p<0.0001; Extended Data Fig 5B), similar to Typ ITI mice during the same trial numbers (Typ ITI-few: 
0.7 ± 0.3 Hz, Typ ITI: 1.1 ± 0.4 Hz, p = 0.38; Extended Data Fig 5B). These results show that the 
difference in learning between Typ ITI and Ext ITI mice was not due to differences in cue novelty.  

Temporal scaling in dopaminergic learning 

The dominance of trial-based accounts of associative learning is supported in large part by the con-
cordance between mesolimbic dopamine signaling and the error term in TDRL models. In temporal 
difference cue-reward learning, the goal is to estimate the value of a cue, which is used to drive behav-
ior. By acting as an error signal for continuous updates to the value function, dopamine should therefore 
be tightly coupled to behavior5,39,48. Thus, to understand how our results of temporal scaling fit with 
current conceptions of associative learning, it is important to understand how dopamine signaling 
evolves over the course of learning in both Typ ITI and Ext ITI mice. Given the vastly different number 
of trials to acquisition in each group, we hypothesized two possible relationships between dopaminergic 
and behavioral learning (Fig 2B). Hypothesis 1 is that the development of cue-evoked dopamine (do-
paminergic learning) precedes the emergence of behavior by a fixed number of trials in both groups. 
This hypothesis relies on the previously mentioned dopamine model, which proposes a strong connec-
tion between cue-triggered dopamine and behavioral learning. According to this model, the growth of 
dopaminergic cue responses reflects underlying increases in cue value, which drives behavioral learn-
ing. Because Ext ITI mice learn in ten times fewer experiences than Typ ITI mice (Fig 1F), Hypothesis 
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2 is that the development of cue-evoked dopamine also occurs in ten times fewer experiences and 
hence precedes behavioral learning by ten times fewer experiences.  

To test these hypotheses, we measured dopamine release in the nucleus accumbens core in a subset 
of Typ ITI and Ext ITI animals with fiber photometry recordings of the optical dopamine sensor 
dLight1.3b (Fig 2A, Extended Data Fig 6). As can be seen in example mice, dopamine was evoked by 
reward receipt beginning on the first trial, but cue-evoked dopamine release developed over trials and 
preceded the emergence of behavioral learning, in line with prior work49–51 (Fig 2C, Extended Data Fig 
7A). To determine the trial at which cue-evoked dopamine emerged, we applied the same algorithm 
used to determine the learned behavior trial on the cumulative sum of the cue-evoked dopamine (Fig 
2D, Extended Data Fig 7B; see Methods). Again, we found the same quantitative scalar relationship 
between ITI duration and dopaminergic learning. Dopaminergic learning in Ext ITI mice began on av-
erage between trials three and four (3.6 ± 0.4), significantly earlier than Typ ITI mice, which began to 
show cue-evoked dopamine responses at trial 36 (36 ± 7) (p<0.05; Extended Data Fig 7C). We then 
calculated the lag between dopaminergic and behavioral learning by subtracting the dopamine learned 
trial from the behavior learned trial in each individual mouse. In Ext ITI mice, dopaminergic learning 
precedes behavior by 5 trials on average (5.0 ± 0.7), significantly fewer than the 59 (59 ± 7) trials 
between dopaminergic and behavioral learning in Typ ITI mice (p<0.01; Fig 2E). Thus, per trial devel-
opment of cue-evoked dopamine responses also scales with the duration of the ITI in learning: by 
increasing the ITI by a factor of ten, cue-evoked dopamine appears in ten times fewer trials and pre-
cedes behavioral learning in ten times fewer trials (Fig 2F, Extended Data Fig 8A). This scaling is 
consistent with Hypothesis 2 (Fig 2B).  

Interestingly, despite the scaling in the onset of dopaminergic learning, cue-evoked dopamine in Ext 
ITI mice rose to asymptotic levels more rapidly and increased by more than a factor of ten per trial as 
compared to Typ ITI mice (Fig 2G, Extended Data Figs 8B, 8E, 8F). Asymptotic cue-evoked dopamine 
(relative to maximum reward response) was also significantly higher at the end of conditioning in Ext 
ITI mice compared to Typ ITI mice (0.47 ± 0.06 vs. 0.31 ± 0.02, p<0.05; Fig 2H). Furthermore, although 
there were differences in dopamine dynamics and learning rates between the groups, we observed a 
similar pattern in the dopamine reward response in both groups. Specifically, the reward response did 
not start at its maximum value during the first trial but rather increased during early conditioning, reach-
ing its peak prior to the onset of behavior (Extended Data Figs 8C, 8D). This increase in reward-evoked 
dopamine across early experiences with reward has been noted before3,52, and is further inconsistent 
with TDRL models of dopamine function. In the TDRL framework, the first experience of a particular 
reward, as is the case for trial 1 in our experiments, should evoke the maximum dopamine response 
across conditioning due to its completely unpredicted occurrence.  

A model of retrospective causal learning explains temporal scaling 

Because our TDRL simulations proved inadequate in predicting greater learning per experience even 
when the entire ITI was modeled (Extended Data Fig 1), we sought a different framework for explaining 
our results. We recently proposed a new formal model of dopamine-driven associative learning where 
associations are formed by retrospectively inferring the cause of rewards3. In this model, animals learn 
cue-reward associations through calculation of an adjusted net contingency for causal relations (AN-
CCR) based on estimates of the rate of cues at reward times vs. the baseline rate of cues. Cue presen-
tations evoke an exponentially decaying eligibility trace. After receiving reward, the “memory” of these 
cues, represented by their eligibility traces, is used to estimate both the rate of cues at time of reward 
delivery and the overall rate of cues in the environment. These allow the animal to determine whether 
reward is contingent on cues. Within this framework, one possible explanation for the different rates of 
dopaminergic and behavioral learning seen in Typ ITI and Ext ITI mice is that the eligibility trace 
(memory) of the cue has fully decayed before the next cue-reward pairing in Ext ITI conditioning but is 
still active on subsequent trials for Typ ITI mice. If so, learning will be slower for Typ ITI mice. Cue rate 
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at reward time and baseline will both be high in Typ ITI, slowing down contingency estimates relative 
to Ext ITI mice where estimates of the cue rate at baseline will be near zero (Fig 3A).   

To test this hypothesis, we ran ANCCR simulations using the exact trial (1.25 s) and ITI durations that 
were used to condition Typ ITI (60 s ITI) and Ext ITI (600 s ITI) mice—the same durations which TDRL 
simulations predicted would lead to learning after a nearly equal number of trials (Typ ITI: 92.0 ± 0.1, 
Ext ITI: 91.5 ± 0.1, p<0.01; Fig 3B, Extended Data Fig 1C). Here, we set the decay constant for the 
eligibility trace to 200 seconds (see Methods for details), allowing previous cue-reward pairings to in-
fluence rate calculations for a 60 s ITI, but not for a 600 s ITI. Remarkably, ANCCR simulations with a 
Typ ITI took 126 (126 ± 1) trials to learn, while simulations with an Ext ITI took ~12 trials (11.7 ± 0.2), 
capturing the experimentally observed temporal scaling between ITI duration and learning rate 
(p<0.0001; Fig 3C). This scaling was also found in dopaminergic learning (Typ ITI: 82 ± 0.9, Ext ITI: 
7.5 ± 0.2, p<0.0001; Extended Data Fig 9A) and the lag between dopaminergic learning and the onset 
of behavior (Typ ITI: 44 ± 0.8, Ext ITI: 4.3 ± 0.2, p<0.0001; Fig 3D). Importantly, all parameters aside 
from the duration of the ITI were equivalent between groups. ANCCR also accurately predicted the 
greater cue-evoked dopamine at the end of conditioning seen in Ext ITI mice (Typ ITI: 0.56 ± 0.001, 
Ext ITI: 0.74 ± 0.006, p<0.0001; Fig 3E), but differed from experimental observations by also predicting 
slightly higher cue-evoked licking in Ext ITI mice (Typ ITI: 0.74 ± 0.001, Ext ITI: 0.82 ± 0.002, p<0.0001; 
Extended Data Fig 9B). Nevertheless, ANCCR captures the primary experimental findings, establishing 
a framework to comprehend temporal scaling of dopaminergic and behavioral cue-reward learning.  

Discussion 

We show that the rate of cue-reward learning scales quantitatively with the time between consecutive 
cue-reward experiences (Fig 1), requiring a reevaluation of the frameworks used to describe associa-
tive learning. These results are categorically inconsistent with “trial-based” models of learning, and 
require a reassessment of the implicit assumption that the trial is the fundamental unit of learning32. 
However, these data are consistent with prior work, primarily based on pigeon autoshaping paradigms, 
that has suggested that cue-reward learning is timescale invariant34,35. Importantly, our work extends 
this by demonstrating that the scaling applies even over very large ITI/trial ratios never tested in cue-
reward conditioning (48 vs. 480) and that this effect obeys a quantitative scaling law. Increasing the 
ratio by a factor of ten leads to ten times more learning per trial. Any formal description of learning must 
explain not just greater learning with longer ITI, but also the quantitative scaling observed here. We 
show that ANCCR, a retrospective causal learning model, explains this quantitative scaling (Fig 3).  

Due to this quantitative scaling, we demonstrate that auditory cue-reward conditioning can occur in few 
experiences. While some tasks such as fear conditioning53, Morris water maze54, or mate detection55 
are learned in few experiences, auditory cue-reward conditioning typically takes hundreds of trials41,56. 
While it is widely believed that fast learning in some of these tasks is due to the salience of outcomes 
such as shocks, drowning, and mating, the current results raise the intriguing possibility that this differ-
ence may reflect the low frequency of these outcomes in the lives of animals. It remains to be tested 
whether such outcome frequency effect might explain the wide variety of learning rates in naturalistic 
and laboratory tasks57,58.  

While TDRL implementations that ignore the ITI evidently cannot explain ITI effects, we demonstrated 
that an extension of TDRL that includes the ITI is also unable to account for the experimentally observed 
temporal scaling. A goal of TDRL simulations in neuroscience is to fit the fast timescale fluctuations of 
dopamine. Due to the timescale of phasic dopamine dynamics (hundreds of milliseconds) and the brief 
trial period (1.25 s from cue onset to reward), the time resolution needed to accurately account for intra-
trial dopamine dynamics requires hundreds of states at minimum to model the ITI even in Typ ITI mice, 
the “shorter” ITI tested here. Thus, it is unlikely that ITI states could acquire differential value to drive 
the quantitative differences in learning observed here. Therefore, though we cannot rule out future 
TDRL extensions, any model in which time is represented through a series of states is unlikely to ex-
plain our data. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.31.535173doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.31.535173
http://creativecommons.org/licenses/by-nc-nd/4.0/


One possibility by which “trial-based” frameworks of learning could be used to account for the data 
presented here is to assume that replays/reactivations of cue-reward experiences during the extended 
ITI provides “virtual trials” in lieu of the real trials experienced by mice56,59. While we cannot rule out 
this possibility, the similarity between the learning curves for the long and short ITI groups suggests 
that such a mechanism would somehow have to precisely replicate the effect of the missing 9/10 ex-
periences in the long ITI group, and the available evidence suggests that neither the structure of re-
play/reactivation events nor the information they encode perfectly replicate past experiences60–66.  We 
therefore suggest that our proposed non-trial-based learning rule is a more parsimonious explanation 
of the quantitative scaling observed here.  

A potential alternate qualitative explanation for our results might be that the stimulus salience is con-
siderably higher in the Ext ITI group compared to Typ ITI, either due to increased novelty of the cue 
(resulting from fewer total experiences), or lower habituation across repeated presentations. However, 
neither explanation is consistent with this or prior studies. Specifically, novelty induced salience is ruled 
out by the fact that the extended ITI group learns ten times faster than the Typ ITI-few group (Extended 
Data Fig 5) despite receiving equal number of cue presentations (which equates cue novelty between 
groups). Similarly, habituation of cue salience is ruled out because prior studies have shown that cue-
induced pupil responses are stable and do not habituate with repeated trials even with ITIs as short as 
5-20 s67–69. Further, there is little dopaminergic habituation beyond 60 s70. Nevertheless, it is worth 
mentioning that a verbal description of our explanation (Fig 3) could be that cues are more “salient” in 
the Ext ITI group (i.e., have lower baseline rates and hence a higher “temporal salience”). 

In addition, we establish that dopaminergic learning exhibits temporal scaling, whereas the asymptotic 
response does not (Fig 2), thereby offering a significant new constraint for dopamine-mediated learning 
models. While prior work has provided accumulating evidence that mesolimbic dopamine signals do 
not function strictly as a TDRL reward prediction error signal3,52,71–76, the current results call into ques-
tion the broader trial-based reinforcement learning framework used to understand dopamine and learn-
ing. While some prior models do explain the quantitative scaling of behavioral learning, these models 
do not yet explain dopaminergic dynamics35,36,77,78. Collectively, we provide a new framework for un-
derstanding dopamine mediated cue-reward learning3 that explains temporal scaling in both dopamin-
ergic and behavioral learning (Fig 3). As learning updates occur at every reward, our model does not 
rely on the concept of an experimenter defined trial, which leads to many problematic assumptions79. 
Thus, it is uniquely suited to account for experience outside an arbitrarily imposed “trial period”. In this 
way, the theory gets us closer to explaining naturalistic learning outside laboratories where experiences 
do not have defined trial structures. By providing a framework for understanding the data presented 
here, grounded in the known dynamics of dopamine mediated learning3, our results provide further 
support for a reevaluation of the neural algorithms underlying learning. 
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Methods  

Animals 

All experiments and procedures were performed in accordance with guidelines from the National Insti-
tutes of Health Guide for the Care and Use of Laboratory Animals and approved by the UCSF Institu-
tional Animal Care and Use Committee. Fifty adult (>11 weeks at time of experiments; median: 13 
weeks) wild-type male and female C57BL/6J mice (JAX; RRID:IMSR_JAX:000664) were used across 
three experimental groups: Extended ITI (n = 19; 12 behavior-only [5F/7M] and 7 DA+behavior 
[5F/2M]), Typical ITI (n = 19; 14 behavior-only [8F/6M] and 5 DA+behavior [3F/2M]), and Typical ITI – 
few trials (n = 12; 6F/6M). Two Typical ITI mice were implanted with optic fibers, but excluded from 
dopamine analysis for either failing to learn the cue-reward association (Mouse 46, Extended Data Fig 
3; see below) or due to a missed fiber placement (Mouse 50, Extended Data Fig 6). 

All mice were head-fixed during conditioning and underwent surgery prior to behavior experiments to 
either implant a custom head-ring for head-fixation (behavior-only) or to inject viral vector and implant 
an optic fiber and head-ring (DA+behavior) (See Surgery section). Mice were at minimum 8 weeks old 
at time of surgery (median: ~9.5 weeks). Following surgery, mice were given at least a week to recover 
before beginning water deprivation. During water deprivation, mice were given ad libitum access to 
food but were water deprived to ~85 – 90% of pre-deprivation bodyweight and maintained in that weight 
range throughout experiments through daily adjustments to water allotment. Mice were weighed and 
monitored daily for the duration of deprivation. 

After surgery, mice with only a head ring implant were group housed in cages containing mice from 
multiple experimental groups, while fiber implanted mice were single housed. Mice were housed on a 
reverse 12-h light/dark cycle, and all behavior was run during the dark cycle. 

Surgery 

Surgery was performed under aseptic conditions. Mice were anesthetized with isoflurane (5% induction, 
∼1-2% throughout surgery) and placed in the stereotaxic device (Kopf Instruments) and kept warm with 
a heating pad. Prior to incision, mice were administered carprofen (5 mg/kg, SC) for pain relief, saline 
(0.3 mL, SC) to prevent dehydration, and local lidocaine (1 mg/kg, SC) to the scalp for local anesthesia. 
All mice were implanted with a custom-designed head ring (5 mm ID, 11 mm OD, 3 mm height) on the 
skull for head-fixation. The ring was secured to the skull with dental acrylic supported by screws. Fol-
lowing surgery, mice were given buprenorphine (0.1 mg/kg, SC) for pain relief.  

To measure dopamine release in a subset of mice, 500 nL of an adeno-associated viral (AAV) vector 
encoding the dopamine sensor dLight1.3b (AAVDJ-CAG-dLight1.3b, 2.4 x 1013 GC/ml diluted in sterile 
saline to final titer of 2.4 x 1012 GC/ml) was injected unilaterally into NAc core (from bregma: AP 1.3, 
ML +/-1.4, DV -4.55), in either right or left hemisphere, counterbalanced across groups. Viral vectors 
were injected through a small glass pipette with a Nanoject III (Drummond Scientific) at a rate of 1 nL/s. 
Injection pipette was kept in place 5-10 min to allow diffusion, then slowly retracted to prevent backflow 
up the injection tract. Following injection, an optic fiber (NA 0.66, 400μm, Doric Lenses) was implanted 
200-350 μm above the virus injection site. Following fiber implant, the head ring was secured to skull 
as above. Following the conclusion of conditioning, fiber implanted mice were transcardially perfused, 
and brains were fixed in 4% paraformaldehyde. Brains were sectioned at 50 µm and imaged on a 
Keyence microscope to verify fiber placement.  

Conditioning 

All animals were conditioned with an identical trial structure, differing only in inter-trial interval (ITI) 
and/or number of trial presentations. Typical ITI (Typ ITI) mice were run for 50 trials a day with a variable 
ITI with a mean of 60 s (uniformly distributed from 48 s to 72 s). Extended ITI (Ext ITI) mice were run 
for 6 trials a day with a variable ITI with a mean of 600 s (uniformly distributed from 480 s to 720 s). 
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Because Ext ITI mice experienced fewer trials a day to keep total conditioning time roughly equal be-
tween groups, a third group, Typical ITI – few trials (Typ ITI-few), was run for 6 trials a day with a mean 
of 60 s (uniformly distributed from 48 s to 72 s; same as Typ ITI) to control for the difference in total trial 
experiences between Typ ITI and Ext ITI mice.  

Trials consisted of a 0.25 s 12 kHz constant tone through a piezo speaker followed by a 1 s delay (trace 
period) after which sucrose sweetened water (2- 3 µL; 15% w/v) was delivered through a gravity fed 
solenoid to a lick spout in front of the mouse, controlled by custom Matlab and Arduino scripts. After 
each trial, there was a fixed three second period following reward delivery to allow reward consumption. 
Though this is technically a part of the ITI, we omitted this interval when calculating ITI/trial ratios for 
simplicity. Lick spout was positioned close to the animals such that animals could sense, but were not 
touched by, delivery of reward. Licks were detected through a complete-the-circuit design and recorded 
in Matlab.  

Mice were not habituated to the head-fixation apparatus or sucrose delivery prior to conditioning. For 
the vast majority of mice, the first trial was their first experience of liquid sucrose reward. An initial 
subset of behavior only Ext ITI mice (n = 6) ran with a fixed ITI of 600 s and was given a single uncued 
reward delivery prior to conditioning on day 1. No gross difference in learning compared to subsequent 
groups was detected, and data were pooled. For all other groups on day 1, mice were placed in the 
head-fixation apparatus and conditioning commenced. Because a minority of animals from each con-
dition did not initially consume sucrose at time of reward delivery, for all analysis, “trial 1” was defined 
as the first trial in which a mouse licked to consume sucrose within 5 seconds of reward delivery. Mice 
were run for at least 8 days of conditioning, and trial analyses included the first 40 trials (Ext ITI) or 400 
trials (Typ ITI).  

Fiber photometry 

To measure dLight signal, light from 470 nm and 405 nm LEDs integrated into a fluorescence filter 
minicube (Doric Lenses) was passed through a low-autofluorescence patchcord (400 µm, 0.57 NA, 
Doric Lenses) to the mouse. Emission light was collected through the same patchcord, bandpass fil-
tered through the minicube, and measured with a single integrated detector. Excitation LED output was 
sinusoidally modulated by a Doric Fiber Photometry Console running Neuroscience Studio v5.4 at 530 
hz (470) and 209 hz (405). The console demodulated the incoming detector signal producing separate 
emission signals for 470 nm excitation (dopamine) and 405 nm excitation (dopamine-insensitive isos-
bestic control). Signals were sampled at 12 kHz and subsequently downsampled to 120 Hz following 
low-pass filtering at 12 Hz. Due to a software error during photometry data file save, the final trial was 
not recorded on two occasions (1 Typ ITI, 1 Ext ITI) and was excluded from analysis. This error occurred 
either well before (Typ ITI) or well after (Ext ITI) the emergence of learning, and thus had minimal effect 
on the resulting analysis. A TTL pulse signaling behavior session start and stop was recorded by the 
photometry software to sync and align photometry and behavior data recorded on different hardware.  

Analysis 

Behavior: The behavioral measure of learning here was licking in response to the cue before reward 
delivery. As mice learn the cue-reward association, cue presentation elicits anticipatory licking behavior 
toward the reward spout. To measure the cue-evoked change in licking behavior over baseline, the 
number of licks in the 1.25 s baseline period before cue onset was subtracted from the number of licks 
in the 1.25 s period from cue onset to reward delivery to calculate the change in licking behavior to the 
cue (cue-evoked licks). When this number was converted to a rate, it was reported as “Δ lick rate to 
cue.” To binarize cue-evoked licking behavior, we also measured the proportion of mice in each group 
that made more than one cue-evoked lick on each trial across conditioning (Extended Data Figs 2 & 
4). To visualize average trial licking behavior for each session in example animal plots (Figs 1C & 2C, 
Extended Data Figs 2A & 7B), lick peri-stimulus time histograms were generated by binning licks into 
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0.1 s bins, converting to a rate, and averaging across trials. The resulting average lick rate trace was 
smoothed with a Gaussian filter to aid visualization. 

To calculate the trial at which animals show evidence of learning, we first took the cumulative sum 
(cumsum) of the cue-evoked licks3,30,42–44. Then drawing a diagonal from beginning to the end of the 
cumsum curve, we calculated the first trial that occurred within 75% of the maximum distance from the 
curve to the diagonal, which corresponded to the trial at which cue-evoked licking behavior emerged 
(Extended Data Figs 3A-C). This trial was designated the “learned trial.” Occasionally after learning, 
the number of a mouse’s licks to cue tapers off. If at the calculated learned trial the diagonal line was 
underneath the cumsum curve, which means that the mouse’s lick behavior was decreasing at that 
point rather than increasing, we iteratively reran the algorithm by drawing the diagonal from the begin-
ning to the point on the cumsum curve corresponding to the previously calculated trial until at the new 
calculated trial the diagonal was above the cumsum curve (corresponding to the trial in which lick be-
havior begins to increase). Note that we use the first trial within 75% of maximum distance rather than 
the overall maximum distance (which would be the largest inflection point in the curve) to account for 
variability in post-learning behavior that occasionally caused the maximum distance from the diagonal 
to be at a point after a mouse has consistently licked to the cue for many trials; however, this choice 
did not affect the main conclusion of the analysis that Ext ITI mice learn in ten times fewer trials than 
Typ ITI mice (Extended Data Fig 3D). Mice that did not show a > 0.5 Hz average increase in lick rate 
to cue for at least 2 sessions were classified as nonlearners and were not considered in comparison of 
learned trials (Fig 1F, Extended Data Figs 3C, 3D). To measure the steepness of individual animal 
learning curves, we calculated the abruptness of change at the learned trial as the distance from the 
cumsum curve to the diagonal described above. This distance was calculated in normalized units where 
the top of the diagonal was set to equal 1. Cumsum data is occasionally displayed normalized to the 
number of trials (yielding a y-axis that corresponds to average response across all prior conditioning 
trials) to better compare across groups that experienced different numbers of trials.  

Dopamine: To analyze the signals, a session-wide dF/F was calculated by applying a least-squares 
linear fit to the 405 nm signal to scale and align it to the 470 nm signal. The resulting fitted 405 nm 
signal was then used to normalize the 470 nm signal. Thus, dF/F is defined as dF/F = (470 nm signal 
− fitted 405 nm signal)/fitted 405 nm, expressed as a percent 80. Cue-evoked dopamine (cue DA) was 
measured as the area under the curve (AUC) of the dopamine signal for 0.5 s following cue onset minus 
the AUC of the baseline period 0.5 s directly preceding cue onset. Reward evoked dopamine (reward 
DA) was measured as the AUC 0.5 s following the first detected lick after reward delivery minus the 
AUC of the pre-cue baseline period described above. If the onset and offset of a detected lick spanned 
reward delivery time, the reward AUC was calculated from time of reward delivery. To facilitate com-
parisons across mice with differing levels of virus expression, dopamine measurements per mouse 
were normalized to the average of the three maximum reward responses in that mouse. Maximum 
rather than initial reward responses were chosen, as the reward response initially increased across 
early conditioning trials with different numbers of trials until maximum between conditions (Extended 
Data Fig 8C, D). All dopamine responses reported in main figures are AUC measurements, but peak 
measurements are also plotted as a comparison point (Extended Data Fig 8). To measure cue and 
reward peak dopamine responses, the mean dopamine signal during the baseline period was sub-
tracted from the maximum value of the dopamine signal during the cue and reward windows described 
above for AUC measurements. Similar to AUC measurements, peak responses were also normalized 
to the mean of the max 3 reward responses in each animal.   

To calculate the trial at which dopamine responses to the cue develop (DA learned trial), we took the 
cumsum of the normalized cue DA response described. A diagonal was drawn from trial 1 through the 
point on the cumsum curve at 1.5 times the behavior learned trial to account for decreasing cue re-
sponses with extended training81. The same algorithm described above to determine the behavior 
learned trial was run on the cue DA curve. The lag between DA and behavioral learned trial (the number 
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of trials between the development of dopamine responses to the cue and the emergence of behavioral 
learning) was defined as the behavior learned trial minus the DA learned trial (Fig 2E).  

For one Typ ITI dLight animal, during an initial conditioning session, a software crash caused the loss 
of lick data for 50 trials experienced by the animal. An additional 13 trials were presented to the animal 
that day and recorded following the crash. Photometry data were recorded for all 63 trials. Because the 
crash occurred prior to the emergence of learning and cue-evoked licking behavior (as confirmed by 
both online observation by experimenter prior to crash and a -0.14 Hz average cue-evoked change in 
lick rate for the 13 trials recorded after crash), the 50 trials in which data were lost were coded as 0 
cue-evoked licks. All 63 trials the animal experienced were included in analyses. 

To visualize the average relationship between DA responses and licking behavior across learning with 
variability in individual learning rates, signals were aligned to behavior learned trial and plotted through 
250 or 25 trials after learning (Fig 2, Extended Data Fig 8). For aligned cumsum plots, data were nor-
malized by the value from trial 400 (Typ ITI) or trial 40 (Ext ITI). 

Simulations 

Temporal difference reinforcement learning (TDRL) simulation: TDRL assumes that animals assign 
value to each moment following an event (e.g., cue) to predict future reward. Each event elicits multiple 
states, and the value of each time step can be expressed as a weighted sum of activated states at that 
moment. If the prediction from previous moment is different from what is experienced in the current 
moment, the model updates the value of previous moment based on this reward prediction error, as-
sumed to be signaled by dopamine. Depending on how the model represents a state, TDRL can be 
further divided into subtypes. Here, we used the microstimulus model37 as a representative of TDRL 
because it naturally accounts for ITI as a set of states are triggered following reward delivery. This 
model assumes that time states are Gaussian functions of increasing width following each event (cue 
or reward). The following model parameters were used: bin size = 0.1s, learning rate (𝛼𝛼) = 0.01, tem-
poral discounting factor (𝛾𝛾) = 0.999, decay parameter of eligibility trace (𝜆𝜆) = 0.95, number of states 
elicited by each event (𝑚𝑚) = 20, width of Gaussian function (𝜎𝜎) = 0.08, and decay parameter of event 
memory (𝑑𝑑) = 0.99. 

For the simulation in Extended Data Fig 1, we used a similar set of task parameters as used in later 
behavior experiments: 1.25-s cue-reward delay, 3-s post-reward delay, and uniformly distributed inter-
trial intervals between ±20% from the mean. Three different means of ITI were tested (6s, 60s, and 
600s). Each case was iterated 20 times.  

Adjusted net contingency for causal relation (ANCCR) simulation: We previously proposed a new learn-
ing model called ANCCR based on the learning of retrospective associations3. ANCCR operates by 
identifies cues that cause meaningful events such as reward by looking back from reward. The mean-
ingfulness of an event can be expressed as a sum of innate meaningfulness (e.g., is this event innately 
rewarding or punishing?) and learned meaningfulness (e.g., does this event cause another meaningful 
event?). In ANCCR, we previously assumed that dopamine signals the learned meaningfulness of an 
event, and that innate meaningfulness is conveyed by another system. If the summed meaningfulness 
of a given event crosses a certain threshold, animals will start searching for the cause(s) of that event. 
Such meaningful events were labeled as meaningful causal targets (MCTs). Once the cause of an MCT 
is revealed, the dopamine response to the MCT is adjusted as the presence of the MCT is now “ex-
plained” by its cause. This framework captured the nature of mesolimbic dopamine release in our pre-
vious paper and current experiments, but it could not explain one aspect of the results: relatively high 
dopamine response to the first experience of reward (though this response increases with repeated 
reward experience, consistent with our previous demonstration3). To address this, we updated our pre-
vious ANCCR model with a slight tweak that is explained below. 

According to ANCCR, dopamine response to reward can be expressed as shown below until its cause 
is revealed: 
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𝐷𝐷𝐷𝐷𝑟𝑟 = [𝑤𝑤𝑤𝑤→𝑟𝑟𝑟𝑟 + (1 − 𝑤𝑤)𝑤𝑤←𝑟𝑟𝑟𝑟]𝑅𝑅𝑟𝑟         (1) 

where 𝑤𝑤←𝑟𝑟𝑟𝑟 is the retrospective r←r association, 𝑤𝑤→𝑟𝑟𝑟𝑟 is the prospective r→r association, 𝑤𝑤 is a weight 
(between 0 and 1), and 𝑅𝑅𝑟𝑟is the reward magnitude. In ANCCR, the prospective association between 
two events 𝑖𝑖 and 𝑗𝑗 (𝑤𝑤→𝑖𝑖𝑖𝑖) is derived from the retrospective association (𝑤𝑤←𝑖𝑖𝑖𝑖) by multiplying the ratio 
between baseline rates of two events (𝑀𝑀←𝑖𝑖− 𝑀𝑀←𝑖𝑖−⁄ ). Thus, we assumed that the model does not derive 
prospective association and instead keeps it as zero when the rate of event 𝑖𝑖 (𝑀𝑀←𝑖𝑖−) is negligibly small, 
which was set to be below 10-4 in our simulation. This property makes dopamine response to the first 
reward as below: 

𝐷𝐷𝐷𝐷𝑟𝑟 = [𝑤𝑤 × 0 + (1 − 𝑤𝑤)𝑤𝑤←𝑟𝑟𝑟𝑟]𝑅𝑅𝑟𝑟 = (1 − 𝑤𝑤)𝑤𝑤←𝑟𝑟𝑟𝑟𝑅𝑅𝑟𝑟      (2) 

This in turn can be expressed as below: 

𝐷𝐷𝐷𝐷𝑟𝑟 = (1 − 𝑤𝑤)𝑤𝑤←𝑟𝑟𝑟𝑟𝑅𝑅𝑟𝑟 =  (1 − 𝑤𝑤)(𝑀𝑀←𝑟𝑟𝑟𝑟 − 𝑀𝑀←𝑟𝑟−)𝑅𝑅𝑟𝑟      (3) 

where 𝑀𝑀←𝑟𝑟𝑟𝑟 is the average reward rate at rewards and 𝑀𝑀←𝑟𝑟− is baseline reward rate. The model updates 
𝑀𝑀←𝑟𝑟𝑟𝑟 every time an animal experiences reward using: 

𝑀𝑀←𝑟𝑟𝑟𝑟 ≡  𝑀𝑀←𝑟𝑟𝑟𝑟 + 𝛼𝛼(𝐸𝐸←𝑟𝑟𝑟𝑟 − 𝑀𝑀←𝑟𝑟𝑟𝑟)         (4) 

where ≡  denotes an update operation, 𝛼𝛼 is learning rate, and 𝐸𝐸←𝑟𝑟𝑟𝑟 is the eligibility trace of reward. With 
no prior experience of reward, the prior estimate of 𝑀𝑀←𝑟𝑟𝑟𝑟 is zero and 𝐸𝐸←𝑟𝑟𝑟𝑟 is one, because it only ac-
counts for the current reward. Thus, the new estimate of 𝑀𝑀←𝑟𝑟𝑟𝑟 at the first reward will be: 

𝑀𝑀←𝑟𝑟𝑟𝑟 ≡  0 + 𝛼𝛼(1 − 0) = 𝛼𝛼          (5) 

Since the baseline reward rate (𝑀𝑀←𝑟𝑟−) is continuously updated (in our simulation, we do this once every 
0.2 s) regardless of the actual reward schedule, 𝑀𝑀←𝑟𝑟− at the first reward delivery is zero, which is the 
value updated prior to the reward delivery and does not consider the current reward. Thus, equation 
(3) can be expressed as below:  

𝐷𝐷𝐷𝐷𝑟𝑟 = (1 − 𝑤𝑤)(𝛼𝛼 − 0)𝑅𝑅𝑟𝑟 = (1 − 𝑤𝑤)𝛼𝛼𝑅𝑅𝑟𝑟       (6) 

Given that 𝑤𝑤 is a weight between 0 and 1 and 𝛼𝛼 is typically set to a small value (<0.3, often less than 
0.1 at the asymptote of learning), dopamine response to the first reward should be small (at most 0.2 
times of reward magnitude, when 𝑤𝑤=0 and 𝛼𝛼=0.2). However, we observed a significantly positive do-
pamine response to the first reward, which was about ~50-60% of the largest reward response over 
learning (Extended Data Fig 8). To account for this mismatch, we updated our model by postulating 
that dopamine response partially accounts for the ‘innate meaningfulness’ (𝑏𝑏) of a given stimulus in 
addition to its learned meaningfulness. Therefore, dopamine response to reward in the updated model 
is: 

𝐷𝐷𝐷𝐷𝑟𝑟 = [𝑤𝑤𝑤𝑤→𝑟𝑟𝑟𝑟 + (1 − 𝑤𝑤)𝑤𝑤←𝑟𝑟𝑟𝑟]𝑅𝑅𝑟𝑟 + 𝑏𝑏𝑟𝑟       (7) 

More generally, dopamine response to any given stimulus is expressed as below, which is the updated 
version of equation (17) in our prior study3:  

𝐷𝐷𝐷𝐷𝑖𝑖 = ∑ �̂�𝑤↔𝑖𝑖𝑖𝑖𝑖𝑖 𝑰𝑰(𝑗𝑗 ∈ 𝑀𝑀𝑤𝑤𝑀𝑀) + 𝑏𝑏𝑖𝑖        (8) 

where �̂�𝑤↔𝑖𝑖𝑖𝑖 denotes ANCCR between i and j and 𝑰𝑰(𝑗𝑗 ∈ 𝑀𝑀𝑤𝑤𝑀𝑀) denotes that j is a meaningful causal 
target. This postulate that the innate meaning of a stimulus/reward is conveyed in part by dopamine 
and in part by another system is consistent with a previous experimental demonstration that a dopa-
minergic and non-dopaminergic pathway collectively encode aspects of reward82. Other calculations in 
the model remained the same as shown in our previous paper. For simulations, the following parame-
ters were used: 𝑤𝑤=0.5, 𝑏𝑏𝑐𝑐𝑐𝑐𝑐𝑐=0, 𝑏𝑏𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟=0.5, 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑑𝑑=0.4, 𝑀𝑀=200 s,  𝑘𝑘=0.005, 𝛼𝛼𝑅𝑅=0.2. When an ani-
mal experiences a new task for the first time, we assumed that 𝛼𝛼 will be higher than that after the animal 
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gets used to the task, consistent with standard meta-learning assumptions. Thus, we set 𝛼𝛼 to start from 
0.3 and exponentially decay with exponential parameter 0.1 until it reaches 0.02.  

To simulate the experiments using ANCCR, we used the same task parameters as used in actual ex-
periments. To approximate animal behavior for Extended Data Fig 9A, the probability of lick to cue was 
calculated by applying a softmax function: 

𝑝𝑝(𝑜𝑜𝑖𝑖𝑙𝑙𝑘𝑘|𝑙𝑙𝑐𝑐𝑟𝑟) = 𝑐𝑐𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡⁄

𝑐𝑐𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡⁄ +𝑐𝑐𝑉𝑉𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛 𝑡𝑡⁄          (9) 

where 𝑡𝑡 is the temperature and 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 is a value of cue. 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 was defined as the product of the prospective 
association between cue and reward, and the estimated magnitude of reward (𝑤𝑤→𝑐𝑐𝑟𝑟𝑅𝑅𝑐𝑐𝑟𝑟), subtracted by 
the cost of action. We set the value of null action (no lick) as zero and cost of action as 0.3. Temperature 
(𝑡𝑡) was set as 0.2. Given the much smaller noise in simulation than experimental data, the learned trial 
was simply defined as the trial in which the cumulative sum of behavior response was farthest from the 
diagonal. Other than that, simulation data were analyzed in the same way as experimental data. 

It is worth noting that ANCCR has multiple possible explanations for the data observed here. The above 
explanation is one in which model parameters were assumed to be identical between the two ITI 
groups. Another explanation can be derived from first principles by postulating that the overall rate of 
learning over absolute time should be equal for learning the baseline rate of cues and the reward-
triggered rate of cues. However, our purpose here is to show that even with simple assumptions of 
model parameters that were identical in both groups, ANCCR produces quantitative temporal scaling 
and few-shot learning. 

Statistics 

Statistical analyses were performed in Python 3.9. Welch’s t-test was performed, using either the 
Pingouin83 (v0.5.3) or scipy.stats (v1.7.3) packages, to compare between experimental groups, so as 
to not assume equal variances between the populations. To test for equality of variances, F-tests were 
run using a custom script. Multiple t-tests (Extended Data Fig 5) were corrected for by adjusting p-
values with Bonferroni’s correction. All statistical tests were two-tailed. N’s reported represent individual 
animals or, in the case of simulations, the number of iterations. Full statistical test information is pre-
sented in Extended Data Table 1. Time courses of the cumulative sum or average of the lick and/or 
dopamine data are presented as mean ± SEM. Bar graphs are presented as mean ± SEM with individ-
ual animal data points. Results were considered significant at an alpha of 0.05. * denotes p < 0.05, **p 
< 0.01, ***p < 0.001, ****p < 0.0001; ns (non-significant) denotes p > 0.05.  
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Figure 1. Temporal scaling in behavioral learning.  
A. Schematic of experimental setup. Head-fixed mice were divided into two groups that were each presented with identi-
cal cue-reward pairing trials, but each group differed in the length of time between cue-reward presentations (i.e., the in-
ter-trial interval or ITI). Trials consisted of an auditory cue (0.25 s, 12 kHz) followed by a 1 s delay before a drop of su-
crose solution (15% w/v, ~2.5 µL) was delivered through a spout in front of the animal. The Typical ITI group had an aver-
age ITI of 60 s, while the Extended ITI group had an average ITI of 600 s. The total conditioning time per day was kept 
roughly constant resulting in 50 trials a day for Typical ITI mice, and 6 trials a day for Extended ITI mice (this accounts for 
a fixed 3 s reward consumption period; see Methods). Mice were run for 8 days.  
B. Illustration of two hypothetical experimental outcomes. Learning curves display the possible relationship between Typi-
cal ITI and Extended ITI group learning rates as a function of trial number. Hypothesis 1 is based on standard “trial-based” 
neuroscience models used to explain reward learning, including TDRL. These posit that as long as the ITI is sufficiently 
longer than the trial duration (as is the case in both experimental groups), there will be no difference in learning between 
groups presented with different ITIs (See Extended Data Fig 1). Because total conditioning time is kept roughly constant 
between groups, the Extended ITI mice will show less evidence of learning than Typical ITI mice due to ten times fewer 
trial experiences by the end of conditioning. Hypothesis 2 is that previous demonstrations of faster learning in “spaced 
learning” applies even when the ITI is much longer than trial duration (ratio of 48 in Typical ITI group). Here, we present a 
strict version of this hypothesis in which the group that experiences 10 times fewer trials learns 10 times more per trial.  
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C. Example lick raster plots (upper) and lick peri-stimulus time histograms (PSTH)(lower) for one example mouse from 
either Typical ITI group (top, gold) or Extended ITI group (bottom, purple) showing every cue-reward delivery epoch 
across the full eight days of conditioning. Each column represents a single day of conditioning. Graphs are aligned to cue 
onset (cue on denoted by gray shading). Reward delivery is denoted by the vertical gray dashed line. Both example ani-
mals begin to show evidence of learning (an increase in licking following cue onset before reward is delivered) on day 2. 
D. Extended ITI mice learn and reach asymptotic behavior in fewer trials than Typical ITI mice. Left, Time course showing 
the average change in cue-evoked lick rate (the baseline subtracted lick rate between cue onset and reward delivery, see 
Methods) over 40 (Ext ITI, purple, n = 19 mice) or 400 (Typ ITI, gold, n = 19 mice) cue-reward presentations. Inset right, 
Zoom in of first 40 trials for both groups. Lines represent mean across animals and shaded area represents the SEM.  
E. Cumulative sum (cumsum) of cue-evoked licks across trials from the same example mice as in C. Using the cumsum 
curve from each animal to determine the trial at which mice first show evidence of learning (see Methods), we found that 
the example Typical ITI mouse (left, gold) learns at trial 74, while Extended ITI group (right, purple) learns at trial 8 (i.e., 
“few shot” reward learning). Learned trial is denoted by the solid black vertical line.  
F. Extended ITI mice learn in about ten times fewer trials than Typical ITI mice. Bar height represents mean trial at which 
mice show evidence of learning for Typ ITI group (left, gold, n = 17) and Ext ITI group (right, purple, n = 19), plotted on a 
log scale. Error bar represents SEM. Circles represent individual mice. Values under labels represent mean ±SEM. Two 
mice that did not show evidence of learning are excluded from comparison (Extended Data Fig 3; see Methods). **** p < 
0.0001, Welch’s t-test, F-test.  
G & H. On average, learning between groups progresses similarly as a function of total conditioning time, and thus it 
scales with the ratio of ITIs. Learning rate of one Ext ITI trial is similar to that of ten Typ ITI trials. G. Mean cue-evoked lick 
rates for Ext ITI and Typ ITI groups across scaled trial numbers (same data as in D), showing that the Ext ITI group learns 
ten times higher per experience compared to the Typ ITI group. H. Cumsum of cue-evoked licks plotted on the same 
scaled x-axis. Thick lines represent group means and individual lines represent individual animals. There is much higher 
individual variability in the Typ ITI group compared to the Ext ITI group (quantified in I). 
I. Asymptotic cue-evoked lick rates have similar group means, but different variances. Bars represent mean cue-evoked 
lick rates during trials 301–400 (Typ ITI) or trials 31-40 (Ext ITI). Error bars represent SEMs and circles represent individ-
ual mice. ns: not significant, Welch’s t-test; **p<0.01, F-test. 
See Extended Data Table 1 for full statistical test details. All error bars and error shading throughout manuscript represent 
SEM. 
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Figure 2. Temporal scaling in mesolimbic dopaminergic learning. 
A. Schematic of mesolimbic dopamine measurements (Methods).  
B. Diagrams of 2 hypothetical relationships between cue-evoked dopaminergic learning and behavioral learning in Typ ITI 
and Ext ITI mice. Hypothesis 1 is that the development of cue-evoked dopamine precedes behavioral learning by a fixed 
number of trials in both Typ ITI and Ext ITI groups, suggesting a one-to-one evolution of dopaminergic and behavioral 
learning. This hypothesis is based on models of dopamine function that posit a tight relationship between cue-evoked do-
pamine and behavioral learning whereby the development of dopaminergic cue responses directly drives learning. Hy-
pothesis 2 is that the development of cue-evoked dopamine precedes behavioral learning by a number of trials propor-
tional to the number needed for behavioral learning. Because Ext ITI mice learn in ten times fewer trials than Typ ITI mice 
(Fig 1F), this hypothesis predicts that cue-evoked dopamine will precede behavioral learning by ten times fewer trials in 
Ext ITI mice. 
C. Example lick raster plots (upper row), lick PSTH (2nd row), heatmap of dopamine responses on each trial (3rd row) and 
average dopamine response for the day (lower row) for one example mouse from either Typical ITI group (top, gold) or 
Extended ITI group (bottom, purple) during cue and reward presentation across 8 days of conditioning. Lick data pre-
sented as in Fig 1C. Dopamine signals plotted as % dF/F. Graphs aligned to cue onset (cue on denoted by gray shading). 
Reward delivery is denoted by vertical gray dashed line. 
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D. Cumsum of cue-evoked licks (solid, lighter, left axis) or of cue-evoked dopamine (dashed, darker, right axis) for the 
same example mice as in C. Both lick and cue dopamine values were divided by total trial number to display average re-
sponses across conditioning. Before taking the cumsum, cue-evoked dopamine responses were normalized by max re-
ward responses (see Methods). Cumsum curves were used to determine the trial at which cue-evoked dopamine and 
cue-evoked licking emerge (“learned trial”, see Methods). Solid vertical lines represent learned behavior trial and dashed 
vertical lines represent dopamine learned trial.  
E. On average, DA cue responses develop 59 trials before the emergence of cue-evoked licking in Typ ITI mice and 5 
trials before in Ext ITI mice. Bars represent mean number of trials between dopamine and behavior learned trials. Error 
bars show SEM. Circles represent individual mice. Values under labels represent mean ±SEM. **p<0.01. Welch’s t-test. 
F. Mean cumsum of cue-evoked licking (solid) and dopamine (dashed) for Typ ITI (left, gold, n = 5 animals) and Ext ITI 
(right, purple, n = 7 animals) mice. Data were normalized by each animal’s final trial of conditioning and aligned to their 
learned trial before averaging. Lines represent means, and shading represents SEM. 
G. Mean cumsum of reward normalized cue-evoked dopamine responses in Typ ITI (gold) and Ext ITI (purple) mice.  
Cumsum curves normalized by number of trials to account for differences between groups.  
H. Mean asymptotic cue-evoked dopamine after learning normalized by individual max reward responses. Bars represent 
means for trials 301-400 (Typ ITI) or trials 31-40 (Ext ITI). Error bars represent SEM and circles represent individual mice. 
*p<0.05, Welch’s t-test. 
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Figure 3. Simulations based on a model of retrospective causal learning capture the experimentally ob-
served quantitative scaling relationship between inter-trial interval, dopamine, and learning. 
A. Schematic showing the intuition behind the model that explains differences in per trial learning between Typ ITI and Ext 
ITI groups. In this model, animals learn cue-reward associations through calculation of an adjusted net contingency for 
causal relations (ANCCR) based on estimates of the rate of cues at time of rewards vs. the baseline rate of cues. Cue 
presentations evoke an exponentially decaying eligibility trace whose mean is calculated either at reward time or baseline 
to determine whether reward is contingent upon cue presentation. If the eligibility traces evoked by cues are of such a 
duration that prior cue eligibility traces have not fully decayed before presentation of subsequent cues and rewards for 
Typ ITI, but not Ext ITI, then learning will be slower for Typ ITI animals. Cue rate at time of reward and baseline will both 
be high in Typ ITI, slowing down contingency estimates relative to Ext ITI group where estimates of the cue rate at base-
line will be near zero.   
B. Quantification of learned trial from TDRL simulation data plotted in Extended Data Fig 1C for 60 s (gold, n = 20 itera-
tions) and 600 s (purple, n = 20 iterations) ITI conditions. Bars represent mean number of trials before learning occurs 
plotted on a log scale. Error bars show SEM. Circles represent individual iterations.  Values under labels represent mean 
±SEM. **p<0.01, Welch’s t-test. 
C – E. ANCCR simulations of cue-reward learning using same trial parameters and ITIs as mouse experiments capture 
the experimental observations that conditioning with an Extended ITI (600 s, purple, n = 20 iterations) leads to learning in 
ten times fewer trials (C), ten times fewer trials between the development of cue-evoked dopamine and learning (D), and 
greater asymptotic cue-evoked dopamine responses (E) compared to conditioning with a Typical ITI (60 s, gold, n = 20 
iterations). TDRL models of dopamine do not capture any of these effects. Bars represent means. Error bars show SEM. 
Circles represent individual iterations. Values under labels represent mean ±SEM.  ****p<0.0001, Welch’s t-tests.  
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Extended Data Figure 1. Temporal difference reinforcement learning (TDRL) algorithms predict no dif-
ference in learning as a function of inter-trial interval as long as the inter-trial interval is much longer 
than trial duration. 
A. Illustration of how inter-trial interval (ITI) can impact learning. The ITI is an important parameter in cue-reward condi-
tioning because its relationship to the cue-reward interval (trial duration) determines the overall structure of cue-reward 
experiences. In standard conditioning paradigms where the ITI is much longer than the trial duration (1, top), associations 
that the cue predicts the reward are commonly learned. In an extreme counter-example, however, if the ITI is much 
shorter than the same trial duration, then the association learned is that the reward predicts the cue, as in backward con-
ditioning, which is known to produce either little or even negative conditioning. So, the ITI must impact learning. This is a 
simple intuitive explanation for prior observations that “spaced learning” is more effective than “massed learning”. This 
explanation assumes that once the ITI is much longer than the trial duration, there is no effect of the ITI on conditioning, 
consistent with TDRL models (B, C).  
B. Diagram of cue-reward learning simulations for three conditions in which trial duration is identical and ITI is varied 
across conditions. Trials consists of a 1.25 s long cue to reward delay (trial duration). In one condition, ITI is kept short at 
6 s (ITI/trial ratio of 4.8). In another condition, ITI is kept to a typical value (60 s) but with a high ITI/trial ratio (48). In a third 
condition, ITI is extended in duration at 600 s (ITI/trial ratio of 480).  
C. Temporal difference reinforcement learning (TDRL) simulations using the microstimulus model that naturally accounts 
for the ITI predict that conditioning with a 60 s ITI (ITI/trial = 48) will lead to faster learning than conditioning with a 6 s ITI 
(ITI/trial = 4.8), but that conditioning with a 600 s ITI (ITI/trial = 480) will lead to similar learning and behavior as condition-
ing with a 60 s ITI.  
 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.31.535173doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.31.535173
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Extended Data Figure 2. Ext ITI mice show evidence of learning in significantly fewer trials than Typ ITI 
mice. 
A. More lick raster and PSTH plots from individual Typ ITI and Ext ITI example mice as in Fig 1C. 
B. Average change in cue-evoked lick rate for trials 36 - 40 (time course in Fig 1D). Ext ITI show significantly more licking 
to cue in this period than Typ ITI mice ****p< 0.0001, Welch’s t-test.  
C & D. Ext ITI mice show asymptotic responding to the cue in fewer trials than Typ ITI mice. C. Left, Time course showing 
the proportion of mice on each trial with more than one cue-evoked lick over 40 (Ext ITI, purple, n = 19) or 400 (Typ ITI, 
gold, n = 19) trials. Inset, right, Zoom in of first 40 trials for both groups. Lines represent mean across all animals and 
shaded area represents the SEM. D. Bar height represents proportion of trials in which animals responded to cue with 
more than one lick between trials 36 and 40. Error bars represent SEMs, and circles represent individual animals ****p< 
0.0001, Welch’s t-test. 
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Extended Data Figure 3. The cumulative sum of cue-evoked lick behavior allows for determination of 
learned trial in individual animals. 
A & B. Cumsum and trial-by-trial plots of cue-evoked licking behavior of same example mice as in Fig 1C & 1E. Left, 
Cumsum plot showing diagonal line used to calculate learned trials. Right y-axis shows the total cumsum of all cue-
evoked licks as in Fig 1E. Left y-axis shows cumsum of cue-evoked licks divided by total trial number to allow compari-
sons across groups that experienced a different number of cue-reward pairings. Trial normalized cumsum values repre-
sent the mean number of cue-evoked licks over all previous trials. Solid vertical line represents the calculated learned 
trial, the first trial at which animals show evidence of learning. Right, The cue-evoked change in lick rate plotted for the 
same individual example mouse. Note how the vertical line representing the learned trial, which corresponds to the point 
on cumsum plots where the cumsum curve takes off from the x-axis, captures the trial at which cue-evoked changed in 
lick rates become consistently positive.  
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C. Cumsum plots for all remaining mice included in behavior analysis plotted with trial normalized units (see A & B). Verti-
cal line represents calculated learned trial. Animals which did not meet learning criteria (see Methods) are noted, and no 
vertical line is drawn. These animals were excluded from comparison of learned trials between groups. 
D. For analysis, learned trial was calculated as the first trial that fell within 75% of the maximum distance from a diagonal 
drawn from the point on the cumsum curve at trial 1 through trial 40 or 400.  75% of maximum distance was chosen rather 
than the overall maximum distance (which would be the largest inflection point in the curve) to account for variability in 
post-learning behavior that occasionally caused the maximum distance from the diagonal to be at a point after a mouse 
has consistently licked to the cue for many trials. This choice did not affect our main conclusions as using 80%, 85%, 
90%, 95%, or the maximum distance from the diagonal in our algorithm yielded a roughly similar result of ten times more 
trials needed to learn in Typ ITI mice than Ext ITI mice. Bar heights represent mean number of trials to learn, error bars 
represent SEMs, and circles represent individual animals plotted on a log scale. Values under labels represent mean 
±SEM. ****p<0.0001, Welch’s t-test. 
 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.31.535173doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.31.535173
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Extended Data Figure 4. Learning scales with total conditioning time or the ratio between inter-trial in-
tervals. 
A. Learning is similar between groups when trials are averaged across days. Time course of mean change in cue-evoked 
lick rates as a function of days of conditioning. Circles represent mean change in lick rate per day, and error bars repre-
sent SEMs. 
B & C. Responding to cue scales with total conditioning time between groups and is not different at the end of condition-
ing. B. Time course showing the proportion of mice with more than one cue-evoked lick on each trial (same data as Ex-
tended Data Fig 2C) plotted on scaled x-axis units. Lines represent means per group and shading represents SEM. C. Bar 
height represents proportion of trials in which animals responded to cue with more than one lick between trials 301 – 400 
(Typ ITI) or 31 – 40 (Ext ITI). Error bars represent SEMs, and circles represent individual animals. ns: not significant, 
Welch’s t-test. 
D. The abruptness of change, a measure of how quickly an animal’s behavior changes at learning determined by the 
steepness of the lick behavior cumsum curve (see Methods), is not different between groups. Bar height represents mean 
abruptness of change parameter for each group. Error bars represent SEMs, and circles represent individual animals. ns: 
not significant, Welch’s t-test. 
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Extended Data Figure 5. Difference in learning between Typical and Extended ITI groups is not ex-
plained by difference in number of trial experiences per day. 
A & B. Mice conditioned with a Typical ITI (60 s), but only six trials a day (Typ ITI-few) learn significantly less per trial than 
Ext ITI mice, similar to Typ ITI mice. A. Time course of average change in lick rate in response to the cue for Typ ITI-few 
(n = 12), Typ ITI (n = 19, same data as Fig 1D), and Ext ITI (n = 19, same data as Fig 1D) mice.  Typ ITI and Ext ITI time 
courses are shown without error for visualization purposes. B. Average cue-evoked licking between trials 36 and 40 
across all three groups. Typ ITI-few mice show significantly less evidence of learning than Ext ITI mice and behave like 
Typ ITI mice. ****p<0.0001, ns: not significant; Welch’s t-tests. 
C&D. Typ ITI-few mice show much less cue-evoked licking at the end of conditioning as shown with ITI scaled trial units 
(C) or by average licking behavior across days (D). Typ ITI and Ext ITI curves are the same data as in Fig 1G and Ex-
tended Data Fig 4B. 
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Extended Data Figure 6. Fiber placements for dopamine measurement mice.  
A. Locations of center of optical fiber tip for fiber photometry recordings from Typ ITI (gold) and Ext ITI (purple) mice. 
B. Example histology from a single mouse. Blue is DAPI staining and green is dLight1.3b.  
C. Fiber location from Typ ITI mouse excluded from dopamine analysis.  
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Extended Data Fig 7. Taking the cumsum of cue-evoked dopamine and licking allows for determination 
of trials at which dopaminergic learning and behavioral learning occur in individual mice. 
A. More lick raster, lick PSTH, dopamine response by trial, and average session dopamine response plots from individual 
Typ ITI and Ext ITI example mice as in Fig 2C. 
B. Cumsum of cue-evoked licks (solid, left axis) or of cue-evoked dopamine (dashed, right axis) for all dopamine record-
ing mice not shown in Fig 2D. Both lick and cue evoked dopamine values were divided by total trial number to display av-
erage responses across conditioning. Before taking the cumsum, cue-evoked dopamine responses were normalized by 
max reward responses. Solid vertical lines represent learned behavior trial and dashed vertical lines represent dopamine 
learned trial.  
C. Dopamine responses to cue develop in ten times fewer trials in Ext ITI mice compared to Typ ITI mice. Bar height rep-
resents mean dopamine learned trial, error bars represent SEMs, and circles represent individual mice. Values under la-
bels represent mean ±SEM. * p<0.05, Welch’s t-test 
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Extended Data Figure 8. Reward evoked and cue-evoked dopamine increase prior to behavioral learn-
ing. 
A. Mean cumsum of cue-evoked licking (solid) and dopamine response (dashed) for Typ ITI (left, gold) and Ext ITI (right, 
purple) mice. Data were normalized by each animal’s final trial of conditioning and aligned to their learned trial before av-
eraging, as in Fig 2F, but using measurements of the peak of the dopamine response rather than the AUC. Lines repre-
sent means, and shading represents SEM. 
B. Mean cumsum of reward normalized cue-evoked dopamine responses in Typ ITI (gold) and Ext ITI (purple) mice as in 
Fig 2G, but using measurements of the peak of the dopamine response instead of the AUC. Cumsum curves normalized 
by number of trials to account for different trial numbers between groups. Lines represent means, and shading represents 
SEM.  
C & D. Average reward normalized AUC (C) or peak (D) cue (lighter, longer dashes) and reward (darker, smaller dashes) 
evoked dopamine responses aligned to each animal’s behavior learned trial. Data were normalized to the average of the 
three maximum reward responses in each animal. Note the increase in reward response prior to behavioral learning. 
Lines represent means, and shading represents SEM. 
E & F. Average reward normalized AUC (E) or peak (F) cue-evoked dopamine across scaled trial units. Lines represent 
means, and shading represents SEM. 
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Extended Data Figure 9. ANCCR simulations of cue-evoked licking and dopamine learned trial. 
A. ANCCR simulation of the dopamine learned trial during conditioning with a Typical ITI (60 s, gold, n = 20 iterations) or 
Extended ITI (600 s, purple, n = 20 iterations). Bar heights represent mean response, and error bars represent SEMs. 
Circles represent individual iteration run. Values under labels represent mean ±SEM. ****p<0.0001, Welch’s t-test. 
B. ANCCR simulation of normalized lick response to cue at the end of conditioning with a Typical ITI (60 s, gold, n = 20 
iterations) or Extended ITI (600 s, purple, n = 20 iterations). Bar heights represent mean response, and error bars repre-
sent SEMs. Circles represent individual iteration run. ****p<0.0001, Welch’s t-test. 
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Extended Data Table 1 – Statistical Tests  
Figure Panel Group (N) Description Test Result p-value (two -

tailed) Significant 

Figure 1 F 
Typ ITI (n = 17) number of trials to 

learn 
Welch's 

t-test 
t (16.26) 
= -12.64 p = 7.90 x 10-10 **** 

Ext ITI (n = 19) 

Figure 1 F 
Typ ITI (n = 17) number of trials to 

learn: variance F-test F (16,18) 
= 111.2 p = 2.18 x 10-14 **** 

Ext ITI (n = 19) 

Figure 1 I 
Typ ITI (n = 19) change in lick rate to 

cue, last 10 or 100 tri-
als 

Welch's 
t-test 

t (25.94) 
= 0.44 p = 0.661 ns 

Ext ITI (n = 19) 

Figure 1 I 
Typ ITI (n = 19) change in lick rate to 

cue, last 10 or 100 tri-
als: variance 

F-test F (18,18) 
= 4.3 p = 0.00335 ** 

Ext ITI (n = 19) 

Figure 2 E 
Typ ITI (n = 5) 

trials from DA to beh. Welch's 
t-test 

t (4.07) = 
7.2 p = 0.00184 ** 

Ext ITI (n = 7) 

Figure 2 H 
Typ ITI (n = 5) cue DA, last 10 or 100 

trials 
Welch's 

t-test 
t (7.16) = 

-2.6 p = 0.0350 * 
Ext ITI (n = 7) 

Figure 3 B Typ ITI (n = 20) 
Ext ITI (n = 20) 

TDRL simulation - tri-
als to learn 

Welch's 
t-test 

t (38) = 
2.87 p = 0.00666 ** 

Figure 3 C 
Typ ITI (n = 20) ANCCR simulation - 

trials to learn 
Welch's 

t-test 
t (20.5) = 

92.63 p = 2.27 x 10-28 **** 
Ext ITI (n = 20) 

Figure 3 D 
Typ ITI (n = 20) ANCCR simulation - 

trials from DA to beh. 
Welch's 

t-test 
t (22.17) 
= 51.3 p = 1.53 x 10-24 **** Ext ITI (n = 20) 

Figure 3 E 
Typ ITI (n = 20) ANCCR simulation - 

cue DA, last 10 or 100 
trials: mean 

Welch's 
t-test 

t (20.11) 
= -28.64 p = 8.85 x 10-18 **** 

Ext ITI (n = 20) 

Ext. Data 
Figure 2 B 

Typ ITI (n = 19) change in lick rate to 
cue, trials 36-40 

Welch's 
t-test 

t (33.9) = 
-5.59 p = 2.99 x 10-6 **** Ext ITI (n = 19) 

Ext. Data 
Figure 2 D 

Typ ITI (n = 19) prop of trials with  >1 
licks to cue, trials 36 - 

40 

Welch's 
t-test 

t (30.66) 
= -8.72 p = 8.34 x 10-10 **** Ext ITI (n = 19) 

Ext. Data 
Figure 3 D 

Typ ITI (n = 17) number of trials to 
learn (80% of max dist 

from diagonal) 

Welch's 
t-test 

t (16.36) 
= 12.46 p = 9.06 x 10-10 **** Ext ITI (n = 19) 

Ext. Data 
Figure 3 D 

Typ ITI (n = 17) number of trials to 
learn (85% of max dist 

from diagonal) 

Welch's 
t-test 

t (16.36) 
= 12.49 p = 8.79 x 10-10 **** Ext ITI (n = 19) 

Ext. Data 
Figure 3 D 

Typ ITI (n = 17) number of trials to 
learn (90% of max dist 

from diagonal) 

Welch's 
t-test 

t (16.27) 
= 11.57 p = 2.88 x 10-9 **** Ext ITI (n = 19) 

Ext. Data 
Figure 3 D 

Typ ITI (n = 17) number of trials to 
learn (95% of max dist 

from diagonal) 

Welch's 
t-test 

t (16.3) = 
11.69 p = 2.45 x 10-9 **** Ext ITI (n = 19) 

Ext. Data 
Figure 3 D 

Typ ITI (n = 17) number of trials to 
learn (100% of max 
dist from diagonal) 

Welch's 
t-test 

t (16.26) 
= 13.13 p = 4.51 x 10-10 **** Ext ITI (n = 19) 

Ext. Data 
Figure 4 C 

Typ ITI (n = 19) prop. of trials with  >1 
licks to cue, last 10 or 

100 trials 

Welch's 
t-test 

t (23.38) 
= -1.72 p = 0.0980 ns Ext ITI (n = 19) 

Ext. Data 
Figure 4 D 

Typ ITI (n = 17) abruptness of change 
at learning 

Welch's 
t-test 

t (33.02) 
= -0.040 p = 0.968 ns Ext ITI (n = 19) 

Ext. Data 
Figure 5 B 

Typ ITI (n = 19) change in lick rate to 
cue, trials 36-40 

Welch's 
t-test 

t (28.59) 
= 0.89 

p = 0.762 
(Bonferroni cor-
rected) 

ns Typ ITI-few (n = 
12) 
Ext ITI (n = 19) change in lick rate to 

cue, trials 36-40 
Welch's 

t-test 
t (28.55) 
= -7.86 

p = 2.55 x 10-08 

(Bonferroni cor-
rected) 

**** Typ ITI-few (n = 
12) 
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Ext. Data 
Figure 7 C 

Typ ITI (n = 5) 
DA learned trial Welch's 

t-test 
t (4.02) = 

4.46 p = 0.0110 * Ext ITI (n = 7) 
Ext. Data 
Figure 9 A 

Typ ITI (n = 20) simulation - norm. lick 
to cue 

Welch's 
t-test 

t (31.21) 
= -44.15 p = 1.06 x 10-29 **** Ext ITI (n = 20) 

Ext. Data 
Figure 9 B Typ ITI (n = 20) simulation - DA 

learned trial 
Welch's 

t-test 
t (20.06) 
= 80.46 p = 1.17 x 10-26 **** Ext ITI (n = 20) 
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