
Sequence analysis

NgsRelate: a software tool for estimating

pairwise relatedness from next-generation

sequencing data

Thorfinn Sand Korneliussen1 and Ida Moltke2,*

1Center for GeoGenetics and 2Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on June 23, 2015; revised on August 6, 2015; accepted on August 24, 2015

Abstract

Motivation: Pairwise relatedness estimation is important in many contexts such as disease

mapping and population genetics. However, all existing estimation methods are based on called

genotypes, which is not ideal for next-generation sequencing (NGS) data of low depth from which

genotypes cannot be called with high certainty.

Results: We present a software tool, NgsRelate, for estimating pairwise relatedness from NGS

data. It provides maximum likelihood estimates that are based on genotype likelihoods instead of

genotypes and thereby takes the inherent uncertainty of the genotypes into account. Using both

simulated and real data, we show that NgsRelate provides markedly better estimates for low-depth

NGS data than two state-of-the-art genotype-based methods.

Availability: NgsRelate is implemented in Cþþ and is available under the GNU license at www.pop

gen.dk/software.

Contact: ida@binf.ku.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Estimation of how related two individuals are from genetic data

plays a key role in several research areas, including medical genetics

and population genetics. For example, in medical genetics it is used

for excluding closely related individuals from association studies

and thereby to avoid inflated false positive rates. How related two

individuals are is usually described through the concept of identity-

by-descent (IBD), i.e. genetic identity due to a recent common ances-

tor. Historically, several summary statistics have been used, such as

the kinship coefficient h, however almost all of these statistics can be

calculated from R ¼ ðk0; k1;k2Þ, where km is the fraction of genome

in which the two individuals share m alleles IBD. For example

h ¼ k1

4 þ
k2

2 . We will therefore here focus on R.

Many estimators for R have been proposed, both method of mo-

ments (Purcell et al., 2007; Ritland, 1996) and maximum likelihood

(ML) estimators (Thompson, 1975). Common to them all is that

they are based on genotype data and it has been shown that they

work well on single nucleotide polymorphism (SNP) chip data.

However, next-generation sequencing (NGS) is becoming increas-

ingly common and often NGS data are only of low depth, which

means that genotypes can only be called with high uncertainty

(O’Rawe et al., 2015). For such data it has been shown that it can

be an advantage to take the uncertainty of the genotypes into ac-

count by basing statistical methods on so-called genotype likeli-

hoods (GLs), instead of genotypes (Skotte et al., 2013). Motivated

by this we developed NgsRelate; a ML method for estimating the

pairwise relatedness parameter R from NGS data based on GLs. In

the following, we present this method and show that for low-depth

NGS data it performs markedly better than two state-of-the-art

genotype-based methods.

2 Methods

To estimate R for two non-inbred individuals i and j we use the fol-

lowing probabilistic framework: Let Di¼ðDi
1;D

i
2; . . . ;Di

LÞ and

Dj¼ðDj
1;D

j
2; . . . ;Dj

LÞ denote the observed NGS data for i and j at

L diallelic loci and Gi¼ðGi
1;G

i
2; . . . ;Gi

LÞ and Gj¼ðGj
1;G

j
2; . . . ;
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Gj
LÞ denote the true unobserved genotypes at the L loci. Further, let

Xl 2 f0;1; 2g denote the unobserved number of alleles i and j

share IBD at locus l. Finally, let the two alleles at each locus be

denoted A and a and the frequencies of the A alleles be denoted

fA¼ðf A
1 ; f

A
2 ; . . . ; f A

L Þ. Then, assuming the loci are independent and

that fA is known the likelihood function for R, can be written:

LðRjDi;Dj; f AÞ ¼
YL

l¼1

X

m2f0;1;2g
PðDi

l;D
j
ljXl ¼ m; f A

l ÞPðXl ¼ mjRÞ

with PðXl ¼ mjRÞ ¼ km and

PðDi
l;D

j
ljXl ¼ m; f A

l Þ

¼
X

Gi
l
;G

j

l
2f0;1;2g2

PðDi
ljGi

lÞPðD
j
ljG

j
lÞPðGi

ljf A
l ÞPðG

j
ljf A

l ;Xl ¼ m;Gi
lÞ

Here PðDi
ljGi

lÞ and PðDj
ljG

j
lÞ are GLs, which can be estimated

using ANGSD (Korneliussen et al., 2014) and PðGi
ljf A

l Þ and

PðGj
ljf A

l ;Xl ¼m;Gi
lÞ are given in Supplementary Table S1–S2. fA

and major and minor alleles can be precalculated from NGS data

using ANGSD or from SNP chip data. NgsRelate provides ML

estimates of R by finding the value of R that maximizes this likeli-

hood function with an Expectation Maximization algorithm

(Supplementary Data). Like all other ML estimators, this estimator

is consistent and we note that this is also true if the assumption of in-

dependence between loci is violated, since the function that is opti-

mized then becomes a composite likelihood function. We also note

that if the genotypes are known with certainty the GLs will be 0 for

all but the true genotype and in that case the method reduces to the

ML method in Choi et al. (2009). In all other cases the uncertainty

is taken into account by summing over all possible true genotypes

and weighing each according to their GLs.

3 Results and discussion

To test NgsRelate we used both simulated and real data. We first

simulated NGS data for 100 000 diallelic loci from 100 pairs of indi-

viduals from each of the relationships: parent–child, full siblings,

half-siblings, first cousins and unrelated individuals. To make it pos-

sible to assess how NgsRelate’s performance depends on average

sequencing depth we simulated such data for five different average

depths ranging from low (1, 2 and 4�) over medium (8�) to rela-

tively high depth (16�). From the simulated data we calculated GLs,

which we applied NgsRelate to. We also called genotypes based on

the maximum GLs and applied the genotype-based ML method

from Choi et al. (2009) and PLINK (Purcell et al., 2007) to these

called genotypes. See Supplementary Data for details. The simula-

tions showed that all three methods perform well on high-depth

data, but that the two genotype-based methods did not provide ac-

curate estimates of R for the related pairs based on low- and me-

dium-depth data (Fig. 1). Further inspection of the results revealed

that for all the related pairs these two methods tend to overestimate

k0 and thereby make the pairs look less related (Supplementary Figs

S1–S5). NgsRelate on the other hand performs well on medium and

low-depth data down to 4� (Fig. 1). Even for 2� data it is only

slightly biased (Supplementary Figs S1–S5) and for 1� it has large

variance, yet it still performs markedly better than the other two

methods (Fig. 1). Hence, the simulations suggest that for low-depth

NGS data NgsRelate outperforms the two genotype-based methods.

To assess if this holds true for real data we then applied the three

methods to low-depth (�4�) NGS data from six genomes from the

1000 Genomes Project Consortium (2012). These individuals have

also been SNP chip genotyped (International HapMap 3 Consortium,

2010), and six of the pairs have been reported to be related. We

applied NgsRelate to GLs calculated from the low-depth NGS data

using ANGSD and applied the two other methods to genotypes called

from these GLs. To limit the amount of genotype calling errors only

data from sites with depth above 2 in both genomes and a minor allele

frequency above 0.05 were included in the genotype-based analyses.

Next, we estimated R from the high-quality SNP chip genotypes using

a state-of-the-art genotype-based method to achieve accurate estimates

of R, which we used as a proxy for the true values when assessing the

NGS data-based estimates. For all six-related pairs the estimates from

NgsRelate differed markedly less from the ‘true’ values (Fig. 2 and

Supplementary Fig. S6), e.g. the difference in k0 ranged from 0.002 to

0.031 for NGSrelate, whereas they ranged from 0.081 to 0.31 for

genotype-based ML estimator and from 0.096 to 0.25 for PLINK. In

all cases k0 was overestimated, though, note that the opposite was

observed for PLINK when we changed the quality filtering of the geno-

types (Supplementary Data), suggesting that estimates from the

Fig. 1. Root mean square deviation (RMSD) between estimated and simulated

R for 100 of each combination of four relationship types and five average

sequencing depths 1, 2, 4, 8 and 16 (see Supplementary Fig. S5 for results for

unrelated pairs). For each combination estimates were obtained with

NgsRelate (left), genotype-based ML (middle) and PLINK (right). RMSD will

be zero if the estimate is equal to the simulated R

Fig. 2. RMSD between the estimated and the true R for six pairs of �4� gen-

omes. RMSD will be 0 if the estimate is equal to the true R
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genotype-based methods depend highly on filtering choices. However,

all the real data results supported the conclusion from the simulations:

for low-depth NGS data NgsRelate provides more accurate estimates.
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