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Abstract: Composite polymer electrolytes provide an emerging solution for new battery development
by replacing liquid electrolytes, which are commonly complexes of polyethylene oxide (PEO) with
ceramic fillers. However, the agglomeration of fillers and weak interaction restrict their conductivities.
By contrast with the prevailing methods of blending preformed ceramic fillers within the polymer
matrix, here we proposed an in situ synthesis method of SiO2 nanoparticles in the PEO matrix.
In this case, robust chemical interactions between SiO2 nanoparticles, lithium salt and PEO chains
were induced by the in situ non-hydrolytic sol gel process. The in situ synthesized nanocomposite
polymer electrolyte delivered an impressive ionic conductivity of ~1.1 × 10−4 S cm−1 at 30 ◦C,
which is two orders of magnitude higher than that of the preformed synthesized composite polymer
electrolyte. In addition, an extended electrochemical window of up to 5 V vs. Li/Li+ was achieved.
The Li/nanocomposite polymer electrolyte/Li symmetric cell demonstrated a stable long-term cycling
performance of over 700 h at 0.01–0.1 mA cm−2 without short circuiting. The all-solid-state battery
consisting of the nanocomposite polymer electrolyte, Li metal and LiFePO4 provides a discharge
capacity of 123.5 mAh g−1, a Coulombic efficiency above 99% and a good capacity retention of 70%
after 100 cycles.

Keywords: composite polymer electrolyte; PEO; silica; in situ; lithium metal

1. Introduction

The first application of solid polymer electrolytes in lithium-based batteries was pioneered by
Armand and co-workers [1], which has inspired a series of studies in this field. Due to the safety issues
of classical Li-ion batteries, solid-state lithium batteries are being revived [2–4]. In addition, in these
solid-state batteries, Li metal can be employed as the anode because of the non-flammable nature of
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the solid electrolytes [5,6]. The renewed interest in lithium solid electrolytes reflects high demands of
safe and high-energy battery technologies [7,8]. In particular, solid polymer electrolytes consisting of
lithium salts and poly (ethylene oxide) (PEO) represent a unique category of lithium solid electrolytes,
which are compatible with Li metal [9,10] and suitable for building cells and strongly relaxed lithium
dendrites [11,12]. Moreover, these materials enable the construction of flexible, stretchable, compact
and laminated batteries [13–15].

Despite their advantages, the application of PEO-based polymer electrolytes is drastically hindered
by their low ionic conductivities. The PEO chains are coordinated by the lithium ions in PEO-LiX
electrolytes, thus dividing Li+ cations from X− anions [16,17]. During the breaking/forming processes of
the Li–O bonds, lithium ions transport via inter/intrachain hooping in the PEO-LiX electrolytes [18,19].
Lithium ion transport in PEO-LiX polymer electrolytes thereby requires local relaxation and segmental
rearrangement of the PEO chains, which can only be realized when the PEO-LiX polymer electrolytes
are in an amorphous condition, viz. above the melting point, ~60 ◦C. Therefore, the PEO-LiX polymer
electrolytes generally exhibit inferior ionic conductivities below 60 ◦C, especially at room temperature.
The room-temperature conductivities of PEO-LiX polymer electrolytes are typically in a range of
10−8~10−6 S cm−1 [20–22]. In addition, the recrystallization processes of PEO-LiX polymer electrolytes
lead to a stepwise decrease of conductivities at room temperature, which gradually increases the
internal resistance of the rechargeable cells and causes capacity decay. Scrosati et al. reported that
the room-temperature conductivity of the PEO8-LiClO4 polymer electrolyte was decreased from
~10−6 S cm−1 to ~10−7 S cm−1 after 20 days [23]. Maranas et al. determined that the recrystallization
process of the PEO6-LiClO4 phase needs at least three days at room temperature, which decreases the
conductivities by more than two orders of magnitude [24].

Therefore, tremendous efforts have been devoted to suppressing the crystallization of PEO-LiX
and improving and stabilizing their conductivities at ambient temperature. One common method is
plasticizing the PEO-LiX via adding liquid plasticizers, i.e., organic solvents [25,26]. The conductivities
can be significantly enhanced by the addition of liquid plasticizers. Unfortunately, the mechanical
performance of the polymer electrolytes will be destroyed. It should be noted that the PEO-LiX polymer
electrolytes intrinsically possess inferior mechanical performance. The destroyed inferior mechanical
performance of polymer electrolytes changes some of the intrinsic features. In addition, the liquid
plasticizers in the PEO-LiX matrix may lead to incompatibility with the lithium metal anode, which
will terminate the most important advantage of the PEO-based electrolytes.

It is thereby interesting to improve the ionic conductivities of PEO-LiX polymer electrolytes, but
without compromising the mechanical performance and stability with Li metal. Nanoscale oxides were
found to meet this merit criterion by the pioneering work of Scrosati and co-workers [27]. The TiO2

and Al2O3 nanoparticles with a respective size of 13 nm and 5.8 nm have been used as fillers in the
PEO-LiClO4 matrix, which enhance the conductivities from 10−8 S cm−1 to ~1.7× 10−5 S cm−1 at ambient
temperature. The recrystallization kinetics of the PEO chains after cooling from the amorphous state to
room temperature is inhibited by the dispersed and large surface-area ceramic fillers, thus increasing
the conductivities. Meanwhile, the mechanical performance of the polymer matrix is also improved.
The effects of various ceramic nanofillers, such as SiO2, ZnO, ZrO2, LiAlO2, BaTiO3 and clays etc. in
the electrical performance of polymer electrolytes have been investigated [28–32]. Silicon dioxide, as a
ceramic nanofiller, plays a vital role in optimizing the property of materials [33]. In our previous work,
we observed that 10 wt.% SiO2 (5–10 nm particle size) increases the room-temperature conductivity
of PEO-LiClO4 to ~10−5 S cm−1. However, a stepwise decrease of conductivity to ~10−6 S cm−1 has
been observed after one week, indicating that the suppression on the recrystallization process is
incomplete [34].

Besides inert fillers, ceramic electrolytes including garnet-type Li7La3Zr2O12, nasicon-type
Li1.5Al0.5Ge1.5(PO4)3, perovskite-type Li0.33La0.55TiO3 and sulfide Li10GeP2S12 have been used as active
fillers for the PEO-LiX polymer electrolytes to enhance their conductivities [35–39]. The inert and
active ceramic nanoparticle fillers added through preformed ceramics may result in agglomeration
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of nanoparticles, heterogeneous dispersion of fillers, and weak interactions between PEO chains
and ceramics, hindering further enhancement of the conductivities of PEO-LiX polymer electrolytes.
Cui et al. reported an aqueous hydrolysis preparation of the PEO-LiClO4-SiO2 polymer electrolyte
with an enhanced conductivity of 4.4 × 10−5 S cm−1 at 30 ◦C [40].

Herein, we propose an alternative route to process the nanocomposite polymer electrolyte
membranes based on the in situ non-hydrolytic sol gel reaction. Homogeneous dispersion of
SiO2 nanoparticles and robust chemical interaction between the SiO2 nanoparticles and PEO are
demonstrated. The in situ synthesized nanocomposite polymer electrolyte membrane achieves an
improved conductivity of 1.1 × 10−4 S cm−1 at 30 ◦C, which is two orders of magnitude higher
than that of the preformed synthesized composite polymer electrolyte. In addition, an extended
electrochemical stability voltage window of up to 5 V vs. Li/Li+ is achieved. By using this reliable
nanocomposite polymer electrolyte membrane, the Li/nanocomposite polymer electrolyte/Li symmetric
cell demonstrated a stable long-term cycling performance of over 700 h at 0.01–0.1 mA cm−2 without
short circuiting, and the high-energy solid lithium cell with Li metal paired with LiFePO4 cathode
exhibited a reversible capacity of 123.5 mAh g−1 at 0.1 C and 55 ◦C.

2. Experiment

2.1. Chemical Reagents and Materials

Polyethylene oxide (PEO, Mn = 1,000,000 g mol−1, Aladdin, Shanghai, China) was dehydrated at
60 ◦C for 24 h in vacuum. Lithium perchlorate (LiClO4, anhydrous, Aladdin, Shanghai, China) and
lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, Aladdin, Shanghai, China) were dried at 120 ◦C in
vacuum for 24 h. The as-dried PEO, LiClO4, and LiTFSI were stored in an Ar-filled glove box before
use. Tetraethoxysilane (TEOS, Aladdin, Shanghai, China), formic acid (FA, Aladdin, Shanghai, China),
N,N-dimethylformamide (DMF, Aladdin, Shanghai, China), and acetonitrile (anhydrous, Aladdin,
Shanghai, China) were used as-received. Lithium iron phosphate (LiFePO4, MTI Co. Ltd., Shenzhen,
China) and carbon black (Super P, MTI Co. Ltd., Shenzhen, China) were dried at 120 ◦C in vacuum for
24 h before use. Lithium metal strips (China Energy Lithium Co. Ltd., Tianjin, China) were stored in
an Ar-filled glove box and used without any surface treatment or modification.

2.2. Preparation of Electrolyte Membranes

PEO and LiClO4 were mixed at the ether-oxygen-to-lithium ratio of 10:1, and dissolved in DMF to
~10% weight at 60 ◦C. A measured amount of TEOS, based on the complete conversion of TEOS to
SiO2, was then added to the PEO-LiClO4 solution (weight of SiO2 equaled to 10 wt.% of total weight
of PEO and LiClO4). FA was slowly added with vigorous stirring to the above clear solution (the
mole ratio FA/TEOS = 7.8/1) to initiate the gelation. Afterwards, the solution was stirred for 12 h,
outgassed under partial vacuum, cast onto a PTFE substrate, and dried firstly in air and subsequently in
vacuum at 60 ◦C for 24 h. The processes yielded free-standing, transparent and flexible nanocomposite
polymer electrolyte membranes. The membranes were kept in the inert glovebox for at least one week
before characterization.

2.3. Characterizations of Electrolyte Membranes

The microstructure of the nanocomposite polymer electrolyte membrane was examined on the
surfaces of the membranes via scanning electron microscope (SEM) (Hitachi, Su8020, Tokyo, Japan).
The distribution of the elements was detected via energy-dispersive spectroscopy (EDS) (HORIBA,
EX250, Kyoto, Japan). The interactions of the in situ composite polymer membrane were evaluated
via X-ray photoelectron spectroscopy (XPS) (Axis Ultra DLD, Shimadzu, Kyoto, Japan). The ionic
conductivities of the membranes were determined via electrochemical impedance spectroscopy (EIS)
on an Autolab PGSTAT302N (Metrohm, Herisau, Switzerland) under frequencies from 1 MHz to 0.1 Hz
and amplitude of 10 mV at room temperature in a CR2025 coin cell consisting of the given membrane
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and stainless steel blocking electrodes. The conductivity–temperature curves for the membranes were
obtained at the temperature range from room temperature to 100 ◦C. The voltage of the membranes
was determined by linear sweep voltammetry (LSV, Autolab PGSTAT302N, Herisau, Switzerland) at a
sweep rate of 0.1 mV s−1. The membranes were sandwiched by a lithium strip and stainless steel in a
CR2025 coin cell. The Li plating/stripping process was studied in a Li/polymer membrane/Li symmetric
cell. Li plating/stripping was performed at variable current densities from 0.01 to 0.1 mA cm−2 (2 h for
each plating/stripping cycle) at 55 ◦C. To build the solid-state lithium cell, Li metal anode and LiFePO4

cathode were paired with the nanocomposite polymer electrolyte membrane. The LiFePO4 cathode
was prepared in a similar manner as the previous solid-state Li metal battery [35]. Briefly, LiFePO4,
Super P, PEO and LiTFSI were dispersed in acetonitrile and ball milled at 300 rpm for 24 h at a weight
ratio of LiFePO4:Super P:PEO:LiTFSI = 60:10:20:10. The composite cathode with a LiFePO4 loading of
~1.0 mg cm−2 was obtained after casting the resulting slurry on Al foil followed by vacuum drying at
60 ◦C for 24 h. The charge-discharge characterization was performed in a voltage range of 2–4 V under
the constant current modes of 0.1 C and 0.2 C (1 C = 170 mA g−1) at 55 ◦C.

3. Results and Discussion

3.1. Physicochemical Properties of the Nanocomposite Polymer Electrolyte Membranes

Figure 1 schematically shows the in situ synthesis of SiO2 nanoparticle-filled PEO-LiClO4

nanocomposite polymer electrolyte membranes. We prepared the nanocomposite polymer electrolytes
through a classical non-hydrolytic sol gel reaction [41]. This reaction scheme was first used with a
simple silicon alkoxide, i.e., TEOS. FA was used as a catalyst to create the oxide nanofillers. Unlike
other hydrolysis reactions, this method is well-suited for the synthesis of oxide nanoparticles without
changing the pH of the solution. The reactive by-products only included trace ethanol and water,
but not deionized water, which eliminates the need for the time-consuming and energy-intensive
drying process [40,42]. Moreover, TEOS, FA, LiClO4 and PEO are soluble in a single solvent, such as
DMF, at elevated temperatures above the melting point of PEO, such as 60 ◦C, thereby leading to the
infinite miscibility of the precursor fillers in the PEO network and homogeneous distribution of the
nanofillers in the PEO matrix. At this point, a semi-transparent and stable resin was obtained after
sufficient stirring, and cast on a PTFE sheet. A free-standing, transparent and flexible nanocomposite
polymer electrolyte membrane was obtained after a careful drying process. It should be noted
that the as-prepared membranes were stored in an inert glovebox for at least one week before any
characterization to remove trace water and complete the recrystallization dynamics. Liu and Lin et al.
previously described similar materials, viz. PEO-LiTf/LiClO4-SiO2 composites [40,43]. PEO has many
advantages, such as a high capability of dissolving lithium salts, good stability towards lithium metal
anode, easy processability, low toxicity, and low cost etc. These advantages make PEO a popular
material system. Our work is different from their work. Liu et al. developed the PEO-SiO2 composite
polymer electrolyte through simultaneous formation of the polymer matrix and the inorganic particles.
Their work emphasized the polymer matrix formed by ultraviolet irradiation of a PEO macromer
concurrent with addition of SiO2 nanoparticles. The synthesis process was relatively complicated, the
SiO2 nanoparticles were not fully in situ addition, and the polymerization reaction was also not easy
to control. By contrast, in our work, the SiO2 nanoparticles were in situ formed in the PEO matrix,
and high-molecular-weight PEO (1,000,000 g mol−1) was selected. In both Liu and Lin’s work, the
formation of SiO2 nanoparticles were via a hydrolysis reaction (addition of TEOS to deionized water).
On the contrary, we prepared the nanocomposite polymer electrolytes through a non-hydrolytic sol gel
reaction. The reactive by-products only included trace ethanol and water, but not deionized water,
which eliminates the need for the time-consuming and energy-intensive drying process. We think
these are the advantages of our approach over other in situ approaches for SiO2 in PEO.
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Figure 1. Schematic of the in situ synthesis of the nanocomposite polymer electrolyte membrane.

Figure 2a shows the SEM image of the nanocomposite polymer electrolyte membrane.
The membrane displays a glass-like morphology, which is different from the spherulitic morphologies
of typical PEO-LiX polymer electrolytes [44]. The surface of the present membrane is smooth compared
with the rough surfaces of pure PEO-LiX polymer electrolytes, indicating the membrane has an
amorphous structure [45]. SiO2 nanoparticles were not observed in the SEM image, probably because
the SiO2 nanoparticles are embedded in the PEO matrix and the resolution of the SiO2 nanoparticles is
obstructed by the polymer. To study whether the SiO2 nanoparticles are distributed homogeneously
in the PEO matrix, EDS analysis was conducted on elements C, O, Si and Cl, which represent PEO,
SiO2 nanoparticles and LiClO4, respectively. As shown in Figure 2b, the EDS spectra confirm the
homogeneous distribution of SiO2 nanoparticles in the PEO matrix. By contrast, the membrane
prepared by directly mixing preformed SiO2 nanoparticles exhibited heterogeneous morphologies
with aggregation and inhomogeneous distribution of SiO2 nanoparticles [34,46,47].
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elemental map of the membrane showing distribution of C, O, Si, Cl, respectively.
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3.2. Ionic Conductivity and Electrochemical Stability Window

As shown in Figure 3a, the EIS of the nanocomposite polymer electrolyte membrane (in situ
membrane) was acquired to determine the ionic conductivity at 30 ◦C. The ionic conductivities of the
composite polymer electrolyte (ex situ membrane) and ceramic-free polymer electrolyte (ceramic-free
membrane) membranes were provided as a comparison. It was found in Figure 3a that the EIS of
the membranes was similar. The EIS consists of an incomplete high-frequency semicircle, which
represents the ionic impedance of the polymer electrolytes, and a straight-line in the low-frequency
region, which is ascribed to the bulk effect of the blocking electrodes. The ionic conductivity of
the in situ membrane was around ~1.1 × 10−4 S cm−1 at 30 ◦C; whereas, the ex situ membrane and
ceramic-free membrane exhibited ionic conductivities of 9.1 × 10−7 S cm−1 and 7.1 × 10−8 S cm−1 at
30 ◦C, respectively, which agrees well with previous results [40]. In particular, the in situ non-hydrolytic
sol gel reaction significantly enhanced the ionic conductivity by approximately two orders of magnitude
compared with that of the ex situ membrane and three orders of magnitude compared with that of the
ceramic-free membrane.
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Figure 3b compares the Arrhenius plot of the in situ membrane with those of the ex situ and
ceramic-free membranes from 30 ◦C to 110 ◦C. The heating procedure of the ceramic-free membrane
displayed a break at about 60 ◦C, demonstrating the typical phase transition of PEO from crystalline to
the amorphous form. On the other hand, the ex situ membrane showed a slightly different trend for the
heating procedure. The conductivity break was also observed but decreased to 50 ◦C, demonstrating
that PEO crystallization was alleviated by the addition of the ceramic filler. Interestingly, the break
was almost disappeared during the heating procedure of the in situ membrane, demonstrating
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the PEO crystallization was almost completely suppressed by the in situ non-hydrolytic sol gel
reaction. In addition, the cooling cycle exhibited a distinct trend compared with the heating cycle.
The conductivity trend of the ceramic-free and ex situ membranes was reproduced in the cooling cycle
only at above the break temperature. The conductivities of the ceramic-free and ex situ membranes
were around 10−5 S cm−1 when the membranes were cooled to 30 ◦C, while the conductivities were
10−7 S cm−1 and 10−6 S cm−1 for the starting stage, respectively. This is because the crystalline PEO
is changed to the amorphous state when the temperature is above the melting point of PEO. When
cooled below the melting point, the amorphous PEO does not have enough time to recrystallize due to
the slow recrystallization kinetics, resulting in conductivity changes. For the in situ membrane, since
the in situ non-hydrolytic sol gel reaction can markedly prevent the crystallization of PEO, the heating
and cooling procedures had little effect on the phase transition of PEO. Therefore, the conductivity of
the in situ membrane does not have significant changes during the heating and cooling cycles.

Furthermore, the conductivity of the in situ membrane at ambient temperature stayed stable
(approximately 7 × 10−5 S cm−1), as shown in Figure 3c, where the conductivity is plotted as a function
of time at ambient temperature. It is well-known that the recrystallization process of PEO-LiX polymer
electrolytes can lead to a significant decrease of conductivities, i.e., one to two orders of magnitude,
restricting the application of PEO for solid-state batteries, especially at ambient temperature [34].
The inhibitory effect of the in situ non-hydrolytic sol gel reaction on the recrystallization dynamics of
PEO provides a promising application for PEO-based polymer electrolytes at ambient temperature.

High-energy batteries require the electrolyte to possess a wide electrochemical stability voltage
window. We showed that the in situ non-hydrolytic sol gel reaction could produce high-voltage
electrolytes. The electrochemical stability window of the in situ, ex situ and ceramic-free membranes
was determined via LSV from 2 V to 6.5 V at 1 mV s−1. The stainless steel and lithium metal
serve as working and reference electrodes, respectively. As shown in Figure 3d, a low current was
observed until 3.5 V vs. Li/Li+ for the ceramic-free membrane, which represents the oxidation process
and decomposition of PEO [48]. A stable current could be extended to 4.5 V vs. Li/Li+ for the ex
situ membrane, implying the positive effect of nanofillers on the electrochemical stability voltage
window of polymer electrolytes. Notably, the in situ reaction intensified this positive effect with an
enhanced voltage window of up to 5 V vs. Li/Li+, which is comparable with those previously reported
high-voltage solid polymer electrolytes.

3.3. Interactions Between Polymer and Nanofiller

This work presents a nanocomposite polymer electrolyte membrane obtained from the in
situ non-hydrolytic sol gel reaction of TEOS in the PEO matrix which is believed to trigger the
interactions between the polymer and nanofillers. To support this hypothesis, we characterized
the nanocomposite polymer electrolyte membrane via XPS. As seen in Figure 4, the XPS spectra
can be properly deconvoluted into corresponding components according to different energy states
of these elements. It is notable that the spectra of the sample differ from those of the individual
elements. For example, the C 1s spectrum shows binding energies of carbon around 284.9 and 286.5 eV,
which are related to the C atoms of PEO. However, they are different from those of the individual
PEO [49,50]. In addition, the binding energies of carbon at approximately 288.4 and 289.2 eV correspond
to the carbonyl group, indicating the reactions between formic acid and PEO or SiO2 [51,52]. More
importantly, the Si 2p spectrum shows the binding energy of Si around 103.9 and 102.1 eV, which can
be assigned to the typical Si of SiO2 and siloxanes, respectively [53,54]. These results indicate that the
hydroxyl groups of the PEO chains are chemically binding with the SiO2 nanoparticles during the
non-hydrolytic process. The Li 1s, Cl 2p and O 1s spectra show peaks with binding energies of 55.8,
207.8, 209.4 and 532.7 eV, corresponding to the lithium and chlorine atoms in LiClO4 and oxygen atoms
in PEO, respectively [49]. Therefore, the results reveal the combined structures of the nanocomposite
polymer electrolyte under discussion.
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3.4. Electrochemical Properties

Obstruction of lithium dendrite growth is a key requirement for the development of lithium metal
batteries. The stability of the in situ membrane towards lithium metal was demonstrated by cycling the
Li/in situ membrane/Li symmetric cell at 55 ◦C. Figure 5 shows the galvanostatic cycling. The current
density was first increased from 0.01 to 0.05 mA cm−2, then reduced back to 0.01 mA cm−2 with three
loops, and subsequently boosted to 0.1 mA cm−2. Notably, the voltage overpotential was reproduced
with varying current densities, that is 10 mV versus 0.01 mA cm−2, 50 mV versus 0.05 mA cm−2,
10 mV versus 0.01 mA cm−2, 50 mV versus 0.05 mA cm−2, 10 mV versus 0.01 mA cm−2, and 50 mV
versus 0.05 mA cm−2. The results indicate the interface contact was stable. The long cycling property
was further demonstrated at 0.1 mA cm−2 for 400 h, indicating that a good compatibility is achieved
between the nanocomposite polymer electrolyte and Li metal anode.
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To test the nanocomposite polymer electrolyte membrane, a solid battery was built with LiFePO4

as the cathode, the in situ membrane as the electrolyte, and the Li metal as the anode. The battery
was charged to 4 V and discharged to 2 V at 55 ◦C. As shown in Figure 6a, the cell exhibited a typical
potential plateau of 3.38 V and 3.47 V, representing the discharge/charge potential plateau of LiFePO4 at
0.1 C, respectively. The initial discharge capacity was 123.5 mAh g−1, which is 72.6% of the theoretical
capacity (170 mAh g−1). The relatively low reversible capacity may be a result of the low conductivity
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of the electrolyte membrane and the large interfacial resistances. As shown in Figure 6b, the specific
capacity of Li/in situ membrane/LiFePO4 cells increased slightly during the initial 10–20 cycles, due
mainly to the improved contact and conductivity between PEO, filler and active material after repetitive
Li-ion diffusion [55,56]. In the subsequent cycles at 0.2 C, the Li/in situ membrane/LiFePO4 cell suffered
from a progressive decrease in the specific capacity. The discharge capacity was 81 mAh g−1 after
90 cycles at 0.2 C, corresponding to 70% of the initial capacity at 0.2 C. Other groups also reported
capacity decays upon cycling for the Li/LiFePO4 cells using PEO-based composite polymer electrolytes,
probably owing to the large volume change and destructive interfacial contact [38]. The Coulombic
efficiency of the battery was kept at >99.0% throughout the cycling.
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4. Conclusions

In summary, we developed a new method for the in situ non-hydrolytic sol gel synthesis method for
the preparation of nanocomposite polymer electrolytes. Highly uniformly dispersed SiO2 nanoparticles
in the PEO matrix were obtained because of the infinite miscibility of all precursors. Moreover, robust
chemical interactions between the SiO2 nanoparticles and PEO chains were triggered by the in situ
non-hydrolytic sol gel reaction. As a consequence, the developed nanocomposite polymer electrolyte
membrane showed an enhanced ionic conductivity of ~1.1 × 10−4 S cm−1 at 30 ◦C, which is two orders
of magnitude higher than that of the preformed synthesized composite polymer electrolyte. Moreover,
the electrochemical window was distinctly extended to 5 V from 3.5 V vs. Li/Li+. The Li/nanocomposite
polymer electrolyte/Li symmetric cell demonstrated a stable long-term cycling performance of over
700 h at 0.01–0.1 mA cm−2 without short circuiting. The all-solid-state battery consisting of the
nanocomposite polymer electrolyte, Li metal anode and LiFePO4 cathode possessed a high discharge
capacity of 123.5 mAh g−1, a Coulombic efficiency of above 99%, a good capacity retention of 70% after
10 cycles at 0.1 C and 90 cycles at 0.2 C. The in situ synthesized nanocomposite polymer electrolyte
membrane with greatly enhanced electrochemical performance provides a promising solution for
developing safe and high energy-density lithium metal batteries.
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