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Recent studies show that naïve T cells bearing identical T cell receptors experience het-
erogeneous differentiation and clonal expansion processes. The factors controlling this
outcome are not well characterized, and their contributions to immune cell dynamics are
similarly poorly understood. In this study, we develop a computational model to elaborate
mechanisms occurring within and between two important physiological compartments,
lymph nodes and blood, to determine how immune cell dynamics are controlled. Our multi-
organ (multi-compartment) model integrates cellular and tissue level events and allows us
to examine the heterogeneous differentiation of individual precursor cognate naïveT cells to
generate both effector and memoryT lymphocytes. Using this model, we simulate a hypo-
thetical immune response and reproduce both primary and recall responses to infection.
Increased numbers of antigen-bearing dendritic cells (DCs) are predicted to raise produc-
tion of both effector and memoryT cells, and distinct “sweet spots” of peptide-MHC levels
on those DCs exist that favor CD4+ or CD8+ T cell differentiation toward either effector
or memory cell phenotypes. This has important implications for vaccine development and
immunotherapy.

Keywords: two-compartment model, lymph nodes, blood, agent-based, circulation, systems biology, dendritic cells,
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INTRODUCTION
Antigen-presenting cells (APCs), especially dendritic cells (DCs),
process antigens and carry information from sites of infection to
secondary lymphoid organs, such as lymph nodes (LNs) (1). T
cells are produced in the thymus and are deployed into blood
circulation to recognize millions of different epitopes from path-
ogenic organisms; each T cell is hardwired to have one type of T
cell receptor (TCR) that recognizes a single pattern (i.e., “cognate”
with respect to a specific antigen) (2). The frequency of particu-
lar cognate T cells is as low as 10−5–10−6 (3, 4). Through high
endothelial venules (HEVs), T cells are recruited to LNs, where
they are exposed to antigenic peptides presented by MHC mol-
ecules expressed on DCs – this initiates the adaptive immune
response (5–9). LNs are organized such that when T cells travel
through they can be efficiently scanned by DCs to identify that
rare cognate encounter (10–12). Such encounters result in binding
of cognate T cells to DCs and subsequent activation and prolifer-
ation of the T cells. The expanded T cell population differentiates
into two classes: effector cells, which perform immediate killing
and cytokine secretion functions, and memory cells, which are
reserved for long-term protection (13, 14). These cells move out
of LNs via efferent lymphatics (ELs) into blood circulation (15).
Through the blood, effector T cells reach sites of infection while
memory T cells continue to recirculate and await a potential sec-
ondary infection for which they will wage a faster and stronger
recall response (16, 17). A snapshot of the trafficking of these cells
is shown in Figure 1. The immune system responds differently

to different antigenic materials; however, the same set of machin-
ery is engaged to face each challenge. Thus, there should be a
general program adaptively guiding the behavior of this system.
In this study, we focus on cellular-mediated events shared among
immune responses during the initiation of adaptive immunity and
generation of immune memory.

Differentiation of T cells during generation of adaptive and
memory responses is highly heterogeneous, and this heterogene-
ity is may be dependent on the environmental context that each
cell experiences (18, 19). However, the cause of such heterogeneity
is poorly understood. If mechanisms other than mere stochas-
ticity contribute to heterogeneity, it could be possible to more
precisely direct the differentiation to favor the production of the
desired output from an immune response (e.g., effectors in an
immune therapy or memory cells in vaccination) by manipulating
the mechanisms involved. We are interested in which mechanisms
could provide handles for such manipulation. Since T cell prim-
ing occurs in LNs, and blood circulation conveys effector and
memory T cells to locations where they perform their specific
functions, mechanisms in these two organs could be responsible
for the heterogeneous differentiation. The dynamics of T cells in
these compartments will also reflect progression of infection or
effectiveness of vaccinations. Thus, understanding how different
LN and blood mechanisms affect the dynamics of infection and
treatment could help guide immunotherapy and vaccine design.

Computational and mathematical models are widely used in
biological systems to assess hypotheses and generate predictions
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FIGURE 1 |T cell trafficking between compartments. Naïve T cells
circulate between LNs and blood. Upon infection, APCs present antigen to
cognate T cells in LNs to initiate their proliferation and differentiation to
generate effector and memory cells. After entering the blood, effector cells
are recruited to sites to fight ongoing infection, while memory cells
recirculate, awaiting secondary infections.

for experimental validation. Deterministic equation-based mod-
els have been developed to understand the dynamics of T cells
responding to immunogenic antigens, and these models helped
with estimating parameters, determining alternative hypothesis,
and predicting the outcomes of immune responses (20, 21).
Agent-based models (ABMs) have proven convenient in assessing
roles of cellular and molecular level interactions during infec-
tion (22–27). However, because of the extremely low cognate
frequency that exists in primates, these models usually require
large numbers of cells to be simulated and thus are very com-
putationally intensive. In order to capture both heterogeneous
stimuli-sensitive short-term activation events as well as average
long-term dynamics, a model needs to be capable of adapting
itself to both situations.

In this study, we present a hybrid computational model that
uses an agent-based modeling to capture events occurring in a LN
and a non-linear ordinary differential equation (ODE) model to
capture events occurring in the well-mixed compartment of blood.
This model allows us to track a highly stochastic immune response
operating during the first few weeks of an immune response (with
time resolution around seconds), as well as long-term dynamics
afterward (at a time scale of months to years). Using this model,
we assess which mechanisms in both LN and blood compartments
control the differentiation and clonal expansion processes of T cells
and also direct the immune response toward potent effector T cell
output and/or robust memory generation. These findings could
bring insights to vaccine design strategies.

MATERIALS AND METHODS
LN ABM MODEL
Agent-based models are computational models in which individ-
ual agents are represented on an explicitly formulated grid and
they interact with each other according to a defined set of rules
implemented in discrete time steps. As these types of models can
account for spatial-sensitive interactions between DC and cognate
T cells, they are ideal for studying heterogeneous priming and
differentiation of T cells in LNs (23–25, 28, 29).

We previously developed LymphSim, a three-dimensional (3D)
LN computational model capturing dynamics of CD4+ T cells,
CD8+ T cells, and DCs during both steady state and infection
(30). Briefly, cells move on a 3D grid that is shaped like a trun-
cated cone and represents ~1/200 of a primate LN. T cells enter
the LN via HEVs, search for DCs, activate and proliferate to gen-
erate effector cells that exit via ELs. In LymphSim, cell motility
and steady state values in a LN are calibrated to experimental data
with model antigens such as OVA (31), and the dynamics dur-
ing an immune response are not quantitatively fit to any specific
infection. For simplicity, we only include one type of cognate T
cell each for CD4+ and CD8+ T cells in current model, and DCs
present the corresponding antigens on pMHC (peptide-MHC)-
II and pMHC-I for both primary and secondary infections. The
model can be adapted to account for multiple sub-antigens. For
the work herein, this single antigen study is sufficient to address
the key questions under study. A complete list of rules can be found
at: http://malthus.micro.med.umich.edu/lab/movies/3dLN/.

EFFECTOR AND MEMORY T CELL DIFFERENTIATION RULES
In the present study, we modified LymphSim to include two addi-
tional T cell differentiation states: central memory (CM) and
effector memory (EM), for both CD4+ and CD8+ T cells. We
also added rules that govern generation of these memory cells,
and their interaction with other cells (Figure 2).

We based the cell differentiation process on a version of a
“signal-strength model,” in which the overall strength of signal
received by a naïve T cell during DC contact will determine the fate
of cell differentiation (Figure 3) (32–35). A definitive differentia-
tion scheme after T cell priming occurs has not been determined
by experimentation. Previous modeling studies based on exper-
imental data reject memory to effector differentiation in favor
of effector to memory differentiation (20); however, more recent
work showed that differentiation has as its backbone differentia-
tion from naïve to CM precursor to EM precursor to effector (18).
The scheme we use in this study considers effector to EM differen-
tiation, but is still topologically similar to the scheme from (18),
with precursors of both EM and effectors differentiating into these
two subtypes (Figure 3). The difference between the two schemes
is that “effectors” in our model are cells that have differentiated
toward effector phenotype sufficiently so as not to enter into the
CM population, nor have they entered into the EM pool. They are
allowed to exit the LN due to the loss of early activation markers
(CD69), even though these cells do not perform effector functions
until they would reach sites of infection, which is not studied in
this current work.

In our model, a series of probabilistic checkpoints are estab-
lished to determine to which state a cell will proceed (36–39).
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FIGURE 2 |T cell subsets in two-compartments of LNs and blood: N,
naïve; A, activated; CM, central memory; E, effector; EM, effector
memory. Each number indicates a collection of processes occurring in
that step and in different cell types. Naïve T cells are recruited to LN from
blood. In the LN, cognate T cells bind with Ag-DCs and get activated.
Activated T cells proliferate and differentiate into central memory (CM)

and effector cells. CM in the LN can bind to DC and be activated again.
Effector T cells can further differentiate to effector memory (EM) cells.
Naïve, effector, CM, and EM exit LN from EL. Naïve and CM cells
recirculate between LN and blood. Effector and EM are recruited to sites
of infection. EM can covert to CMs. *Memory establishment for CD8+T
cells requires LDCs.

FIGURE 3 | “Signal-strength model” of T cell differentiation. T cells
receive antigenic, co-stimulatory, and inflammatory signals from DC during
priming. In concert, these of stimulations determine the fate of T cell clonal
expansion and differentiation. Greater proliferation correlates with stronger
signal. However, insufficient stimulation results in death by neglect, while
excessive stimulation causes activation induced cell death. Stronger
stimulation also drives T cells toward terminal differentiation and reduces
their memory-forming potential. Please see Section “Effector and Memory
T Cell Differentiation Rules” for a description of differentiation models and
how this was selected.

When a cognate T cell finds an Ag-bearing DC (Ag-DC) or licensed
DC (LDC) in its binding area, the corresponding pMHC value of
the DC is checked to see if a successful binding can be established.
If bound, a T cell continuously accumulates signals from the DC
(40), represented by pMHC levels at each time point. Here, pMHC
level is used as a proxy for the strength of antigenic stimulation
from the DC or LDC. When a T cell unbinds from a DC or LDC,
the accumulated signal value is used to determine whether a T cell
proceeds to an activated state, or returns to a resting state (naïve).
Activated cells go through a set number of rounds of divisions,
after which the accumulated signal level is checked again to decide
if the cell can further differentiate into an effector state. Effec-
tor cells will divide a few more rounds. With given probabilities,
the cells with intermediate differentiation status do not proceed to
effector status, but become CM cells, while those effector cells with
sufficient signals will become EM cells (41–43). The probability of
effector cell converting to EM is estimated between 0.1 and 0.4. CM
T cells can be recruited to LNs from HEVs. These cells act similarly
to cognate naïve T cells. When they detect Ag-DCs or LDCs, CMs
will bind to DC and accumulate signal more efficiently in compar-
ison with naïve cells (44, 45). The rules above apply to both CD4+
and CD8+T cells. Because we developed some of these rules based
on LCMV studies, one difference we captured between these two
cell types is that CD8+ T cells can bind only to LDCs to generate
functional memory cells in the primary response, whereas CD4+
T cells do not have this restriction and can generate memory cells
after binding to both Ag-DCs and LDCs (46).
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Other models of T cell differentiation exist, and some of these
models are not mutually exclusive. We also integrated features
from these models into our rule set, and excluded those that
are inconsistent with current findings or are not applicable to
our model at this stage. A single naïve T cell can produce both
effector and memory progenies (19, 47), so we excluded the pos-
sibility that effector and memory arise from separate precursors.
In the decreasing-potential model (13), the stimulation that T
cells receive during infection drives greater clonal expansion but
reduces their potential to differentiate into memory cells. Some
studies show T cells are committed to massive proliferation after
initial encounters with APCs, and can differentiate into both mem-
ory and effector subsets even if adoptively transferred into hosts
absent of antigen (48). Thus, we limited the signal accumulation
stage to the period of time when a T cell is bound to a DC before
its first division, similar to findings made in B cell expansion (49).
In the asymmetric cell fate model (50), heterogeneity arises from
the unequal distribution of differentiation factors into daughter
cells during division. We will further study this hypothesis as we
incorporate dynamics at molecular level, but currently account for
these asymmetries using phenomenological probabilities.

BLOOD COMPARTMENT SUB-MODEL: ODE AND PARAMETER
ESTIMATION
We developed a blood compartment model by assuming the blood
is a well-mixed, homogenous compartment. We use a system
of non-linear ODEs to capture the dynamics of T cells therein.
Equations for CD4+ T cells are:

dN4

dt
= SN 4 (t )− δN 4N4 + eLN

N 4 (1)

dE4

dt
= − δE4E4 − ξE4E4 + eLN

E4 (2)

dCM4

dt
= − δCM4CM4 + αEM4EM4 + eLN

EM4 (3)

dEM4

dt
= − δEM4EM4 − ξEM4EM4 − αEM4EM4 + eLN

EM4 (4)

N 4, E4, CM4, and EM4 represent the blood concentrations of
naïve, effector, CM, and EM CD4+ T cells, respectively. SN4(t )
is the time-dependent thymus output of naïve CD4+ T cells
(51). The initial output is estimated from healthy 30-year-old
individuals, and declines by 5% per year (52). δN4 is the overall
death rate constant for naïve cells, including homeostatic prolif-
eration and death. We estimated this parameter by assuming a
quasi-equilibrium between thymus output and peripheral loss.
δE4, δCM4, and δEM4 are the death rate constants for effector, CM,
and EM CD4+ T cells, respectively. δE4 and δEM4 account for
the death of circulating effector and EM cells, excluding those
recruited to sites of infection (53). δCM4 reflects the overall loss of
CM cells, including self-renewal and death (53). ξE4 and ξEM4 are
the rate constants for recruitment of CD4+ effectors and EM cells
from blood to sites of infection. As the dynamics at a site of infec-
tion are not considered in this study, these recruitment terms serve
as a sink for the corresponding cell species in the blood compart-
ment. αEM4 is the rate constant for EM cell differentiation into CM

cells (54). The terms eLN
N 4 , eLN

E4 , eLN
CM4,and eLN

EM4 represent rates of
LN net output of corresponding cells. These terms are converted
to the changes in concentration in the blood per time step. For
naïve and CM cells, this is calculated as the difference between the
number of exited and recruited cells. For effector and EM cells,
this is calculated as the number of exited cells. These four terms
are not solved directly in the ODE system but rather are added as
an initial condition before each blood time step is processed in the
computational model. We show them in the equations for com-
pleteness. Similar equations and parameter estimates are written
for CD8+ T cells (see Supplementary Material). Because the CM
CD8+ T cells population is maintained for life, we assume a very
small value for the loss rate constant δCM8, corresponding to half-
life of 20 years (53). See Table S3 in Supplementary Material for a
complete list of parameters, definitions, values, units, and source
references.

TWO-COMPARTMENT HYBRID MODEL
Our goal is to develop a two-compartment computational model
that combines LymphSim and the blood ODE model described
above. Recently, we published other models linking ODEs and
ABMs (55–57). For this study, we use the implementation method
we employed successfully to link a LN compartment with a lung
(56). The LN and blood compartment models are processed
sequentially during each time step of simulation (Figure 4). Dur-
ing the T cell recruitment subroutine of the LN ABM model, the
probability of recruiting T cells of each type/state is calculated
based on their blood concentration levels. At the end of LN com-
partment simulation time step, the LN net output is calculated as
the difference between exited and recruited number of each cell
type and is multiplied by a factor that accounts for physiological
compartment-size scaling from 0.5% back to the entire paracor-
tex and unit conversion from cell number to blood concentration.
This net output is then added to the corresponding variables in
blood compartment ODEs. We have made a few assumptions
regarding how we capture the LN to blood dynamics. First, we are
only modeling dynamics of T cells and DCs within a single LN.
There are ~700 LNs in the human body and they are connected via
an intricate lymphoreticular network. T cells travel between multi-
ple LNs via these lymphatics and eventually enter the blood via the
superior vena cava. We assume that cells exit the LN and enter the
blood compartment immediately, coarse-graining the time spent
in the lymphatic system. However, our cells travel through the
LN and blood in time frames consistent with experimental data
[<24 h; Ref. (58)], accounting for the delay.

For computational efficiency, we use a method we term tun-
able resolution (TR) (manuscript submitted). One of the goals
of TR is to develop multi-scale models with sub-models of dif-
ferent resolutions, so that models can be run with coarse- or
fine-grained alternative versions of sub-models during simulation
to save resources without sacrificing accuracy. Here, for each phys-
iological compartment (blood or LN), there is a computational
switch that allows the model in an automated fashion to bypass
simulation of a given compartment. In this two-compartment
model, we do not have an alternate version of each compart-
ment per se; instead, each compartment can be suspended when
specific criteria are met. For example, during the pre-simulation,

Frontiers in Immunology | T Cell Biology February 2014 | Volume 5 | Article 57 | 4

http://www.frontiersin.org/T_Cell_Biology
http://www.frontiersin.org/T_Cell_Biology/archive


Gong et al. Harnessing T cell differentiation heterogeneity

FIGURE 4 | Simulation procedure using tunable resolution. LN and
blood compartment are processed sequentially in each time step. LNs
recruit cells from blood and put exiting cells into it. The recruitment
probabilities are modified by blood concentration of corresponding cell
types. Each compartment has a switch to determine whether this
compartment is processed in current time step, or will it be bypassed.

the blood compartment is turned off, and the LN is simulated
until a baseline steady state is reached. When an immune response
is occurring, LN and blood compartments are both running to
simulate the immune response in fine-grained, spatially explicit
detail for a time scale of a few weeks. When an active immune
response finishes and there are no Ag-DCs, LDCs, bound, active,
effector, or EM cells in the LN compartment, the LN com-
partment is suspended to allow rapid simulation of the blood
compartment at longer time scales (months to years). When a
secondary infection begins, the LN compartment is switched on
again (Figure 4).

MODEL CALIBRATION
The hybrid model contains 103 parameters that govern mech-
anisms occurring in both physiological compartments and the
interactions between them (see Table S3 in Supplementary Mater-
ial for a complete list of the parameters). For the LN compartment
model, parameters governing T cell motility and trafficking are cal-
ibrated to data as described previously (30). Parameter estimates
for the ODE model in the blood compartment are discussed in
Section “Blood Compartment Sub-Model: ODE and Parameter
Estimation” and Supplementary Material.

To use our model for memory T cell differentiation dynam-
ics, we estimated parameters in our model using the limited data
available in the literature for memory cell generation in LNs.
We estimated parameters governing total production of expanded
cognate CD8+ cells generated in the LN model (Table S3 in Sup-
plementary Material, parameters marked with ‡) to data from
T cell clonal expansion studies in mice using OVA as a stimu-
lating antigen (59). In that study, DCs are ablated at different
time points to show that the duration of antigen presentation
correlates with magnitude of T cell expansion, but a short expo-
sure is sufficient to program CD8+ T cells to differentiate into
both effector and memory subsets (59). We adapted our model
to reflect experimental methods used in these studies. DCs are
removed from the LN grid at indicated time points after the
recruitment during primary challenge (Figure 5A), as was done
experimentally by injecting diptheria toxin (DT) (59). Unlike
rules for LCMV as previously discussed, CD8+ naïve T cells are
allowed to bind both Ag-DC and LDC to be primed and the
enter memory state. This is because in these experiments, DCs
are activated from LPS pulsing or Listeria monocytogenes-OVA.
From our in silico experiments terminating antigen presentation
from DCs at various time points after Ag-DC recruitment, we
predict that the magnitude of the primary response is depen-
dent of the duration of DC presence (Figure 5B). However, a
very short period of stimulation is capable of generating memory
cells, as we see a potent production of antigen-specific CD8+ T
cells after a secondary challenge (Figure 5C). Moreover, it takes
only 3 days for the recall response to exceed the magnitude of
primary response on day 5, indicating a faster reaction to previ-
ously experienced antigens, as observed in vivo. Our simulation
results are comparable to data from the Prlic study (59). The
parameter set we obtained is used as our baseline for simulat-
ing infection scenarios (see below and Table S3 in Supplementary
Material).

SIMULATED INFECTION AND MODEL VALIDATION
We next validated our model with data sets from experimental
studies using LCMV or OVA as stimulating antigens. For each sim-
ulated infection, a 3-day pre-simulation of the ABM LN sub-model
precedes the actual experiment to allow cells to reach a steady state
in terms of quantity and spatial distribution. During this period,
the blood sub-model is suspended, with the naïve CD4+ and
CD8+ T cells concentrations fixed at 450 and 320/mm3, respec-
tively (51, 60). Then Ag-DCs are introduced to stimulate the T cell
response. We represent this by introducing antigen-bearing DCs
in such a way as to mimic an acute infection (23, 25, 30). Ag-DCs
carry and present a unique antigen and are recruited to the LN
compartment for 2 days. These DCs will prime cognate T cells
(cognate frequency is set to 10−4) for about 5 days before they die,
mimicking a hypothetical acute infection. To mimic a hypothetical
secondary infection, Ag-DCs are recruited to the LN again from
day 600 to 602. Each experiment is simulated five times to reduce
aleatory uncertainty.

To confirm that our model produces reasonable dynamics in
the blood compartment, we qualitatively compare the time course
of blood antigen-specific cells to data sets from LCMV studies,
where the measurements are performed in spleen (61–63).
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FIGURE 5 | Expansion of CD8+T cells in simulation. (A) In silico
experimental schemes. Black bars show the duration of Ag-DC presence. In
primary challenge, DC antigen presentation is terminated at time points
indicated on the left. “Control” indicates no termination and DC are allowed
to live their natural lifespan. Recall challenge is given from day 30.
Measurements are taken on day 5 for primary response and day 33 for recall

response, respectively. (B,C) CD8+T cell population in simulated responses
(black bars) and experimental data (white bars) (59). (B) Size of expanded
CD8+T cell population in primary response. Values are measured from day 5
after Ag-DC are recruited to the LN. (C) Size of expanded CD8+T cell
population during recall response on day 33. X -axis value indicates antigen
presentation times in the primary challenge.

For lineage tracing simulations (see Cognate Naïve Cells
Undergo Heterogeneous Expansion), every cognate naïve T cell
recruited to the LN is assigned a unique serial number. This num-
ber is passed to the daughter cells when these labeled T cells
proliferate and differentiate, so T cells sharing the same serial
number belong to the same single-cell derived progeny. When
each differentiated cell exits the LN, its serial number is recorded.
For each individual cognate precursor, the number of descendant
cells and their differentiation states are calculated. Cell progenies
are ranked by the abundance of their progenies, from largest to
smallest. Five replications are performed for this simulation.

We calculate the Index of disparity D between the expanded
populations of different single-cell derived progenies (19), which
is the inverse Simpson diversity index mapped to a 0–1 interval:

D =
N − 1∑N

i=1 f 2
i

N − 1
, (5)

where N is the number of progenies and f is the frequency of each
single-cell derived progeny in the total population.

UNCERTAINTY AND SENSITIVITY ANALYSIS
In this study, our goal is to reproduce patterns of generalized
immune responses. In addition to using parameters estimated
from previous work (see above and Table S3 in Supplemen-
tary Material) and experimental data, we use global uncertainty
and sensitivity analysis (U/SA) to study how particular biological
mechanisms affect simulation outputs (64).

For each set of sensitivity analysis, a list of parameters is cho-
sen, and for each parameter of interest, a range is specified. Latin
hypercube sampling (LHS) is applied to generate the matrix of

parameter values, where each experiment represents one combi-
nation of sampled parameter values. LHS is a stratified sampling
method that requires fewer samples compared with random sam-
pling method but achieves the same accuracy (65). This technique
is particularly helpful for our ABM model where parameter val-
ues need to be estimated from a high-dimensional space (64). The
parameter space is sampled completely and accurately, with a large
sampling size. Each experiment is replicated five times to reduce
aleatory uncertainty from inherent stochastic variations (64). After
the simulation, model readouts are chosen and partial rank corre-
lation coefficients (PRCCs) are calculated between each readout-
parameter pair to assess global sensitivity and detect monotonic
relationship between mechanisms and output of interests.

To study how various mechanisms affect the generation of
memory from within each compartment (blood and LN) as well as
how they influence the other compartment (LN and blood, respec-
tively), we performed intra- and inter-compartment sensitivity
analysis (64). We choose two sets of parameters governing mecha-
nisms in each sub-model and estimated a range for each parameter
(see Table S3 in Supplementary Material). We use LHS to sample
the parameter space and generate 100 or 408 experiments for blood
and LN experiments, respectively. Here we performed 2540 simu-
lations, which provides ample coverage of the space. Sensitivities
of outputs to mechanisms are assessed with PRCCs.

COMPUTATIONAL SIMULATIONS AND IMPLEMENTATION
Our hybrid model is implemented in C++ and runs on Linux/Mac
OS/windows. Documentation and pseudo code are available in the
online Supplement. A Forward Euler method is used to solve the
ODEs. Each time step of the ABM simulation is further divided
into 100 pieces (step size of 0.25 s) to reduce error. Each simulation
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of 350 days (LN sub-model is active for ~40 days) takes 30–40 h
to run.

RESULTS
HEALTHY UNINFECTED BASELINE DYNAMICS OF T CELLS ARE
REACHED WITHOUT SIMULATED ANTIGEN PRESENTATION
Without Ag-DC introduced to the LN, all T cells remain naïve.
The cell dynamics in LN in the absence of any infection present
show that over a short time scale (days to weeks), cells remain
at the steady state of ~170,000, or 4.0× 106 cells/mm3. There is
an equal input/output flow of ~1000 cells per million cells per
minute, and an average transit time of 16 h, which is consistent
with previous data (30). The population of both CD4+ and CD8+
T cells in the blood declines long-term (20 years). By the end of
year 20, the blood concentration of naïve CD4+ T cells drops to
210 mm−3, and that of naïve CD8+ T cell drops to 170 mm−3.
Such long-term decline of naïve T cell number is comparable to
clinical observations (66, 67).

EFFECTOR AND MEMORY T CELL POPULATIONS ARE GENERATED IN A
SIMULATED ACUTE INFECTION
We simulated immune responses to a hypothetical acute infection
by introducing Ag-DCs into the LN compartment to activate cog-
nate T cells as shown in Figure 6A. The cognate frequency is set to
10−4. Figures 6B–E show simulated immune cell dynamics in the
LN and blood compartments.

In the LN compartment, the Ag-DC population increases first.
These DCs scan surrounding CD4+ and CD8+T cells and bind to
their cognate matches. After this binding event, CD4+ and CD8+
T cells begin to proliferate and differentiate into active and effec-
tor T cells. After day 2, the influx of Ag-DCs to LN stops, and the
number of Ag-DCs begins to decline (Figure 6A). At the same
time, differentiated effector CD4+ T cells license Ag-DCs, further
increasing their surface pMHC levels and stimulation strength,
enabling them to allow CD8+T cell memory potential. Because we
assume that CD8+ T cell memory establishment requires LDCs,
the appearance of CM and EM CD8+ T cells is delayed as com-
pared with corresponding CD4+T cells. After differentiation from
the active state, effector,CM,and EM cells can exit the LN from ELs,
resulting in the decline of these populations within the LN. The
system eventually returns to baseline, but CMs can still recirculate
through LN (Figures 6B,C).

In the blood compartment, the concentrations of effector,
CM, and EM cell populations increase as they exit the LN
(Figures 6D,E). The total concentration of both CD4+ and CD8+
Ag-specific T cell (effector, EM, and CM) peaks at about day 6 and
8, respectively (0.91 mm−3 for CD4+ T cells and 2.49 mm−3 for
CD8+ T cells). The lifespans of effector cells are relatively short.
These cells either die, or are recruited to sites of infection, bring-
ing about a contraction phase characterized by a decline of total
blood Ag-specific T cells. However, about 5% of the peak level is
maintained in the memory cell class, especially CM cells in the

FIGURE 6 | Primary response dynamics of immune cells in LN and blood
during a hypothetical acute infection (log scale). (A–C) Number of
dendritic cells, CD4+ and CD8+T cells of different subsets in the LN

compartment. (D,E) Concentration of CD4+ and CD8+T cells of different
subsets in the blood compartment. (A) Model input of DCs representing a
hypothetical acute infection, such as LCMV and (B–E) output.
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long-term as their lifespan is longer than EM cells. In the blood,
some of the EM cells convert to CM cells, while others are recruited
away to sites of infection (Figures 6D,E). While there are no data
from primates on these dynamics, our results are qualitatively in
accordance with experimental data from mouse LCMV studies
(61–63).

IMMUNE CELLS REACH HIGHER LEVELS DURING A RECALL RESPONSE
AS COMPARED TO A PRIMARY RESPONSE
To understand the dynamics of a recall response, we simulated
a scenario where Ag-DCs are introduced from day 0 to 2 in an
initial round of infection (the same as that of Section “Effector
and Memory T Cell Populations are Generated in a Simulated
Acute Infection”). Once that infection dampens and immune cells
return to a resting state, we introduce a second round of challenge
by recruiting Ag-DCs from day 600 to 602. We challenge with the
same antigen and use the same cognate frequency for naïve cells,
but CM populations are maintained in the blood after the primary
response. The resulting dynamics of Ag-specific T cells occurring
in blood are shown in Figure 6.

As above, the primary response is initiated after the first round
of Ag-DC input. Blood Ag-specific T cell numbers rise as the
response continues and peak at day 6 and 8. After the peak, effector
and EM T cells decline while the CM cell population is main-
tained. On day 600, the blood concentration of CM CD4+ T cells
has dropped from 0.059 to 0.023 mm−3, while the CM CD8+ T
cell population remains at 0.16 mm−3. The stable maintenance
of CD8+memory and decline of CD4+memory is in agreement
with mouse LCMV infection data (53). During the recall response,
because of a memory cell population generated during the primary
response that can faster and more strongly respond to the same
antigen, both CD4+ and CD8+ T cells in the blood exceed peak
levels of their primary response, peaking at 1.07 mm−3 for CD4+
and 6.05 mm−3 for CD8+ T cells. The recall response is more
than twice as large as primary response for CD8+ T cells, but
only marginally increased (18%) for CD4+ T cells. Such differ-
ences in CD4+ and CD8+ recall responses have been observed in
LCMV experiments as well (68). After the recall response, higher
levels of CM cells are maintained as compared to following the
primary response (Figure 7). After the recall response ceases, the

FIGURE 7 | Simulated cell dynamics in the blood compartment
during a primary and recall response to a hypothetical acute
infection (log scale). (A) Concentration of CD4+T cells of different

subsets in the blood. (B) Concentration of CD8+T cells of different
subsets in the blood. The left parts of the graphs are identical to those of
Figure 6.
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blood concentrations of CM cells are 0.094 and 0.84 mm−3 for
CD4+ and CD8+ T cells, respectively. These results indicate that
the antigen-specific immune memory is reinforced after the sec-
ond round of challenge, as the central memory population formed
in the primary challenge gets further expanded during the second
round of challenge.

COGNATE NAÏVE CELLS UNDERGO HETEROGENEOUS EXPANSION
Recent lineage tracing studies showed that CD8+ T cells have a
heterogeneous differentiation pattern (18, 19). Because the LN
compartment of our model is agent-based, it is possible to track
the fate of each individual cell during a simulated infection. We
take advantage of this feature to validate our model using data
from these recent studies.

Figure 8 shows our lineage tracing analysis for the primary
response. The fraction of each single-cell derived progeny in the
total population is shown in Figure 8A for CD8+ and Figure 8E
for CD4+T cells. For both CD4+ and CD8+T cells, a small num-
ber of progenies have a large expanded population. The average
size of the largest population is ~2000 for CD4+T cells and ~8000
for CD8+T cells. However, the majority of derived progenies have
intermediate to small population sizes, with about 50 for CD4+
T cells and 200 for CD8+ T cells. The maximum population size
of CD8+ T cell is 50-fold larger than the median. The index of
disparity in our simulations is 0.81 for CD8+ T cells, close to
the range of 0.85–0.95 shown in Ref. (19). These results indicate
our model matches well with the heterogeneous differentiation
experimental observations. While the corresponding experimen-
tal studies were performed only for CD8+ T cells, we are able to
use our model to simulate the dynamics of CD4+ T cells as well.
Our model predicts less heterogeneity for CD4+ T cells, with an
index of disparity of 0.82 and a 50-fold difference between largest
and median progenies (Figure 8F).

We also assessed the composition of these sub-populations.
In Figures 8C,G, the proportion of CM cells of each single-
cell derived progeny is plotted against the population size. These
results suggest that progenies with a higher proportion of CM cells
tend to have a smaller expanded population during the primary
response. We calculated the Spearman correlation coefficients
between each subtype and the total number of expanded cells
(Figures 8D,H). The correlations are strong between effectors and
overall total population size, but weak between CM and the overall
population size. This is comparable to the results from Ref. (18).
Thus, in addition to our other findings, these results confirm those
previously identified (18, 19) that the magnitude of the primary
response for single-cell derived progenies might not be the sole
predictor of immune memory. We next study, which mechanisms
influence the heterogeneous differentiation and clonal expansion
processes of T cells.

ANTIGEN PRESENTATION BY DCs INFLUENCES OUTCOME OF AN
IMMUNE RESPONSE
It is no surprise that antigen stimulation plays a crucial role in
T cell activation and differentiation (35, 69). However, it is dif-
ficult to conduct experiments that quantitatively determine the
mechanism of dependency. Here we varied the number of Ag-
DCs recruited to LN in a range of 50–300 and the levels of pMHC
molecules on the surface Ag-DCs from 100 to 300, and analyzed
how they influence production of effector and CM cells. Model
pMHC levels are used as a proxy for DC stimulation strength.
Results are shown in Figure 9.

Increasing the number of Ag-DC recruitment promotes the
output of both effector and memory T cells from the LN. The
number of Ag-DC has a larger impact when the pMHC molecule
levels are low. This result indicates that more Ag-DCs are bene-
ficial for the production of higher levels of effector and memory

FIGURE 8 | Heterogeneity of expandedT cell families. Upper panel: CD8+
T cells. (A) Sizes of expanded CD4+T cell population from each single-cell
derived progeny (strain), represented as fraction of total expanded population
as done in Buchholz et al. (18) and Gerlach et al. (19). (B) Maximum and
median size of CD4+T cell progenies. (C) Correlation between population

size and the percentage of central memory cells. Each dot represents
progeny of a single-cell derived progeny. (D) Spearman correlation of CM,
EM, and effector CD4+T cell number versus total expanded population.
(E–H) Prediction of CD4+ T cell heterogeneity in clonal expansion. The four
panels correspond to the same readouts as for panels A–D.
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FIGURE 9 | SimulatedT cell differentiation is influenced by number of
DCs and number of pMHC molecules displayed. X -axis: number of
pMHC molecules on an Ag-DC. Bar color: number of Ag-DCs recruited to

the grid. (A,B) Number of central memory (CM) cells produced. (C,D)
Number of effector cells produced. (E,F) Fraction of CM cells in the
expanded population.

cells, but this benefit is diminished when pMHC molecule levels
are high.

Interestingly, for each subset of cells, the effects of increased
pMHC molecule levels on the surface of DCs are different. pMHC
levels are always negatively correlated with CM output of CD4+
T cells (Figure 9A). However, the highest numbers of effector
CD4+ T cell output are reached at intermediate levels of pMHC
(Figure 9C). CD8+ T cells are affected in a different pattern.
Intermediate levels of pMHC are required for higher CM pro-
duction (Figure 9B). Our explanation for this difference is that
we defined our rules based on LCMV experiments and other
studies suggesting that CD8+ T cell memory establishment is
dependent on DC licensing by effector CD4+ T cells, and inter-
mediate levels of pMHC are required so that LDC numbers will
not be the bottleneck for memory CD8+ T cell production. Also

different than CD4+ T cells, effector CD8+ T cell output first
increases with pMHC levels on DCs and then remains relatively
stable (Figure 9D). The fraction of CM among total expanded
population is shown in Figures 9E,F.

In general, our simulations suggest that in order to obtain
high CD4+ T CM cell production, DCs with lower pMHC lev-
els should be provided. However, DCs with high pMHC levels
maximize CD8+ effector output. CD4+ effectors and CD8+ CM
T cells require intermediate pMHC levels. Increased recruitment
of Ag-DC boosts all four subsets to different extents.

SENSITIVITY ANALYSIS DETECTS MECHANISMS CORRELATED WITH
STRENGTH OF RECALL RESPONSES
We also studied how other mechanisms, such as thresholds of dif-
ferent checkpoints in the LN, conversion rates of EM to CM, and
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recruitment rate to sites of infection from the blood, shape model
outputs (see Table S3 in Supplementary Material for parameters
varied. The mechanisms they control are explained in the col-
umn “description”). We performed intra- and inter-compartment
sensitivity analysis (see Materials and Methods), and PRCCs were
calculated to assess the monotonic correlation between values of
the parameters governing these mechanisms, and outputs includ-
ing: LN production and blood concentration of effector and CM
cells in both primary and recall responses (Tables 1–3).

We found that production of effector cells in primary responses
is most sensitive to the following mechanisms: binding time (neg-
atively correlated, Tables 1 and 2), the probability of effectors
differentiating into EM (negatively correlated, Tables 1 and 2), and
extra recruitment in inflammation (positively correlated, Tables 1
and 2). In addition, CD4+ T cell effector output negatively corre-
lates with the stimulation threshold for priming but positively
correlates with the threshold for differentiation into effectors
(Tables 1 and 2); CD8+ T cell effector cell output negatively cor-
relates with extra recruitment of CD4+ T cells (Tables 1 and 2).
Generation of CM cells during a primary response is sensitive to

a similar set of mechanisms, along with some additional ones:
CD4+ T cell CM output is negatively affected by the efficiency
of CM cells to accumulate stimulation signal; CD8+ T cell CM
output is positively correlated with threshold to become effectors
(Tables 1 and 2). Interestingly, in the recall response, the mecha-
nisms to which effector cell production are sensitive are consistent
with that of those affecting effector cells and CM cells during pri-
mary responses. For instance, the LN output of effectors in the
recall response has a more significant negative correlation with
EM differentiation probability than in the primary response, blood
CM concentration. This is in accordance with the intuition that
a strong recall response requires both memory generation dur-
ing a primary response and priming efficiency during secondary
challenge.

We then perform an inter-compartment sensitivity analysis
by comparing how the readouts for the same cell types from
both LN and blood are affected by corresponding LN and blood
mechanisms. LN mechanisms affect both LN and blood outputs
in similar ways, but only blood outputs are sensitive to blood
mechanisms (Table 3). The recruitment rates of effector cells to

Table 1 | PRCC results: tracking sensitivity of outputs of LN cells to LN mechanisms.

Primary Recall

Mechanism PRCC Significance Mechanism PRCC Significance

CD4+ EFFECTOR GENERATED FROM LN

Bind time −0.90 −−− Bind time −0.82 −−−

Probability EM −0.73 −−− Probability EM −0.64 −−−

Priming checkpoint threshold −0.42 −−− Priming checkpoint threshold −0.40 −−−

CM bind time −0.29 −− CM bind time −0.37 −−−

DC licensing probability −0.26 −− DC licensing probability −0.29 −−

Extra recruitment 0.38 +++ Efficiency CM −0.27 −−

Effector checkpoint threshold 0.67 +++ Extra recruitment 0.35 +++

Effector checkpoint threshold 0.61 +++

CD4+ CM GENERATED FROM LN

Bind time −0.88 −−− Bind time −0.62 −−−

Priming checkpoint threshold −0.70 −−− Priming checkpoint threshold −0.48 −−−

Efficiency CM −0.29 −− CM bind time −0.44 −−−

CM bind time −0.26 −− Efficiency CM −0.33 −−−

Extra recruitment 0.33 +++ Extra recruitment 0.26 ++

Effector checkpoint threshold 0.81 +++ Effector checkpoint threshold 0.61 +++

CD8+ EFFECTOR GENERATED FROM LN

Extra recruitment (CD4) −0.56 −−− Probability EM −0.74 −−−

Bind time −0.41 −−− Extra recruitment (CD4) −0.56 −−−

DC licensing prob. −0.25 −− Bind time (CD8) −0.37 −−−

Probability EM −0.25 −− DC licensing probability −0.21 −−

CD8+ CM GENERATED FROM LN

Bind time −0.71 −−− Efficiency CM −0.42 −−−

Priming checkpoint threshold −0.71 −−− CM bind time −0.35 −−−

CM bind time −0.19 − Priming checkpoint threshold −0.22 −

Extra recruitment 0.30 ++ Bind time −0.18 −

Effector checkpoint threshold 0.77 +++ Prob. EM 0.33 +++

Effector checkpoint threshold 0.35 +++

−/+, p < 0.001, with negative or positive correlation;−−/++, p < 10−6, with negative or positive correlation;−−−/+++, p < 10−9, with negative or positive correlation.
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Table 2 | PRCC results: tracking sensitivity of concentrations of cells in Blood to LN mechanisms.

Primary Recall

Mechanism PRCC Significance Mechanism PRCC Significance

CD4+ EFFECTOR CONCENTRATION

Bind time −0.83 −−− Bind time −0.71 −−−

Probability EM −0.74 −−− Probability EM −0.67 −−−

Priming checkpoint threshold −0.42 −−− DC licensing probability −0.39 −−−

DC licensing probability −0.41 −−− CM bind time −0.38 −−−

CM bind time −0.29 −− Priming checkpoint threshold −0.35 −−−

Extra recruitment 0.32 +++ Efficiency CM −0.25 −−

Effector checkpoint threshold 0.64 +++ Extra recruitment 0.27 ++

Effector checkpoint threshold 0.53 +++

CD4+ CM CONCENTRATION

Bind time −0.89 −−− Bind time −0.70 −−−

Priming checkpoint threshold −0.71 −−− Priming checkpoint threshold −0.53 −−−

Efficiency CM −0.30 −− CM bind time −0.43 −−−

CM bind time −0.26 −− Efficiency CM −0.33 −−−

Extra recruitment 0.33 +++ Extra recruitment 0.26 ++

Effector checkpoint threshold 0.81 +++ Effector checkpoint threshold 0.66 +++

CD8+ EFFECTOR CONCENTRATION

Extra recruitment (CD4+) −0.57 −−− Probability EM −0.72 −−−

Bind time −0.31 −−− Extra recruitment (CD4+) −0.55 −−−

DC licensing probability −0.28 −− Bind time (CD8+) −0.28 −−

Probability EM −0.27 −− DC licensing probability −0.23 −

Bind time (CD4+) 0.18 +

CD8+ CM CONCENTRATION

Probability EM −0.78 −−− Probability EM −0.82 −−−

Bind time −0.53 −−− Extra recruitment (CD4+) −0.42 −−−

Priming checkpoint threshold −0.39 −−− Bind time −0.38 −−−

Extra recruitment (CD4+) −0.37 −−− Efficiency CM −0.30 −−

Effector checkpoint threshold 0.52 +++ CM bind time −0.27 −−

Priming checkpoint threshold −0.25 −−

Effector checkpoint threshold 0.39 +++

−/+, p < 0.001, with negative or positive correlation;−−/++, p < 10−6, with negative or positive correlation;−−−/+++, p < 10−9, with negative or positive correlation.

Table 3 | PRCC results: tracking sensitivity of concentrations of cells in blood to blood mechanisms.

Primary Recall

Mechanism PRCC Significance Mechanism PRCC Significance

CD4+ EFFECTOR CONCENTRATION

Recruit to site of infection (ξE4) −0.79 −−− Recruit to site of infection (ξE4) −0.54 −−

CD4+ CM

Recruit to site of infection (ξEM4) −0.39 − Probability EM 0.44 +

Probability EM −0.80 +++

CD8+ EFFECTOR CONCENTRATION

Recruit to site of infection (ξE8) −0.39 − Recruit to site of infection (ξE8) −0.43 −

Recruit to site of infection (ξEM8) −0.36 −

Probability EM 0.72 +++

CD8+ CM CONCENTRATION

Recruit to site of infection (ξEM8) −0.41 − Recruit to site of infection (ξEM8) −0.45 −

Probability EM 0.93 +++ Probability EM 0.83 +++

−/+, p < 0.001, with negative or positive correlation;−−/++, p < 10−6, with negative or positive correlation;−−−/+++, p < 10−9, with negative or positive correlation.
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sites of infection reduce blood effector levels. Conversion rates
from EM to CM induce both blood CD4+ and CD8+ T cell CM
levels. Also, our predictions suggest that dynamics occurring in
blood do not significantly affect dynamics occurring in LNs dur-
ing both primary or recall responses, as no significant correlation
is detected.

DISCUSSION
Single cognate naïve T cells have been known to be able to gener-
ate both memory and effector progenies. Moreover, recent studies
further demonstrated that the fate of identical naïve cells is hetero-
geneous. By understanding which mechanisms contribute to this
heterogeneity and in which way they are contributing, it is possi-
ble to manipulate the priming environment so that differentiation
of activated precursor cells can be routed to favor generation of
a desired population toward specific needs. For example, in the
context of vaccination, establishing a significant antigen-specific
CM population has a high priority. On the other hand, massive
production of effector cells could be the key issue considered when
using immunotherapies against active diseases. Our new findings
suggest that pMHC number on the surface of APCs provides such
a handle; and using our model we can enhance the production
of specific T cell types (CD4+/CD8+, effector/memory) in dif-
ferent ideal ranges. By fitting our model to data collected from
experiments designed for a specific antigen, we will be capable
of making quantitative predictions of DC stimulation levels that
maximize the generation of particular subsets of T cells, which are
most relevant to the circumstances.

In order to study how mechanisms in LN and blood influence
the generation of effector and memory T cells, we developed a
hybrid model with both LN and blood compartments to simulate
immune responses in both primary and recall challenges. Using
this model, we generated T cell dynamics in blood and LN during
infections that are similar to murine models (61–63) and also can
capture heterogeneous differentiation observations of individual
cognate naïve T cells (18, 19). Furthermore, our model predicts
that the outputs of different subsets of T cells that arise during
immune responses, including effector and memory, CD4+, and
CD8+ T cells, respond differently to the amount of stimulation
they receive from antigen-bearing DCs during priming. Simula-
tions showed that CD4+ CM T cell generation is maximized at
low pMHC-II levels, and intermediate pMHC-II levels result in
the highest number of effector CD4+ T cell generation. However,
further increases in pMHC-II levels reduce generation of both
effector and CM CD4+ T cells. On the other hand, intermediate
pMHC-I level is required to generate the highest levels of CD8+
CM cells, and high pMHC-I level favors CD8+ T effector cell
generation.

Results from our previous study using a 2D model showed
pMHC levels always compensate for DC numbers to induce effec-
tor T cell production (25) in a trade-off fashion. We find a similar
trend herein for CD8+ T cells, and for CD4+ T cells, when DC
numbers are small. But when DC numbers are large, high pMHC
levels are playing an opposite (for CD4+ T cell) or insignificant
(for CD8+ T cell) role. This can be explained by the findings from
our 3D LN model (30), that DC searching time for T cells is far

more efficient in a 3D model environment than 2D. Thus, even for
high total DC numbers in the 2D study, there are likely insufficient
DCs, suggesting what we observed in the 2D model represents only
the case with relatively low DC numbers in 3D.

While our model is able to make some important predictions,
further development to include more detail regarding events dur-
ing antigen presentation is called for. First, DCs are known to
be a heterogeneous population, with subsets of cells diversified
in origin and function. Different DC subsets are differentially
involved in T cell priming. For example, lymphoid organ-resident
DCs are specialized for cross-presentation, while inflammatory
DCs stimulate TH17 polarization (70, 71). Furthermore, the stim-
ulation that T cells receive from DCs are also combinations of
multiple signals, including TCR avidity, co-stimulation regula-
tion, and environmental, such as inflammatory cytokine profiles.
Reducing these signals to a general stimulation signal package
represented with pMHC levels as done here helps conceptual-
ize the question and generate theoretical insights; nonetheless,
adding these details will confer power for predicting more precise
manipulations of the immune response. Harnessing the power
of both mathematical and computational modeling and wet-lab
investigation, our systems biology approach can eventually pro-
vide guidance for clinical practices in an era of personalized
medicine.
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