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ABSTRACT
Objectives The monoclonal anti- CD20 antibody 
rituximab is frequently applied in the treatment of 
lymphoma as well as autoimmune diseases and 
confers efficient depletion of recirculating B cells. 
Correspondingly, B cell- depleted patients barely mount 
de novo antibody responses during infections or 
vaccinations. Therefore, efficient immune responses of B 
cell- depleted patients largely depend on protective T cell 
responses.
Methods CD8+ T cell expansion was studied in 
rituximab- treated rheumatoid arthritis (RA) patients 
and B cell- deficient mice on vaccination/infection with 
different vaccines/pathogens.
Results Rituximab- treated RA patients vaccinated with 
Influvac showed reduced expansion of influenza- specific 
CD8+ T cells when compared with healthy controls. 
Moreover, B cell- deficient JHT mice infected with mouse- 
adapted Influenza or modified vaccinia virus Ankara 
showed less vigorous expansion of virus- specific CD8+ 
T cells than wild type mice. Of note, JHT mice do not 
have an intrinsic impairment of CD8+ T cell expansion, 
since infection with vaccinia virus induced similar T 
cell expansion in JHT and wild type mice. Direct type I 
interferon receptor signalling of B cells was necessary to 
induce several chemokines in B cells and to support T cell 
help by enhancing the expression of MHC- I.
Conclusions Depending on the stimulus, B cells can 
modulate CD8+ T cell responses. Thus, B cell depletion 
causes a deficiency of de novo antibody responses 
and affects the efficacy of cellular response including 
cytotoxic T cells. The choice of the appropriate vaccine to 
vaccinate B cell- depleted patients has to be re- evaluated 
in order to efficiently induce protective CD8+ T cell 
responses.

INTRODUCTION
Antibody responses play a key role in mediating 
protection against severe infections and the effi-
cacy of the majority of currently available vaccines 
relies on the induction of long- lasting antibody 
responses. In particular during the current SARS- 
CoV- 2 pandemic, it is discussed to which extend 
antibody and T cell responses contribute to 
protection. In some convalescent patients, rapidly 
decreasing antibody titres were observed. The ques-
tion arose, whether such patients are still protected 

from SARS- CoV- 2 reinfection by long- lasting T cell 
memory.

B cell depletion using the anti- CD20 antibody 
rituximab is an effective treatment of lymphoprolif-
erative diseases such as non- Hodgkin’s lymphomas,1 
various autoimmune diseases, including immune 
thrombocytopaenia (ITP),2 3 rheumatoid arthritis 
(RA),4 anti- neutrophil cytoplasmic antibody 
(ANCA)- associated vasculitis,5 systemic lupus 
erythematosus,6 multiple sclerosis,7 and prevents 
graft failure after some solid organ transplanta-
tions.8 Since B cell depletion massively reduces 
the formation of SARS- CoV- 2- specific antibodies, 
it is intensively discussed whether B cell depleting 
therapy with rituximab and Ocrelizumab should be 
postponed until SARS- CoV- 2 vaccination has been 
performed.9 In the absence of antibody responses, 
CD8+ cytotoxic T cells take over important func-
tions in protection against pathogens. For B 
cell- depleted patients it is therefore of utmost 
importance to mount functional CD8+ T cell 
responses upon vaccination.

Key messages

What is already known about this subject?
 ► B cell- depleted individuals cannot mount 
antibody responses upon vaccination; hence 
protection against vaccination- preventable 
diseases depends on CD8+ T cell responses.

What does this study add?
 ► We found that B cell depletion strongly impairs 
vaccination- induced CD8+ T cell responses.

 ► Mechanistically, B cells promote CD8+ T cell 
responses in a type I interferon- dependent 
manner.

How might this impact on clinical practice or 
future developments?

 ► Patients treated with rituximab should be 
vaccinated when B cells have repopulated in 
order to mount efficient CD8+ T cell responses.

 ► Vaccines inducing a cytokine milieu that is 
not dominated by type I interferon could be 
beneficial for B cell- depleted patients.
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Recently, it became evident that B cell depletion influences 
CD8+ T cell responses. In a murine model of ITP, rituximab 
treatment inhibited splenic CD8+ T cell proliferation and thus 
protected against T cell- mediated autoimmune thrombocy-
topaenia.10 Furthermore, it was reported that B cells promote 
survival of intra- islet CD8+ T cells in NOD mice and that B cell 
deficiency significantly delayed diabetes development.11 B cells 
also play a specific role in modulating the contraction of CD8+ 
T cell responses following immunisation with Listeria mono-
cytogenes and in establishing efficient CD8+ T cell memory.12 
Furthermore, B cells were required to prevent virus- specific 
CD8+ T cell memory exhaustion upon lymphocytic choriomen-
ingitis virus infection.13

Whether B cells support T cell responses by direct cell- cell 
contact or via cytokine and chemokine expression is still largely 
unclear. A CXCR5+ subset of CD8+ T cells was shown to consti-
tute early effector cells that migrate into B cell follicles and thus 
might be able to directly interact with B cells.14 Several chemok-
ines and cytokines such as type I interferon (IFN- I) were shown 
to orchestrate lymphocyte responses locally or via systemic 
inflammatory signals. In addition to direct anti- viral function, 
IFN- I directly triggers the IFN- I receptor (IFNAR) of CD8+ T 
cells to promote their expansion.15–17

IFN- I are potent antiviral cytokines that are induced early 
upon various infections and thus are targeted by many viral 
evasion strategies. The poxvirus strains vaccinia virus (VACV) 
and modified vaccinia virus Ankara (MVA) are relevant vaccine 
models to study vaccination in vivo. In contrast to its parental 
strain VACV, MVA lost several IFN- I inhibitors during passaging 
on chicken embryo fibroblasts and therefore efficiently induces 
serum IFN- I responses in mice.18

Here, we studied the impact of B cell depletion on CD8+ T cell 
expansion during immunisation with different viruses. We found 
massively reduced CD8+ T cell responses in B cell- depleted RA 
patients upon influenza vaccination. CD8+ T cell expansion was 
also strongly reduced in B cell deficient mice upon influenza and 
MVA infection, but not upon VACV infection. Direct IFNAR 
signalling of B cells was necessary to trigger proper T cell activa-
tion and MHC- I upregulation, thus licensing B cells to promote 
CD8+ T cell expansion.

RESULTS
Patients suffering from rheumatic diseases are frequently treated 
with rituximab. Rituximab has a high depletion efficiency, which 
lasts for approximately 6 months (figure 1A). During a therapy 
cycle, vaccination against seasonal influenza is recommended, 
whereas the protective efficacy of influenza vaccination under 
conditions of B cell depletion is debated. To study the impact 
of B cell depletion on the induction of CD8+ T cell responses, 
rituximab- treated RA patients and healthy controls were human 
leucocyte antigen (HLA)- typed and vaccinated with Influvac. 
Influenza- specific T cells were determined 7 days post vaccina-
tion (figure 1B online supplemental figure 1). An increase of 
influenza- specific CD8+ T cells was observed in healthy individ-
uals, but not in B cell deficient patients (figure 1C). To directly 
compare T cell responses of different donors, the fold induction 
of specific T cells post vaccination was calculated (figure 1D). 
Of note, the observed reduced T cell expansion in rituximab- 
treated patients was independent on other immunomodula-
tory comedication (online supplemental figure 2). Thus, B cell 
depleted RA patients show reduced CD8+ T cell expansion upon 
anti- influenza vaccination. During the current SARS- CoV- 2 
pandemic, such patients are particularly vulnerable and bare an 

enhanced mortality risk.19 20 COVID- 19 vaccination of younger 
patients just started and is applied independently of the ritux-
imab treatment cycle, as similarly done for influenza vaccination. 
One patient with granulomatosis and polyangiitis (GPA) was 
analysed 4 weeks after second BNT162b2 vaccination for anti- 
SARS- CoV- 2 antibody titres (figure 1E). In contrast to healthy 
controls, who mount high anti- SARS- CoV- 2 IgG responses, no 
antibody titre was detected in the serum of this patient. Of note, 
as SARS- CoV- 2 specific HLA- multimers are not available yet, T 
cell expansion could not be tested.

Since the analysis of immune responses in RA patients is 
potentially confounded by generally impaired immune status 
due to primary diseases and concomitant immunomodulatory 
treatment, the molecular mechanism of how B cells affect CD8+ 
T cell expansion was further addressed in B cell- deficient mice. 
To this end, JHT mice, in which the deletion of the J elements 
of the immunoglobulin heavy chain locus (JHT) resulted in a 
premature block of B cell development, were analysed. Upon 
infection with the mouse adapted influenza strain PR8, JHT mice 
showed significantly reduced expansion of nucleoprotein- and 
polymerase acidic protein- specific CD8+ T cells when compared 
with wild type mice (figure 2A,B). Thus, B cells are needed to 
efficiently induce influenza- specific CD8+ T cell responses in 
humans and mice.

To analyse whether the impact of B cells on T cell expansion 
is a unique feature on influenza infection, wild- type mice and 
JHT mice were infected with VACV, which is known to induce 
particularly strong T cell responses. The expansion of VACV- 
specific T cells was measured using an major histocompatibility 
complex (MHC)- I multimer loaded with the immune- dominant 
peptide B8. Upon VACV infection, wild type and JHT mice 
showed similar T cell expansion (figure 2C). Following MVA 
infection the expansion of B8- specific CD8+ T cells was signifi-
cantly increased in wild type mice compared with JHT mice 
(figure 2D). To analyse whether B cell reconstitution of B cell- 
deficient mice restored T cell responses, splenic B cells of wild 
type mice were adoptively transferred into JHT mice 1 day prior 
to MVA infection. In B cell- reconstituted JHT mice the expan-
sion of B8- specific CD8+ T cells was comparable with that in 
wild type mice (figure 2E), whereas adoptive transfer of serum 
from wild type mice, which contains natural antibodies but no 
B cells, had no impact (figure 2F). These data indicate that B 
cells support the induction of B8- specific CD8+ T cell responses 
on MVA infection, whereas during VACV infection B cells are 
not needed. Thus, the capacity of B cells to modulate CD8+ T 
cell responses is dependent on the properties of the pathogen/
vaccine.

MVA and VACV induce distinct cytokine milieus upon infec-
tion: While MVA induces systemic IFN- I responses, VACV effi-
ciently inhibits systemic IFN- I responses and rather induces an 
IL- 12 dominated cytokine milieu.15 18 To test whether IFN- I 
responses affect B and T cell responses, we made use of condi-
tional CD19- Cre+/- IFNARflox/flox mice (IFNAR- B) in which the 
IFNAR is selectively deleted on B cells. Upon VACV infection, the 
expansion of B8- specific CD8+ T cells was similar in IFNAR- B 
and wild type mice (figure 3A), whereas upon MVA infection 
the expansion of T cells was significantly reduced in IFNAR- B 
mice (figure 3B). To test whether B cells are directly triggered by 
IFN- I, B cells from Mx2- luc reporter mice expressing a luciferase 
reporter upon IFNAR triggering were adoptively transferred 
into albino C57BL/6 mice. Upon MVA infection, a strong lucif-
erase signal was detected by in vivo imaging particularly in the 
spleen and lymph nodes, which declined within the following 
day (figure 4). These results indicated that B cells were directly 
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triggered by IFN- I early after MVA infection, which is in accor-
dance with the fast onset of MVA induced IFN- I responses.21

To study effects of direct IFNAR signalling, B cells were isolated 
from spleens of MVA- infected wild type and IFNAR- B mice and 
analysed for differential gene expression by RNA sequencing. B 
cells of wild type mice expressed higher messenger RNA (mRNA) 
levels of MHC- I, β−2-microglobulin,andLy6CthanBcellsof
IFNAR- B mice (figure 5A). Furthermore, IFNAR- deficient B 
cells highly upregulated many chemokine receptors as well as 
CXCL1, CXCL9, and CXCL13, while CXCL10 was down- 
modulated when compared with wild type B cells (figure 5B). 
Thus, direct IFNAR- triggering of B cells modulates pathways 
involved in antigen presentation and tissue homoeostasis.

To test whether virus- specific CD8+ T cells showed distinct 
chemokine receptor expression, MVA- specific T cells were 
sorted by fluorescence activated cell sorting (FACS) using an 
MHC- I multimer and mRNA was sequenced. Of note, no differ-
ences in chemokine receptor expression were found comparing 

B8- specific CD8+ T cells of wild type and IFNAR- B mice 
(figure 5C). Even being less frequent, B8- specific CD8+ T cells 
showed very similar gene expression profiles when compared 
with T cells from wild type mice.

In accordance with sequencing data, B cells’ surface expression 
of MHC- I and the B8 presenting haplotype H2- Kb was signifi-
cantly increased upon direct IFNAR triggering, while MHC- II 
expression was upregulated upon infection IFNAR- independently 
(figure 6A–C). In addition, MVA infection induced CD86 and 
CD69 expression on wild type B cells, which was significantly 
reduced on IFNAR- deficient B cells (figure 6D–E). Thus, direct 
IFNAR signalling activates B cells and induces the expression of 
MHC- I as well as costimulatory molecules, and thus has a major 
impact on the capacity for antigen presentation of B cells.

DISCUSSION
Here, we report that B cell depletion can affect the expansion of 
virus- specific CD8+ T cells, depending on the T cell stimulating 

Figure 1 B cell depletion affects CD8+ T cell response upon influenza vaccination. Healthy subjects and rituximab- treated RA patients were 
vaccinated against seasonal influenza. (A) Rituximab treatment efficiently depletes circulating B cells from blood. (B) Influenza- specific CD8+ T 
cells were determined after excluding CD14+/CD19+/CD56+ cells by using one or more personalised MHC- I multimers (left panels). B cell depletion 
efficiency was monitored using flow cytometry (right panel). (C) The frequency of influenza- specific T cells of CD8+ T cells was monitored on day 0 
and 7 post vaccination. (D) Fold induction was calculated for each MHC- I multimer measurement (n=10 healthy, n=5 rituximab). Healthy subjects and 
one rituximab- treated GpA patient were fully vaccinated against SARS- CoV- 2. (E) Serum IgG against SARS- CoV- 2 S1 was determined (n=4 healthy, 
n=1 rituximab). Titre was considered positive when >0.8 ratio to calibrator (dotted line). error bars indicate mean±SD; **p≤0.01; one- tailed Mann- 
Whitney U test. FSC- A, forward scatter- area; RA, rheumatoid arthritis; SSC- A side scatter- area.
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pathogen/vaccine. The underlying mechanism is mediated via 
direct IFNAR signalling of B cells, which showed enhanced 
MHC- I, CD69, and CD86 expression, increased activation, and 
a distinct chemokine expression profile.

Most RA patients treated with rituximab received an immu-
nomodulatory comedication and thus are therapeutically immu-
nosuppressed. Since rituximab is not licensed as first- line RA 
treatment, the patients received other immunomodulatory treat-
ments earlier. Additionally, RA patients were recently shown to 
harbour exhausted CD4+ T cells,22 which might influence the 
outcome of CD8+ T cell responses as well. Furthermore, patients 
are not immunologically naïve, since they were previously 

vaccinated against seasonal influenza virus or were in contact 
with the pathogen itself. The analysis of T cell expansion upon 
vaccination reflects a reactivation of memory CD8+ T cells 
rather than a primary response. The question remains, whether 
upon other diseases than RA B cell depletion influence CD8+ 
T cells responses as well. To prove that reduced expansion of 
CD8+ T cells in patients treated with rituximab was not caused 
by such secondary effects, we studied the result of B cell deple-
tion on T cell responses in mice.

Here, we report a reduced in vivo expansion of antigen- 
specific CD8+ T cells in B cell- deficient mice upon infection with 
different viruses, suggesting the presence of a species- independent 

Figure 2 B cell deficient mice show reduced virus- specific CD8+ T cell response upon influenza and MVA, but not VACV infection. (A) Wild type (WT) 
and JHT mice were infected with 5×103 ffu mouse adapted influenza virus for 7 days. (B) Influenza- specific CD8+ T cells were determined by using 
nucleoprotein (NP) or polymerase acidic protein (PAP) specific MHC- I multimers. WT and JHT mice were infected with 105 pfu of (C) VACV or (D) MVA 
and B8- specific CD8+ T cells were determined by using a MHC- I multimer. Data shown are pooled from 2 to 3 experiments with n=3–4. JHT mice were 
reconstituted with (E) 107 B cells or (F) 300 µL serum of WT mice 1 day prior to MVA infection and B8- specific T cell expansion was monitored. One 
out of two independent experiments is shown. Error bars indicate mean±SD; *p≤0.05, ***p≤0.001; one- tailed Mann- Whitney U test. MVA, modified 
vaccinia virus Ankara; ns, not significant; VACV, vaccinia virus.
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mechanism of immune cell cross- talk. This phenomenon is 
remarkable, as dendritic cells (DCs) are broadly accepted to be 
the main APC responsible for T cell priming.

Guo et al showed that on anti- CD20 treatment, splenic CD8+ 
T cell proliferation was inhibited in a murine model of ITP.10 In 
that study, B cell depletion led to increased numbers of FOXP3+, 
CD4+, and CD8+ T cells within the spleen and lymph nodes, 
while splenic CD8+ T cells showed a reduced proliferation upon 
in vitro stimulation.10 In our experiments, the impaired T cell 
expansion was restored by adoptive transfer of B cells. B1 cell- 
derived natural antibodies, which are present in the serum of 
naïve mice, were shown to decorate antigen rather unspecifi-
cally and to enhance antigen presentation by antigen trapping.23 
However, we found that serum transfer was not effective in 
restoring the deficit in CD8+ T cell expansion in B cell deficient 
mice.

Upon MVA infection, the lack of IFNAR expression exclu-
sively on B cells resulted in reduced T cell expansion as simi-
larly detected in B cell deficient mice. Thus, besides serving as a 
direct third signal for T cell responses15 IFN- I can also increase 
CD8+ T cell responses indirectly via B cells. IFN- I responses 
were shown to critically modulate the overall cytokine milieu 
and in particular, to inhibit IL- 12 responses.15 24 25 Furthermore, 
IL- 12 was shown to serve as third signal in T cell activation 
as well,26 27 which might explain why in the absence of IFN- I 
responses B cells are dispensable for CD8+ T cell expansion. 
Direct IFNAR triggering on B cells induced the activation of 
the STAT1 pathway and enhanced the expression of Ly6C and 

CD69. Moreover, MHC- I and CD86 were induced, thus facili-
tating adequate antigen presentation. Interestingly, B cells were 
described before to cross- present MHC- I restricted antigen, 
although less efficiently than DC.28 Thus, IFN- I is a key medi-
ator to promote efficient interaction between B cells and CD8+ 
T cells. Of note, virus- induced IFN- I was also reported to confer 
disintegration of B cell follicles29 and to drive B cell reduction by 
differentiating B cells into short- lived antibody- secreting cells.30 
This mechanism called ‘B cell decimation’ was independent of B 
cell- intrinsic IFN- I sensing.30

Figure 3 IFNAR depletion on B cells affects B8- specific CD8+ T cell 
responses upon MVA, but not VACV infection. Wild type (WT) and CD19- 
Cre+/- IFNARflox/flox (IFNAR- B) mice were infected with 105 pfu (A) VACV 
or (B) MVA. B8- specific CD8+ T cells were determined by using an MHC- I 
multimer. Data shown are pooled from 3 to 4 experiments with n=3–4. 
Error bars indicate mean±SD; ***p≤0.001; one- tailed Mann- Whitney 
U test. IFNAR, type I interferon receptor; MVA, modified vaccinia virus 
Ankara; ns, not significant; VACV, vaccinia virus.

Figure 4 MVA- induced IFN- I responses directly trigger B cells in vivo. 107 B cells isolated from Mx2- luc reporter mice were adoptively transferred 
into albino C57BL/6 wild type mice 1 day prior to infection. Upon treatment with phosphate buffered saline (PBS) (first mouse per row) or infection 
with 105 pfu MVA (mouse 2–4 per row), luciferase reporter expression in adoptively transferred B cells was monitored after luciferin administration 
by in vivo imaging at different days (d) postinfection (scale=p/sec/cm2/sr). one out of two independent experiments is shown. IFN- I, type I interferon; 
MVA, modified vaccinia virus Ankara.

Figure 5 MVA- induced IFN- I responses activate B cells, but do not 
affect CXCR5+CD8+ T cell responses. Wild type (WT) and IFNAR- B mice 
were infected with 105 pfu MVA and B cells were isolated 1 day post 
infection via untouched magnetic cell separation and prepared for 
mRNA sequencing. Differentially regulated (A) surface molecules and 
(B) chemokine as well as chemokine receptor expression profiles are 
shown. n=3 (C) WT and IFNAR- B mice were infected with 105 pfu MVA 
and B8- specific CD8+ T cells were FACS- sorted six days post infection 
from spleens using a B8- specific MHC- I multimer. RNA sequencing 
samples were pooled from three different mice and chemokine 
expression profiles were analysed. IFN- I, type I interferon; IFNAR, IFN- I 
receptor; MVA, modified vaccinia virus Ankara.
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Whether B cells and CD8+ T cells are in direct contact within 
secondary lymphoid organs has been discussed controversially. B 
cell follicles and T cell zones are organised in separate compart-
ments in secondary lymphoid organs. In human (HIV) and 
simian immunodeficiency virus (SIV) infection, B cell follicle 
sanctuaries were shown to permit a persistent infection reser-
voir due to the absence of protective CD8+ T cell responses.31–33 
Quigley et al showed that a CXCR5+ subset of CD8+ T cells 
infiltrates B cell areas of tonsils.14 During chronic viral infection 
with lymphocytic choriomeningitis virus or SIV, CXCR5+CD8+ 
T cells migrate into B cell follicles and critically contribute to the 
control of viral replication.34–36 Upon MVA infection, IFNAR 
deficient B cells showed enhanced expression of CXCL13, 
which was previously shown to attract CXCR5+CD8+ T cells.14 
Of note, CXCR5 expression of sorted MVA- specific CD8+ T 
cells was very similar in wild type and IFNAR- B mice. These 
data suggest that in IFNAR- B mice, CXCR5+CD8+ T cells 
initially infiltrate B cell follicles, but cross- talk with B cells may 
be reduced. CD4+ T cells can directly interact with B cells, criti-
cally increase CD8+ T cell responses by providing help,37 38 and 
are activated in a spatially distinct compartment of lymph nodes 
before encountering CD8+ T cells.39 Thus, CD4+ T cells might 
function as a link between B cell and CD8+ T cell responses.

Of note, rituximab treatment of RA patients not only depletes 
recirculating B cells, but also a CD20+ terminally differentiated 
T cell subset with immune- regulatory and proinflammatory 
function.40 Nevertheless, the frequency of CD20+CD8+ T cells 

is very low in humans and might not be the primary cause for 
reduced T cell expansion in rituximab- treated patients.

Here, we studied the immune response against an influenza 
vaccine in B cell depleted RA patients. It is possible that antigen- 
specific T cell responses are also reduced in rituximab- treated 
patients after vaccination against other diseases. Of note, SARS- 
CoV- 2 infection induces only mild IFN- I responses due to 
active IFN- I blockade41 42 and patients with severe COVID- 19 
displayed a highly impaired IFN- I response when compared 
with patients with moderate COVID- 19 courses.43 44 Among the 
available COVID- 19 vaccines, the mRNA- based vaccines induce 
IFN- I dominated cytokine milieus.45 In contrast, for adenovirus- 
based vaccines it was shown that excessive IFN- I responses rather 
inhibit transgene expression, and as a consequence, vectors 
inducing only minor IFN- I responses were chosen for the devel-
opment of an immunogenic vaccine.46 47 Among SARS- CoV- 2 
adenoviral vectors, HAd5- based vaccines most likely induce less 
IFN- I compared with ChAdOx1- based vaccines. Considering a 
reduced CD8+ T cell responses in the presence of IFN- I with 
simultaneous absence of B cells, the non- IFN- I inducing adeno-
virus based vaccines could be even better suited to induce decent 
CD8+ T cell responses in B cell- depleted patients compared with 
mRNA- based vaccines.46 48

Patients treated with rituximab were reported to bare an 
enhanced mortality risk if infected with SARS- CoV- 2.19 20 With 
regard to COVID- 19 disease, it appears therefore not advis-
able to delay vaccination of such patients a few months after 
rituximab suspension, when naïve B cells have repopulated. In 
contrast to other vaccines, COVID- 19 vaccine should rather 
be administered as soon as available. In order to induce at least 
protective CD8+ T cell responses, the usage of vaccines inducing 
a cytokine milieu that is not dominated by IFN- I could be bene-
ficial for such patients.

MATERIAL AND METHODS
Patients and healthy controls
After immunisation withInfluvac season 2012/2013 or 
2013/2014 (Mylan Healthcare) PBMC were isolated on day 0 
and7,andfrozenat−80°C.Thefrequencyof influenzavirus
specific CD8+ T cells was determined using HLA matched 
pentamers (Proimmune) (online supplemental table 1). Five RA 
patients (one male, four female, average age 63 years) and 10 
healthy controls (five male, five female, average age 31 years) 
were identified with one or more matching HLA subtypes. After 
BNT162b2 vaccination, 1 GPA patient (female, age 20 years) 
and four healthy controls (two female, 1 male, average age 33 
years) were recruited. Characteristics of patients are indicated 
(online supplemental table 2).

Mice
C57BL/6 (wild type) and albino C57BL/6BrdCrHsd- Tyrc 
(C57BL/6 albino) mice were purchased from Harlan Winkel-
mann or Envigo. IFNAR-/-, 49 JHT,50 CD19- Cre+/- IFNARflox/

flox (IFNAR- B),51 and Mx2- luc reporter mice52 were described 
before. All mice were bred under specific pathogen free condi-
tions at the central animal facility of TWINCORE and the 
Helmholtz Centre for Infection Research, Brunswick, Germany, 
or the Paul- Ehrlich- Institut, Langen, Germany. Mouse exper-
imental work was carried out using 8 to 16 week old mice in 
compliance with regulations of the German animal welfare 
law (F107/64, 09/1655, 10/0265, 10/0266, 11/0367, 12/0939, 
13/1073).

Figure 6 MVA- induced IFN- I responses modulate antigen 
presentation in B cells. Wild type (WT) and IFNAR- B mice were infected 
with 105 pfu MVA and splenocytes were isolated 48 hours post 
infection. Expression of (A) MHC- II, (B) MHC- I, (C) H2- kb, (D) CD86, and 
(E) CD69 was analysed by flow- cytometry. Data shown are pooled from 
2 to 3 experiments with n=2–4. Error bars indicate mean±SD; *p≤0.01; 
***p≤0.001; one- tailed Mann- Whitney U test. DPI, days post infection; 
IFN- I, type I interferon; IFNAR, IFN- I receptor; MVA, modified vaccinia 
virus Ankara; MFI, mean fluorecscence intensity; NS, not significant.
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Viruses and infection
MVA and VACV strain Western Reserve (originally provided by 
Bernard Moss, NIH, Bethesda, Maryland, USA)53 were propa-
gated and titrated on chicken embryonic fibroblasts and purified 
by sucrose density gradient centrifugation. Mouse- adapted influ-
enza A/PR/8/34 (H1N1 PR8)54 was propagated in the chorio- 
allantoic fluid of 10 days old pathogen free embryonated chicken 
eggsat37°C55 and was kindly provided by Dr. P. Blazejewska, 
Dr. K. Schughart, and Carlos A. Guzmάn (Helmholtz Centre for 
Infection Research Brunswick, Germany). In all infection experi-
ments, mice were treated with 105 pfu MVA/VACV, or 5×103 ffu 
influenza virus dissolved in PBS intravenously.

Adoptive cell and serum transfer experiments
B cells were isolated from spleens, via untouched magnetic B cell 
separation kit (Miltenyi). 107 B cells with a purity of 90%–98% 
were adoptively transferred into recipient mice. For serum 
transfer, 300 µL serum pooled from different wild- type animals 
was injected 1 day prior to infection.

In vivo imaging
Reporter mice were intravenously injected with 3 mg of D- lucif-
erin (PerkinElmer) diluted in PBS and anaesthetised using 2.5% 
isoflurane (Abbott). The emitted light signals were measured in 
the in vivo imaging system IVIS SpectrumCT (Calliper) and anal-
ysed with Living Image 4.5 software (Calliper).

Flow cytometric analysis and cell sorting
All antibodies were purchased from eBioscience or 
BD- Pharmingen. Cells were measured using flow cytometry 
(LSR II, BD) and data were analysed by FlowJo software. FACS 
sorting was conducted using a MoFlo XDP cell sorter (Becton 
Dickinson).

ELISA
Anti- SARS- CoV- 2 IgG antibody titres were determined from 
serum using an ELISA (Euroimmun AG, EI 2606–9601 G) 
according to the manufacturer’s instructions. The ratio of the 
optical density to the calibrator was used to classify the samples 
asnegative(ratio<0.8)orpositive(ratio≥1.1).

Deep sequencing and pathway analysis
After 24 hours of MVA infection, B cells were isolated from 
spleens of C57BL/6 and IFNAR- B mice using the untouched 
magnetic B cell separation kit (Miltenyi). FACS sorting of B8- spe-
cific CD8+ T cells from spleens was conducted using a MoFlo 
XDP cell sorter (Becton Dickinson). After RNA isolation using 
tNucleoSpin RNA kit (Macherey- Nagel) mRNA sequencing was 
performed at TRON (Translational Oncology Mainz, Germany). 
Pathway analysis was performed as described in online supple-
mental methods section.

Statistical analysis
Statistical analyses were performed using GraphPad Prism V.6 
software as indicated.
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