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Abstract

We construct a stochastic SIR model for influenza spreading on a D-dimensional lattice, which represents the dynamic
contact network of individuals. An age distributed population is placed on the lattice and moves on it. The displacement
from a site to a nearest neighbor empty site, allows individuals to change the number and identities of their contacts. The
dynamics on the lattice is governed by an attractive interaction between individuals belonging to the same age-class. The
parameters, which regulate the pattern dynamics, are fixed fitting the data on the age-dependent daily contact numbers,
furnished by the Polymod survey. A simple SIR transmission model with a nearest neighbors interaction and some very basic
adaptive mobility restrictions complete the model. The model is validated against the age-distributed Italian
epidemiological data for the influenza A(H1N1) during the 2009=2010 season, with sensible predictions for the
epidemiological parameters. For an appropriate topology of the lattice, we find that, whenever the accordance between the
contact patterns of the model and the Polymod data is satisfactory, there is a good agreement between the numerical and
the experimental epidemiological data. This result shows how rich is the information encoded in the average contact
patterns of individuals, with respect to the analysis of the epidemic spreading of an infectious disease.
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Introduction

There are two major approaches to model the spreading of an

infectious disease in a space-structured population that are mostly

used in recent literature: the Individual Based Models (IBM) and

the Metapopualtion Models. The first ones [1–4] are obtained by

coupling a transmission model with a highly detailed socio-

demographic model, based on a thorough knowledge of the

population structure and its distribution in age-classes, household

size, school size, employments, etc. An appropriate set of social

contact groups is associated to each individual according to her/

his age. The epidemiological state of any individual is updated at

each time step, typically assuming a homogeneous mixing within

each context. The Metapopulation models [5–12] are mainly

focused on the role of human mobility, and involve a very accurate

knowledge of the mobility fluxes between different sub-populations

(transportation infrastructures, long-range airline connections,

short range daily commuting pattern, etc.). In each sub-

population, the disease typically propagates according to a discrete

stochastic model with homogeneous mixing. Both these large-scale

approaches are extremely fascinating, realistic and predictive.

Comparative studies also prove the two approaches to be in good

agreement with each other [13]. However, the price to pay for the

realism of these models is the high computational cost and their

non trivial generalizability, due to the huge amount of input data

necessary to achieve a realistic description of the populations living

in different geographic areas, and/or their connections at global

level.

In the present paper, we follow a complementary approach, in

which we reduce the number of parameters and input data as

much as possible. In particular, we concentrate on a few key

factors, assumed to be relevant for the spreading of an infectious

disease, and construct a simple model, which is able to reproduce

the age-dependent epidemiological curves of an epidemic

outbreak, as for instance the H1N1 pandemic in Italy in the

season 2009/2010.

The ingredients that we include in our model are the following:

N Age-Classes.

The distribution in age-classes is generally acknowledged to be a

crucial feature for the spreading of an infectious disease [14,15].

Individuals of different ages have different pre-existing partial

immunity, hygienic habits and mobility patterns which, in turn,

makes the susceptibility to be age-dependent. In our model, we

consider a population that is age distributed in 4 age classes (0–4,

5–14, 15–64, over 65 years old), which are the age-classes typically

used in the public health data report on influenza spreading.

N Heterogeneous and dynamic nature of contacts among individuals.

The hypothesis of homogeneous mixing does not take properly

into account the complexity of human interactions. Individuals

typically have contacts with a finite number of other individuals

and the number and identity of contacts change in time. Epidemic

models formulated on networks naturally include heterogeneity. In

these models, the disease transmission network is drawn over the

underlying network of contacts (i.e. the socio-demographic model).

The literature on the epidemic spreading on networks is extensive

(e.g. [16–22]) and it mostly consists of models formulated on static

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e63935



networks. Dynamic contacts are instead allowed in the neighbor

exchange model of Ref. [23], where each individual has a fixed

number of contacts, but the identities of contacts change in time.

In Ref. [24], susceptibles can avoid contacts with infected

individuals by rewiring their connections and changing the

identity of their contacts. This is an example of adaptive behavior

where the dynamics of contacts is induced by the epidemic itself.

The epidemic spreading on dynamic small world networks is also

discussed in Refs. [25–27]. Comparative studies on the effect of

dynamics on small world network [28] show that the risk of an

outbreak on dynamic network is higher than in static models.

In our model, the network of contacts is a simple D-dimensional

regular lattice with a certain percentage of empty sites. The use of

lattice models is not a novelty in the literature on epidemic models.

For instance, in Ref. [29], a SIRS model is formulated on a regular

lattice, in which, each site is occupied by an individual, and all the

individuals have the same number of contacts, with fixed identity.

The dynamical variables of the model are those related to the

infection, and change according to the state of the nearest

neighbors. In our model, instead, the existence of empty sites

allows heterogeneity in the number of contacts. Furthermore

individuals change the number and identities of their contacts, by

moving from a site to a nearest neighbor empty site according to

certain mobility rules.

N Balance between random nature of contacts and assortativity.

Data on the age-dependent contact patterns are crucial to study

the spreading of close-contacts infectious diseases. This is the basic

idea of the social contact hypothesis, which assumes that the age

specific number of potentially infectious contacts is proportional to

the self reported number of social contacts in each age-class [30].

In the Polymod project [31], a diary-based large scale survey of

epidemiologically relevant contact patterns was performed in 8 EU

countries. The country dependent contact matrices, mij (i.e. the

average number of daily contacts that an individual in the age-

class j has with individuals in the age-class i) were obtained from

the self reported number of social contacts in each age-class. The

dominant feature of these contact matrices, all over Europe, is the

large diagonal elements (larger in the 5–24 age-class than in the

adult ones), which indicate that individuals prefer contacts with

individuals belonging to the same age-class, i.e they have an

assortative behavior. A strong assortative behavior is also found in

Ref. [32], where authors generate synthetic contact matrices

through an IBM model, by coupling information obtained from

the Italian time-use data (carried out by the ISTAT - www.istat.it),

and socio-demographic data, and compare the results with

questionnaire-based contact matrices.

Starting from the self reported social contacts of the Polymod

survey, the age specific transmission rates may be estimated

[30,31,33]. The focus on time-use data is instead at the base of

Ref. [34], where authors make use of time-use surveys data to

measure contact patterns and to explain observed seroprevalence

profiles.

In our model, we also make the assumption that the spreading

of an infectious disease is mainly regulated by the average age-

dependent contact patterns of individuals, and design a dynamic

model with the aim to reproduce those patterns. In particular, the

dynamics of individuals is governed by a lattice-gas inspired

Hamiltonian, in which individuals of the same age-class interact

via an attractive potential. The effect of this potential is to favor

energetically those configurations, in which nearest neighbor sites

are occupied by individuals belonging to the same age-class, thus

introducing a tendency to assortativity. The parameters, which

govern the dynamic behavior of individuals, are chosen to

reproduce the total daily number of contacts of Polymod data in

each age class.

N Adaptivity.

The spreading of an epidemic induces modifications of the

human behavior such as restrictions of mobility and contacts.

These behavioral changes modify the underlying (disease inde-

pendent) dynamic network, which becomes adaptive to the disease

[23]. The effect is more pronounced in the case of lethal diseases,

or whenever the spreading of the epidemic is accompanied by the

spreading of awareness and fear. At the same time, the behavioral

changes, which occur as a consequence of the epidemic spreading,

affect the evolution of the epidemic itself [35,36].

In the present model, we simply introduce some very basic rules

of social distancing, which are over-imposed to the usual mobility

rules during the epidemic. The upgrade of the model in order to

include the effects of self-initiated behavioral changes will be

discussed in a forthcoming paper.

Summarizing, the main motivation of the present study is to

show that a simple SIR model for the spreading of an infectious

disease, coupled with a lattice-gas model for the underlying contact

dynamics, is able to reproduce the age-dependent epidemiological

curves of an epidemic outbreak. Our crucial hypothesis is that a

detailed microscopic knowledge of the population structure,

although powerful and fascinating, is not strictly necessary in

order to reproduce the spreading of an infectious disease, which is

instead essentially regulated by the average contact patterns of

individuals. Under this hypothesis, any model, which is able to

reproduce such patterns, may in principle predict the epidemics

dynamics, if some disease dependent parameters are provided.

The focus on the contact patterns is a novelty with respect to Ref.

[37], where the parameters controlling the dynamics were fixed a

priori, and the daily numbers of contacts were not compared with

experimental data. In the present paper, for different lattice

topologies, the parameters, which regulate the pattern dynamics,

are instead fixed in order to obtain the best agreement with the

Polymod data. The socio-demographic model is then coupled with

a SIR model with a nearest neighbor interaction for the spreading

of the infection. The model is checked on the Italian epidemio-

logical data for the influenza A(H1N1) during the 2009/2010

season. If the accordance between the contact numbers of the

model and the Polymod data is satisfactory, a good agreement is

also found between the numerical and the experimental epidemi-

ological data.

The Model

The model is an attractive lattice-gas on a D-dimensional lattice,

which represents the dynamic contact network of individuals [37].

Individuals move on the lattice according to certain mobility rules

designed in order to implement the assortative behavior of

different age-classes. The parameters, which regulate the pattern

dynamics, are fixed in order to obtain the best agreement with the

data on the total age-dependent daily contact numbers, furnished

by the Polymod large-scale survey. The transmission model is a

SIR model with a nearest neighbor interaction for the spreading of

the infection, with the addition of some adaptive mobility

restrictions during the epidemic.

Lattice Structure - The Demographic Model
The demographic structure of the model is very simple: the

population is randomly distributed on a D-dimensional lattice

according to the age group densities of a specific country. In

Lattice Model for Influenza Spreading
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particular the lattice is occupied by N individuals of 4 different

types, labeled by the index a~1,2,3,4 corresponding respectively

to the age groups, 0{4, 5{14, 15{64 and over 65 years old.

The lattice represents the contact network of individuals: contacts

and transmission of the infection occur only between nearest

neighbors. The dimension D fixes the maximum number of

simultaneous contacts that an individual can have. Here, we

choose to work with a Neumann neighborhood (i.e. with 2D

nearest neighbors), the extension to the case of a Moore

neighborhood being straightforward. Periodic conditions are fixed

on the lattice boundary.

In contrast with other lattice models [29], the sites are not all

occupied. The existence of empty sites is a crucial feature of the

model because individuals change the identities (and eventually

the number) of their simultaneous contacts by moving from a site

to a nearest neighbor empty site. We remark that, when moving

from a site to a nearest neighbor empty site, the individual moves

from a certain environment/social group to another (e.g. from

work to home), i.e. no notion of distance is defined on the lattice.

Disease Independent Mobility Rules
In our model, we assume the existence of an underlying

dynamic contact network of individuals, which is disease

independent. During the epidemic, some very realistic mobility

restrictions are over-imposed on the population in order to take

into account the adaptive behavior of individuals.

The disease independent network is constructed in order to

reproduce the data on the age-dependent daily contact numbers,

furnished by the Polymod project [31]. This is a large scale survey

performed in 8 EU countries, in which the contact patterns,

relevant for infections transmitted by the respiratory or close-

contact route, are acquired. As shown in Polymod survey, young

people (5–14) have the highest contact rate, followed by adults

(15–64), babies (0–4) and old people (over 65). Furthermore, most

of the contacts have been observed between persons of similar age.

In details, we define the nearest neighbor effective number,

Nage(1), of the individual located at the site 1, and belonging to a

certain age-class, as the total number of nearest neighbors

belonging to the same age-class. At each step of the dynamics:

1. we randomly choose an individual located at the site 1, and a

nearest neighbor destination site, 2, on the lattice. If the site 2 is

occupied, another individual is randomly chosen. The

probability that the randomly chosen site 2 is empty depends

on the local occupation density, increasing as the crowding

decreases;

2. if the site 2 is empty, we try to move the individual from the site

1 to the site 2 with the probability:

T(1?2)~ minf1,ebage ½Nage(2){Nage(1)�g: ð1Þ

The movement from the site 1 to the site 2 occurs with probability

1 if the number of nearest neighbors in the same age-class

increases or remains constant, otherwise it occurs with probability

T(1?2)~e{bage DDNage D: ð2Þ

with DDNageD~½Nage(1){Nage(2)�
It is worth noticing that the probability that an individual moves

from the site 1 to a randomly chosen nearest neighbor site 2 is

given by the probability that the site 2 is empty, times T(1?2),
where the first term favors spacing and the second one instead

crowding. Notice also that for Nage(1)~0 the transition always

occurs with probability 1.

The parameter bage may be considered an age-dependent

inverse mobility, and it plays the role of an assortativity regulator.

The larger is bage, the smaller is the probability that the movement

is accepted when Nage(2)vNage(1): i.e. the larger is bage the

stronger is the assortativity constraint for the corresponding age-

class. For bage~?, all the movements, which cause a reduction of

the number of nearest neighbors in the same age-class, are strictly

forbidden. For bage~0, instead, the movement always occurs with

probability 1 and we recover the case of purely random diffusion.

Let us emphasize that the efficiency of the assortatitvity

constraint does not depend only on bage, but also on the specific

age-class density rage, i. e. the same value of bage leads to different

contacts patterns, when applied to age-classes with different

densities. Let us consider for example the case bage~0 in each age-

class. In this circumstance, the distribution probability, p(k), that

an individual has k nearest neighbors of her/his own age-class, is

simply given by the binomial distribution.

p(k)~
2D

k

� �
rk

age(1{rage)(2D{k) ð3Þ

where
2D

k

� �
is the binomial coefficient and rage is the

occupation percentage of the individuals belonging to that age-

class. For each dimension D, at low rage, this function is peaked on

k~0, namely the most probable configurations are those with zero

nearest neighbors of the same age-class. Under this circumstance,

the mobility constraint is quite inefficient. Increasing rage and D,

the peak moves to value of k§1, making the constraint on the

assortativity more efficient.

The algorithm adopted, Eq.(1), is a standard Metropolis

algorithm for a Hamiltonian system in the canonical ensemble.

Indeed, Eq. (1) can be derived from the following lattice-gas

inspired Hamiltonian.

bH~{
X4

age~1

bage

X
SijT

n
age
i
:nage

j with ni~0,1 ð4Þ

where the sum SijT runs over the nearest neighbor site SijT, the

index i[f0,:::,LDg and L is the lattice size, n
age
i is the age-class

occupation number of the site i, which is 0, if the site is empty, and

1, if the site is occupied by one individual of the age-class ‘‘age’’.

Notice that each site can be occupied at most by one individual.

This Hamiltonian describes an attractive interaction among

individuals of the same age-class: the energy of the system

decreases when two nearest neighbor sites are occupied by

individuals of the same age-class. Individuals of different age-

classes interact only by means of the excluded volume.

In the standard Metropolis algorithm, sequential updates of the

system are realized, in which only one individual tries to move at

each time step. The single particle movement from the site 1 to the

site 2 changes the energy of the system as follows

bDH~{bage½Nage(2){Nage(1)� ð5Þ

Lattice Model for Influenza Spreading
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The transition probability, T(1?2), in Eq. (1), satisfies the

detailed balance principle, and this assures the equilibrium

distribution probability of the system to be the canonical one.

Let us briefly discuss the problem of equilibration in the present

model. The system, described in Eq. (4), can be viewed as a

mixture of 4 species of particles, with an attractive interaction

between particles of the same type. In the case of a single type of

particles, it reduces to a lattice-gas model, obtained from a

mapping of the Ising model with conserved magnetization. In the

Ising model, a second order continuous phase transition, at a finite

critical temperature, Tc, separates a high-temperature disordered

paramagnetic phase from a low-temperature ferromagnetic

ordered one (Tc depends on the dimension D of the lattice). After

a quench below the critical temperature, TvTc, a phenomenon

called coarsening is observed. At each instant, domains of up and

down spins are present. As time passes, the typical size of the

domains increases, however the time needed for a given initial

state to reach equilibrium diverges as a function of the system

linear size, L [38]. In an infinite system, this coarsening process

goes on forever.

An analogous phenomenon is observed in the system studied

here. At low bage (corresponding to high temperatures), the system

is in a homogeneous disordered phase. After a quench at high bage

(low temperatures), domains of particles of the same type appear.

As time passes, the typical size of the domains slowly increases.

The presence of different species, that interact by means of the

excluded volume, further complicates the dynamics, since isolated

particles in domains of a different type may remain blocked in this

state for a long time, although this is not an equilibrium state for

the system. We observe that different quenching procedures, in

general, produce different final states, for the same set of

dynamical parameters, bage, and therefore the final state, although

stationary on our observation time scale, may be an out-of

equilibrium state.

The Hamiltonian, Eq. (4), with bage~b for each age, can be also

viewed as the Hamiltonian of an annealed site-diluted q{Potts

model with q~4 [39], with the constraints that the number of

spins in each of the q spin states is kept constant. The q{Potts

model, which was extensively studied in literature, presents a

complex phase diagram with a first or a second order transition

depending on the q and D values. The problem of equilibration

using standard algorithm Metropolis with sequential updates of

single spin, as the one adopted here, is well known in literature,

where cluster [40] or multicanonical algorithm [41] were

developed in order to overcome the critical slowing down.

Transmission Model and Adaptive Mobility Rules
The previous model for the population dynamic must be

supplied with an epidemiological model. To this purpose, we

construct a SIR stochastic model, with nearest neighbors

interaction, in which each individual can be healthy without

immunity (i.e. susceptible, S), infective (I) or healthy with

immunity (i.e. recovered, R). To describe these possibilities, we

associate to each person an internal degree of freedom for the

healthy/infective status (Ii~0,1), and to healthy individuals we

attribute a further degree of freedom for susceptible/immune

status (antii~0,1). After a potentially contagious contact with an

infected nearest neighbor, a susceptible (Ii~0, antii~0) becomes

infected (Ii~1, antii~0) according to her/his specific age-class

susceptibility, Sage. The infective individual goes through an

asymptomatic phase, followed by a symptomatic one.

Notice that the transmission probability, Sage, does not coincide

with the WAIFW matrix usually considered in literature [42],

which indeed represents the probability that an infective of a

certain age-class has contact, and therefore infects a susceptible

individual of another age-class. In our approach, the dynamics is

not encoded into the transmission probability but it is considered

separately.

During the epidemic, some disease adaptive rules are over-

imposed:

N Infected individuals typically stay at home during the

manifestation of symptoms, reducing their contact network

essentially to the family. This tendency has been implemented

in the model by imposing that, at time TS (where s stays for

stop or symptoms) after the contraction of the infection, the

infected individual stops and does not move until she/he

recovers.

N Susceptible individuals tend to avoid contacts with the infected

ones during their symptomatic phase. This tendency is

implemented by imposing that the empty sites that are nearest

neighbor to symptomatic infected individuals are interdicted.

In other words, symptomatic infected individuals can only

infect their susceptible nearest neighbors at the stop time TS,

(i.e. the family in our simplified model).

N The neighbors of infected individuals can move without any

restriction.

After a time Tinf since infection, the infected individual acquires

permanent immunity (i.e. develops antibodies), changing the

internal d.o.f. (Ii,antii) from (1,0) to (0,1), and starting to move

again. Each infected individual has her/his own infective period,

while the infectivity is taken to be constant during the disease.

We assume the infective period Tinf to follow an exponential

distribution. This is the most frequent choice in literature and

corresponds to assume the recover probability to be independent

of the time since infection. More realistic choices for the infective

period have been shown to produce a destabilization effect [43].

Different choices for the infected period distribution (e.g. gamma

distribution), can be easily implemented in our model. The

introduction of a latent and an incubation interval is also

straightforward.

Results

Contact Dynamics
Applying the dynamics rules described in the previous section,

we simulate the contact patterns of individuals in absence of

infectious diseases. We perform 3 different numerical experiments

(listed in Table 1) on lattices with dimension D~3,4,6 and

occupation percentage r~0:2. Different values of the linear size of

the lattice, L(D), are fixed for different D, such that the number of

individuals is roughly constant for each dimension (*1:500:000
individuals). As reference population, we consider the Italian one,

whose age-class distribution is given in Table 2. For each

experiment, we simulate n~32 independent processes, and the

quantities of interest are obtained averaging over these indepen-

dent realizations of the system.

Following [30], we define the contact matrix mij as the average

number of contacts that a single individual of age-group j has with

individuals of age-group i. Thus the diagonal term, mjj , represents

the average number of contacts that an individual of age-class j has

with people belonging to the same age-class, while the quantity

Cj~
P4

i~1 mij , represents the total number of contacts that an

individual of age-class j has on average in one day with other

people, independently of the age-class to which they belong. In the

present paper, we fix the parameters bage by requiring our

Lattice Model for Influenza Spreading
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simulations to reproduce the total contacts CPol
j of the Polymod

survey, for each of the 4 age-classes considered.

In our simulations, the time unit is the Monte Carlo Step

(MCS), that corresponds to the time interval necessary to ensure

that each individual attempts to move on average one time. In

order to reproduce the Polymod data, we also have to fix the

relation between the MCS and the Polymod time unit (i.e. 1 day).

The collapse of the numerical data onto the experimental ones in

general occurs at different values of the age mobility for different

dimensions, and is obtained by suitably fixing the time conversion

factor. In particular, the number of MCS corresponding to 1 day

reduces, with increasing the dimension of the lattice (see Table 1).

This is consistent with the fact that higher dimensional topologies

imply a potentially higher number of simultaneous nearest

neighbors. As a consequence, in higher dimensions the individual

can reach the appropriate number of new contacts expected in one

day, with few movements.

For a given set of parameters bage, after an initial transient, the

system reaches a stationary state, in which the total number of

contacts Cj in each age-class j is time independent. Notice that,

although the number of contacts is not dependent on time on our

observation time scale, the final state may be an out-of equilibrium

state. Different procedures, in general, may produce different final

states, for the same set of dynamical parameters, bage. In the

present case, this is not relevant since the parameters, bage, are not

observable parameters, the only quantity of interest being instead

the contact matrix.

Within each experiment, starting from a state with very small

values of bage, we perform a cooling of the system slowly increasing

the parameters bage until a small region of the parameter space is

reached, in which the total number of contacts is enough close to

the experimental data. In such a region, we construct a fine grid in

the 4-dimensional parameter space, and evaluate the contact

numbers Cj for the 4 age-classes in correspondence to each point

of the grid. The final state, adopted to run the epidemic, is chosen

as the one which minimizes the x2 for dependent variables

x2~
X4

i,j~1

(Ci{CPol
i ):(V{1)ij

:(Cj{CPol
j ) ð6Þ

where CPol
i are the total number of contacts obtained with the

Polymod survey, Ci~
1
n

Pn
k~1 Ck

i are the simulated number of

contacts, obtained as the average of Ck
i (with k~1, . . . ,n) over the

n independent processes, and V is the covariance matrix defined as

(V )ij~
1

n

Xn

k~1

(Ck
i {Ci)|(Ck

j {Cj) ð7Þ

where the sum runs over the n independent processes.

In Fig. 1, the Polymod data and the simulated values of the total

average number of contacts, Cj , are compared for the 4 age-

classes. As shown in Fig. 1, for each value of D, our model is able

to reproduce the Polymod daily contact numbers, with an

appropriate set of parameters, bage.

We also evaluate the matrix pij , whose element gives the

fraction of the contacts of the age-class j with individuals belonging

to the age-class i, i.e. pij~mij=Cj . The information about the

assortativity is encoded in the diagonal elements of this matrix: the

higher is the value of pii, the higher is the assortativity of the age-

class i. In Fig. 2, the values of the diagonal elements pii are

compared to those obtained from the Polymod data. One can see

that the agreement between the numerical and experimental data,

with respect to the assortativity, is not satisfactory. In other words,

the model reproduces correctly the total daily contact numbers in

each age-class Cj , but not the mixing patterns mij among the age-

classes. We will discuss further this limit in the Discussion session.

Comparing different lattice topologies, one can notice that,

varying the dimension of the lattice, different contact patterns are

obtained with slightly different assortativity. The agreement with

the Polymod data is slightly better in the D~6 lattice than in the

other dimensions. This is true in each age-class except for elderly

people (over 65 years old). However, we expect this discrepancy to

be not relevant here, since elderly people have been only

marginally involved into the spreading of the H1N1 influenza.

Epidemics Curves
In this section, the model is tested for the Italian epidemiological

data of the H1N1 pandemic during the season 2009=2010. We

assume both the infective period, Tinf , and the stop time, Ts, to

follow exponential distributions. The average infective period is set

equal to T inf ~5 days, which corresponds to the typical duration

of influenza symptoms (with a truncation of the distribution at

5T inf ). The average stop time is set equal to Ts~1 day, which

corresponds to the typical duration of the asymptomatic phase for

the influenza (with a truncation of the distribution at 5Ts).

On each lattice, we set the parameters Sage (age-dependent

susceptibility) in order to reproduce the peak of the outbreak in

each age-class. The simulations are initialized with a density of

infected individuals, randomly distributed on the lattice, which is

equal to the 5% of the density of infected individuals observed at

43th week in the Italian epidemiological data of the H1N1

pandemic.

In Fig. 3, we compare the overall observed illness prevalence

(per thousand of individuals) of H1N1 influenza cases in Italy from

the 40-th week of the year 2009, to the numerical data obtained in

our model, simulated on lattices of different dimensions. The

simulated illness cases and their errors are evaluated respectively as

Table 1. List of Numerical Experiments.

Simulations D L r week/MCS

Experiment 1 3 180 0.20 198

Experiment 2 4 50 0.20 148

Experiment 3 6 14 0.20 105

Values of the parameters in the 3 different numerical experiments realized. The
linear size of the lattice, L, is fixed in order to have roughly the same number of
individuals (*1:500:000) for each dimension, D. The conversion factor,
necessary to reproduce the dynamics, depends on the lattice topology.
doi:10.1371/journal.pone.0063935.t001

Table 2. Age-Class Parameters.

age-group (age) fa

0–4 0.048

5–14 0.093

15–64 0.659

+65 0.20

Distribution of the Italian population in age-classes. ISTAT - 2009.
doi:10.1371/journal.pone.0063935.t002
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mean values and standard deviations over 32 independent

processes.

Comparing the slopes of the epidemic curve in D~3,4,6 from

42-th week to 43-th week, one can see that at the beginning of the

outbreak, the slope in D~3 is higher than in D~4 and 6. This

circumstance is consistent with the fact that, performing a random

distribution of the initial infected individuals, the probability to

have two initial infected individuals that are nearest neighbors to

each other (which corresponds to an ‘‘inefficient’’ distribution of

initial cases) increases with the dimension of the lattice. After the

peak, the process turns off more slowly in lattices with small D

rather than in higher dimensional cases. From Fig. 3, one can also

see that the agreement between experimental and numerical data

is slightly better for D~6, which is also the case that has the

highest values of the assortativity among those considered in the

present paper. Thus in the following we will concentrate on this

case.

Figure 1. Total number of contacts per day, Cj , in different age-classes. Comparison between the Polymod data and the simulated data on
lattices with different dimensions (D~3,4,6).
doi:10.1371/journal.pone.0063935.g001

Figure 2. Proportion of contacts with individuals of the same age, pii. Comparison between the Polymod data and the simulated data on
lattices with different dimensions (D~3,4,6).
doi:10.1371/journal.pone.0063935.g002
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In Fig. 4 we compare the simulated illness cases by age group,

on the D~6 lattice, with the corresponding data on the H1N1

influenza cases in Italy, furnished by the Italian Government. The

dissimilarity among different age-class susceptibilities indicated in

Table 3, reflects the fact that the H1N1 virus had different

incidence on different age classes, causing symptomatic disease

mainly in younger population, as a consequence of a pre-existing

partial immunity of older people [15]. The smaller incidence on

the 0–4 years old with respect to the 5–14 years old, may be due to

the minor exposure of this age-class, because of the small

percentage of children, which attend day nursery in Italy.

The comparison between observed and simulated data in Fig. 4

shows that our model reproduces the epidemiological data during

the epidemic peak (from week 44-th to week 47-th) for all the age-

classes. For age groups 0–4, 15–64 and +65 the model reproduces

quite accurately the entire epidemic evolution. However, it fails to

reproduce the very beginning of the outbreak, as well as the

descendant phase of the epidemic, for the 5–14 years old age

group. As observed in the previous sections, although our model

well reproduces the diagonal element pii of the contact matrix of

the Polymod project in the adult case, a worse agreement is

observed for the other age-classes (particularly evident for the age-

Figure 3. ILI cases of the H1N1 pandemic in Italy during the season 2009/2010. Comparison between the epidemiological data, furnished
by the Italian Government, and the simulated data on lattices with different dimensions (D~3,4,6i).
doi:10.1371/journal.pone.0063935.g003

Figure 4. Age distribution of the ILI cases of the H1N1 pandemic in Italy during the season 2009/2010. Comparison between the
epidemiological data, furnished by the Italian Government, and the simulated data on the D = 6 lattice.
doi:10.1371/journal.pone.0063935.g004
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class 5–14), which may reflect in the mismatch observed here

between the numerical and the epidemiological data.

As discussed below, other reasons could also contribute to this

disagreement. One should first observe that the Italian Govern-

ment data we are comparing with, are those relative to the illness

consultations and not to the ascertained cases. A direct and more

reliable measure of the incidence of infection in the population

would have been obtained by comparing the presence of

antibodies in serum samples before and after the pandemic (e.g.

[44]). However, in our knowledge such kind of analysis has not

been performed for the Italian case and thus age-classes immunity

data are not available. Moreover, also pharyngeal swabs on ILI

cases have not been performed systematically, so that a reliable

statistic on positive cases is not available. Illness consultations are

of course a much more reliable estimate of the real epidemic

diffusion during the epidemic peak (when the alert of population

and public health system is utmost) but they are less significant at

the beginning and at the end of the epidemic. Therefore, part of

the disagreement at the beginning of the outbreak for the age-class

5–14 (that is the one mostly involved into the epidemic) may be

due to an underestimation of the influenza diffusion at that time,

since not all the cases of influenza like symptoms led to illness

consultations, as instead it mostly happened during the peak. Part

of the disagreement in the descendant phase for the age group 5–

14 may be instead due to self-initiated health care measures

carried out by many Italian families. Indeed, even if no closure of

schools was decided by the Italian Government, the spread of fear

during the peak (also due to a strong media campaign), induced

many families to keep children at home, drastically reducing their

scholar and extra scholar activities during that period.

Estimation of Epidemiological Parameters
The estimation of the reproductive number, R, and the

generation time interval, v, leads to some interesting results.

For the generation time, v, we adopt the backward definition,

defining it as the time interval between the infection of an

individual and that of her/his infector. The generation time

distribution, g(n), obtained in the Experiment 3, is shown in Fig. 5.

From the generation time distribution, we evaluate the mean

generation time, which turns out to be n~(0:79+0:01) day. Such

low value is mainly due to the absence of a latent period, and to

the fact that, in our model, the contagions happen essentially

during the dynamical phase (i.e. before the recovering at home of

the infected individual).

As we see in Fig. 5, g(n) is well fitted by an exponential function,

Ae{Bn, with parameters A~B~1:2. Deviation from this func-

tional form is observed at large v. It is worth noticing that the

fitting parameters A and B exactly coincide with the quantity
1

Ts

z
1

Tinf

, where Ts~1 day and T inf~5 days are respectively

the average stop time and the average infective period adopted in

our simulations. Therefore, g(n) can be factorized as

g(n)*e{n=Ts e
{n=T inf : ð8Þ

The functional form obtained in Eq. (8) for the generation time

distribution can be interpreted in the following way [37]: g(n) may

be seen as the product of 3 distinct probabilities

g(n)~g1(n)|g2(n)|g3(n) ð9Þ

where g1(n), is the probability that an individual infected at time 0

is still infective at time v, g2(n) is the probability that an individual

infected at time 0 meets a susceptible at time v, and g3(n) is the

probability of contagion. Adopting the parallelism with the

demographic process, i.e. treating the infection process as a birth

process, Eq. (9) expresses the probability of a birth from a mother

of age v (i.e. g(n)) as the product of the survival probability of a

mother of age v (i.e. g1(n)), times the fecundity function (i.e.

g2(n)|g3(n)), here factorized as the probability of an useful

reproductive contact, times the probability of conception.

The function g1(n) in Eq. (9) coincides with the probability that

the infective period of the infector is greater than the actual time, v,

and, it is by definition the complementary cumulative distribution

function of the infective period, evaluated at time v:

P(Tinf§n)~1{cdfTinf
(n)*e{n=T inf ð10Þ

The function g2(n) is proportional to the probability that the

potential infector is not in the stop (i.e. symptomatic) phase, which

is in turn given by the probability that the stop time of the infector

is greater than the actual time v:

P(Ts§n)~1{cdfTs (n)*e{n=Ts ð11Þ

Finally, g3(n) is simply given by the weighted average of the

susceptibility Sage on the age groups and does not depend on v. By

replacing g1(n) and g2(n) in Eq. (9) respectively with Eq. (10) and

Eq. (11), Eq. (8) is obtained. The deviation of g(n) from this

functional form, for values of nw3, is therefore due to the

truncation of both the stop time and infective period distributions

at 5Ts. This is an interesting result, which gives an explicit

connection among the distributions of the generation time, the

stop time and the infective period.

The reproductive number R, which is the mean number of

secondary cases generated by a typical single infected case in a

population of entirely susceptible individuals, is related to the

generation time distribution g(n), being the inverse of the Laplace

transform of such distribution [45]

R~

ð?
0

e{rng(n)dn

� �{1

ð12Þ

where the parameter r is the cumulative exponential growth rate,

and can be derived by exponential regression of the stabilized

cumulative number of cases. In our simulations, we measure R as

[45]

Table 3. Susceptibilities.

age-class Sage

0–4 0.07

5–14 0.12

15–64 0.019

+65 0.004

Age dependent susceptibilities for the simulation on the D~6 lattice.
doi:10.1371/journal.pone.0063935.t003
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R~
rPn

i~1

gi(e
{rni{1{e{rni )

, ð13Þ

where gi~g(ni) are the simulated frequencies of the generation

time within ni{1 and ni. We evaluate r in a time window of one

week at the beginning of the simulation, obtaining

r~(0:154+0:006) day{1 which corresponds to a reproductive

number R~(1:13+0:01). This is consistent with what found in

recent literature for other countries, which indicates modest values

for R [46,47].

Discussion

In this paper, we propose a very simple model for the epidemic

spreading in an age-structured population with dynamic contacts.

In spite of its simplicity, the model has some ‘‘good’’ properties: it

is a dynamic contact network, in which individuals have a variable

number of contacts with variable identities; it includes disease

adaptive mobility restrictions; few demographic information is

required. The model correctly reproduces the age specific

epidemic curves of the H1N1 pandemic in Italy for each age-

class, except young people (5–14 years old). For this age group, the

agreement between the numerical and epidemiological data is only

found at the peak of the epidemic (from 44th week to 47th week).

The epidemiological model can be immediately extended in

order to include a latent period, a susceptible-infector dependent

transmission rate, a variable infectivity and self-initiated behav-

ioral conditioning.

The application of intervention strategies such as vaccination or

reduction of mobility can be easily implemented into the model.

For example, one can study the effect of vaccination by

introducing a certain percentage of immune individuals at a

certain time step. Simulations show that a vaccination campaign of

the 20 percent of the Italian population with a vaccine

effectiveness of 70 percent at 46th week produces a reduction of

the cumulative attack rate of the 37 percent, and a reduction of the

67 percent if the measure becomes effective at 44th week.

There are some limitations which affect this study, concerning

both the dynamic model and the transmission model.

First, the total daily contact numbers Cj , obtained with the

mobility rules discussed in the Results Section, are in good

agreement with the Polymod data, but the assortativity of Polymod

is not properly reproduced, as shown in Fig. 2. This is a limit of

our study and is related to the double role of the parameter bage:

on one hand, it works as a regulator of the assortativity and, on the

other hand, it regulates the overall number of contacts. In

particular, the high assortativity regime is obtained with bage??
but, in this limit, the mobility of individuals strongly reduces. The

5–14 age-class has the peculiarity to be at the same time, the most

assortative and the most dynamic age-class. For this reason, it is

hard to reproduce these two features within only one parameter.

An interesting question is how the results would change if the

bage parameters were chosen in order to fit the number of internal

contacts mjj per unit time, rather than the total number of contacts

Cj , for each age class j. One should first observe that this

alternative strategy would not automatically lead to an improve-

ment of the overall assortativity, which indeed depends on the

ratio among the internal and the total contacts. In particular, with

this alternative procedure, there would be no constraints on the

total number of contacts (unless introducing other fitting

parameters to fix them) with the result that the total contacts

could assume values very different from the Polymod data. We

Figure 5. Generation time distribution, g(n), obtained with the simulations on the D~6 lattice.
doi:10.1371/journal.pone.0063935.g005
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performed a set of such simulations and found an improvement in

the assortativity of young people, and a worsening in that of adults

and elderly people. However, no significant improvement of the

agreement between the epidemiological data and the simulated

ones were observed in this different setup, giving the two

procedures essentially similar results. In our opinion, to improve

the agreement with the epidemiological data, one should construct

a dynamic model that is able to reproduce the entire matrix of

mixing patterns rather than only some of its entries.

A different strategy could be to consider more complex

topologies, in which individuals of different age-classes live on

lattices of different dimensions. Another possibility that we are

exploring is the introduction of kinetic constraints or repulsive

interactions among individuals of different age-classes, that we will

discuss in a future work.

The simplifications adopted in the transmission model are

numerous. First, we do not consider the time of exposure to the

infection. Therefore, short episodes of contacts are on the same

footing as long standing contacts. This simplification is quite

reasonable for viral diseases, as influenza, for which even short

contacts can be sufficient for the transmission process. For other

kind of infections, as the bacterial ones, the time of exposure is

relevant for the transmission and thus one should properly include

it in the model. Moreover, in the present study, the infectivity of

the individuals is assumed to be constant during the entire infective

period. In principle, one should consider the reduction of the viral

load during the manifestation of the disease. There are examples

in literature, in which the infectivity is a function of the time

elapsed from the beginning of the infective period, as in Ref. [2],

where the infectivity is assumed to follow a log-normal distribu-

tion. Similarly, we do not consider the effect of the simultaneous

presence of more than one infected individual in the neighborhood

of the susceptible one: the probability of an individual to be

infected does not depend on the number of her/his nearest

neighbors, which are simultaneously infected, but only on the age-

class of the susceptible individual. Both these simplifications

correspond to disregard the effect of the viral load in the infection

process, which is indeed entirely ascribed to the immunological

status of the susceptible individual. To disregard the viral load in

the transmission process is acceptable for highly infective disease,

as the influenza pandemic. However, the model can be easily

‘‘upgraded’’ in order to overcome all the previous limits,

introducing a susceptible-infector dependent transmission rate, a

variable infectivity, and to make the transmission rate dependent

on the number of simultaneously infected nearest neighbors.

In conclusions, in this paper we present a very essential model

focused on few ingredients (the age-class distribution, the dynamic

nature of contacts, and the daily contact numbers), assumed to be

relevant for the spreading of an infectious disease. Our model

belongs to the class of epidemiological models, which adopt the

social contact hypothesis as the leading key to interpret and

reproduce the contagion process. Being in countertrend with

respect to the mostly used approaches in recent literature (I.e. IBM

and Metapopulation models), which involve highly detailed socio-

demographic/mobility models and require an huge amount of

input data, we believe that such a simple model could open a

valuable alternative perspective with respect to the mostly used

‘‘realistic’’ epidemiological models.
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29. de Souza DR, Tomé T (2010) Stochastic lattice gas model describing the

dynamics of the sirs epidemic process. Physica A: Statistical Mechanics and its
Applications 389: 1142–1150.

30. Wallinga J, Teunis P, Kretzschmar M (15 November 2006) Using data on social

contacts to estimate age-specific transmission parameters for respiratory-spread

infectious agents. American Journal of Epidemiology 164: 936–944.

Lattice Model for Influenza Spreading

PLOS ONE | www.plosone.org 10 May 2013 | Volume 8 | Issue 5 | e63935



31. Mossong J, Hens N, Jit M, Beutels P, Auranen K, et al. (2008) Social contacts

and mixing patterns relevant to the spread of infectious diseases. PLoS Med 5:
e74.

32. Iozzi F, Trusiano F, Chinazzi M, Billari FC, Zagheni E, et al. (2010) Little italy:

An agent-based approach to the estimation of contact patterns-fitting predicted
matrices to serological data. PLoS Computational Biology 6.

33. Melegaro A, Jit M, Gay N, Zagheni E, Edmunds WJ (2011) What types of
contacts are important for the spread of infections? using contact survey data to

explore european mixing patterns. Epidemics 3: 143–151.

34. Zagheni E, Billari FC, Manfredi P, Melegaro A, Mossong J, et al. (2008) Using
time-use data to parameterize models for the spread of close-contact infectious

diseases. American Journal of Epidemiology 168: 1082–1090.
35. Funk S, Salath M, Jansen VAA (2010) Modelling the inuence of human

behaviour on the spread of infectious diseases: a review. J R Soc Interface 7:
1247–1256.

36. Perra N, Balcan D, Gonalves B, Vespignani A (2011) Towards a characteriza-

tion of behavior-disease models. PLoS ONE 6: e23084.
37. Fierro A, Liccardo A (2011) A simple stochastic lattice gas model for h1n1

pandemic. Application to the italian epidemiological data. The European
Physical Journal E 34: 1–6.

38. Cugliandolo LF (2010) Topics in coarsening phenomena. Physica A: Statistical

Mechanics and its Applications 389: 4360–4373.
39. Wu FY (1982) The potts model. Reviews of Modern Physics 54: 235–268.

40. Swendsen RH, Wang JS (1987) Nonuniversal critical dynamics in monte carlo

simulations. Phys Rev Lett 58: 86–88.

41. Berg BA, Neuhaus T (1992) Multicanonical ensemble: A new approach to

simulate first-order phase transitions. Phys Rev Lett 68: 9–12.

42. Kermack WO, McKendrick AG (1927) A contribution to the mathematical

theory of epidemics. Proceedings of the Royal Society of London Series A 115:

700–721.

43. Lloyd AL (2001) Realistic distributions of infectious periods in epidemic models:

Changing patterns of persistence and dynamics. Theoretical Population Biology

60: 59–71.

44. Miller E, Hoschler K, Hardelid P, Stanford E, Andrews N, et al. (2010)

Incidence of 2009 pandemic inuenza a h1n1 infection in england: a cross-

sectional serological study. The Lancet 375: 1100–1108.

45. Wallinga J, Lipsitch M (2007) How generation intervals shape the relationship

between growth rates and reproductive numbers. Proceedings of the Royal

Society B: Biological Sciences 274: 599–604.

46. Yang Y, Sugimoto JD, Halloran ME, Basta NE, Chao DL, et al. (2009) The

transmissibility and control of pandemic inuenza a (h1n1) virus. Science 326:

729–733.

47. Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, et al.

(2009) Pandemic potential of a strain of inuenza a (h1n1): Early findings. Science

324: 1557–1561.

Lattice Model for Influenza Spreading

PLOS ONE | www.plosone.org 11 May 2013 | Volume 8 | Issue 5 | e63935


