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Abstract Cells of specialized secretory organs expand their secretory pathways to accommodate the increased protein
load necessary for their function. The endoplasmic reticulum (ER), the Golgi apparatus and the secretory vesicles,
expand not only the membrane components but also the protein machinery required for increased protein production
and transport. Increased protein load causes an ER stress response akin to the Unfolded Protein Response (UPR).
Recent work has implicated several bZip transcription factors in the regulation of protein components of the early
secretory pathway necessary to alleviate this stress. Here, we highlight eight bZip transcription factors in regulating
secretory pathway component genes. These include components of the three canonical branches of the UPR–ATF4,
XBP1, and ATF6, as well as the five members of the Creb3 family of transcription factors. We review findings from both
invertebrate and vertebrate model systems suggesting that all of these proteins increase secretory capacity in response to
increased protein load. Finally, we propose that the Creb3 family of factors may have a dual role in secretory cell
differentiation by also regulating the pathways necessary for cell cycle exit during terminal differentiation.
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The early secretory pathway

An estimated one third of the open reading frames encoded by
eukaryotic genomes is predicted to travel through the
secretory pathway (Dancourt and Barlowe, 2010; Suh and
Hutter, 2012). Trafficked proteins include the secreted and
membrane-bound components of the plasma membrane and
endomembrane compartments. Classical genetic screens,
biochemical reconstitution studies and live cell imaging,
largely in yeast and mammalian tissue culture cells, have
revealed critical components of the secretory machinery and
have provided insight into the molecular mechanisms by
which proteins enter the secretory pathway, undergo post-
translational modifications and ultimately target to their
correct final cellular compartments. Recent genome-wide
approaches continue to reveal new components and uncover
their roles in secretion. It is clear that the machinery of
secretion is largely conserved, allowing for unprecedented
advances in our understanding of the molecules and

mechanisms driving secretion and secretory organelle home-
ostasis (Barlowe and Miller, 2013). Excellent comprehensive
reviews have been recently published addressing each of the
known steps in the secretory pathway (D’Arcangelo et al.,
2013; Delic et al., 2012; Denic, 2012; Moore and Hollien,
2012; Aebi, 2013; Ast and Schuldiner, 2013; Barlowe and
Miller, 2013; Brandizzi and Barlowe, 2013; Chen et al., 2013;
Denic et al., 2013; Gidalevitz et al., 2013; Johnson et al.,
2013; Miller and Schekman, 2013; Nyathi et al., 2013; Oka
and Bulleid, 2013; Venditti et al., 2014). These steps and the
major players (Supplemental Table 1) are discussed below
along with the introduction to the secretory genes whose
expression is under the control of the transcription factors that
are the major emphasis of this review.

Entry into the secretory pathway

Proteins enter the secretory pathway at the endoplasmic
reticulum (ER) and are subsequently moved by vesicular
trafficking through the different secretory compartments to
their ultimate destinations (Mandon et al., 2013). Most
proteins enter the secretory pathway by a mechanism known
as co-translational translocation (Ng and Walter, 1994; Walter
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and Johnson, 1994; Nyathi et al., 2013) (Fig. 1, step 1). As
precursor proteins are synthesized on ribosomes, a “signal
sequence” – an N-terminal α-helical stretch of approximately
20 hydrophobic residues (von Heijne, 1983) or the first
transmembrane domain of a membrane protein (Friedlander
and Blobel, 1985) – emerges from the exit tunnel of the
ribosome, and is bound by the signal recognition particle
(SRP) (Rapoport, 2007; Cross et al., 2009; Janda et al., 2010).
The SRP is an RNA-protein complex composed of a short
RNA and six polypeptides (Walter and Blobel, 1982; Keenan
et al., 2001; Egea et al., 2005; Saraogi and Shan, 2011). Upon
engagement of the SRP with the ribonucleoprotein complex
(RNC), translation is arrested (Walter and Blobel, 1981). The
SRP-RNC then binds a receptor on the ER surface – an α,β
heterodimer known as the Signal Recognition Particle
Receptor (SR) (Gilmore et al., 1982; Gilmore and Blobel,
1983). The SR transfers the ribosome-bound nascent
polypeptide chain to the Sec61 translocon channel (composed
of a single membrane spanning protein [Sec61β] (Johnson
and van Waes, 1999; Raden et al., 2000; Song et al., 2000;
Osborne et al., 2005; Jiang et al., 2008), which forms the
translocation tunnel, and two smaller subunits–Sec61α and
Sec61γ), through which secreted proteins are fed into the ER
and transmembrane domains are partitioned into the lipid
bilayer as translation resumes (Schnell and Hebert, 2003;
Mandon et al., 2009).

At least three groups of proteins-representing as much as
20% of the yeast secretome-enter the ER by a post-
translational mechanism. The groups include short secreted
proteins of less than 70–80 residues, proteins with a C-
terminal transmembrane domain whose N-terminal domain is
cytosolic – the so-called tail-anchored (TA) proteins (Kutay et
al., 1993; Shao and Hegde, 2011b; Ast and Schuldiner, 2013;
Johnson et al., 2013) – and proteins whose signal sequences
are either not hydrophobic enough or that fail to form an
alphα-helical structure (Ng et al., 1996). GPI-anchored
proteins are highly represented in this last group (Ast et al.,
2013). Translocation into the ER is SRP-independent since
the proteins are fully translated before the hydrophobic stretch
targeted by the SRP clears the ribosome exit tunnel. With the
exception of TA proteins (Borgese and Fasana, 2011; Shao
and Hegde, 2011b), proteins that enter the ER post-
translationally still enter the ER through the core Sec61
channel, aided by the Sec62-Sec63 complex, which includes
the Sec71 and Sec72 proteins (Feldheim and Schekman,
1994; Panzner et al., 1995; Young et al., 2001) (Fig. 1, step 2).
Sec63 is a transmembrane domain (TMD) protein whose
lumenal portion binds and recruits Kar2/BiP, a lumenal
HSP70 protein that functions to ratchet proteins into the ER
lumen (Matlack et al., 1999). All proteins that enter the ER
post-translationally must be kept in an unfolded state by the
action of cytosolic chaperones, including members of the
HSP70 (4 in yeast, 40 in humans) and HSP40 (22 in yeast,
100s in humans) families of proteins (Johnson et al., 2013).
These chaperones also keep secreted proteins from forming

large insoluble aggregates in the cytosol. Interestingly,
calmodulin binds the signal sequences of short secreted
proteins as well as the C-terminal membrane spans of the
mammalian TA proteins, likely functioning in a similar
capacity to the HSP chaperones (Shao and Hegde, 2011a).

The TA proteins, which represent an estimated 5% of
membrane proteins, are inserted into the ER membrane
independently of the Sec61 translocon through what is known
as the GET (guided entry of TA proteins) pathway in yeast
and the related Trc40 pathway in mammals (Stefanovic and
Hegde, 2007; Schuldiner et al., 2008; Denic, 2012; Denic et
al., 2013) (Fig. 1, step 3). As the C-terminal TMD of a TA
protein emerges from the exit tunnel of the ribosome, it is
bound and shielded by Sgt2 in yeast and Bag6 in mammals
(Mariappan et al., 2010; Wang et al., 2010; Chartron et al.,
2011). The TMD bound by Sgt2/Bag6 is, in turn, passed to
the ATPase Get3 (Trc40 in mammals) through a pre-targeting
complex that includes two other proteins, Get4 and Get5
(Trc35 and Ubl4a, respectively, in mammals) (Gristick et al.,
2014). This complex is proposed to bring together two
activated Get3 dimers to form a tetramer that cradles the
TMD. ATP hydrolysis occurs as the tetramer forms around
the hydrophobic TMD, releasing the TMD-bound Get3
tetramer from the Get4/Get5 complex (Wereszczynski and
McCammon, 2012; Rome et al., 2013). TMD-bound Get3
then interacts with a heterodimeric ER receptor – Get1 and
Get2 (Stefer et al., 2011). The cytosolic domains of the Get1
(WRB in mammals) and Get2 multi-span transmembrane
proteins bind and pry open the Get3 protein, freeing both the
TMD and Get3, releasing ADP. Through a poorly understood
mechanism, the exposed TMD is then inserted into the ER
membrane. As mentioned, the human Trc40 pathway has
many of the same components, although the mammalian
ortholog to Get2 awaits discovery. Interestingly, although
mammalian Bag6 seems to have a similar function to yeast
Sgt2, it has no sequence similarity and the closest mammalian
ortholog to Sgt2 – SGTA - binds TMDs only weakly
(Mariappan et al., 2010; Wang et al., 2010; Chartron et al.,
2011).

Processing in the ER

Post-translational modifications and the folding of both
membrane and secreted proteins begin as proteins enter the
ER (Barlowe and Miller, 2013; Chen et al., 2013; Delic et al.,
2013). Among the post-translational modifications that occur
even as proteins are being translocated into the ER are
removal of the N-terminal signal peptide (Fig. 1, step 4) and
protein glycosylation (Fig. 1, step 5). Removal of the signal
peptide is done by the signal peptidase complex (SPC), which
in yeast is composed of four ER membrane spanning proteins
known as Spc1, Spc2, Spc3, and the protease Sec11 (YaDeau
et al., 1991; Fang et al., 1996; Mullins et al., 1996; Fang et al.,
1997; Meyer and Hartmann, 1997). The SPC in mammals has
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five transmembrane proteins - SPase 12 (Spc1 equivalent) and
SPase 25 (SPc2 homolog) (Fujimoto et al., 1984; Kalies and
Hartmann, 1996), and three with significant ER lumenal
domains: SPase 18 and SPase21 (yeast Sec11 functional
homologs (Greenburg et al., 1989; Liang et al., 2003)) and

SPase 22/23 (Spc3 homolog (Fang et al., 1997; Meyer and
Hartmann, 1997)).The complex sits very close to (perhaps in
direct contact with) the translocon, with the active site of the
enzyme close to the lumenal surface (Antonin et al., 2000).

The majority of secretory proteins are glycosylated (Spiro,

Figure 1 Major components of the secretory system are illustrated, from ER entry (steps 1–3) to post-Golgi sorting of vesicles
containing fully processed cargo molecules (step16). Co-translational translocation involves the signal recognition particle (SRP), the
signal recognition particle receptor (SR) and the Sec61 translocon complex (Sec61) (1). Post-translational translocation involves cytosolic
chaperones (Hsp40s and Hsp70s), the Sec63 complex and the Sec61 translocon (2). Insertion of tail-anchored proteins into the ER
membrane requires the Get pathway (3). Removal of N-terminal signal sequences requires the SPase complex (4). N-linked glycosylation
requires oligosaccharide transferase (OST) to recognize the consensus sequence and attach the precursor glycan to the protein (5). Both
steps 4 and 5 occur as protein is still being synthesized. GPI anchor addition involves cleavage of a C-terminal, membrane-spanning
hydrophobic domain and covalent attachment of the lipid moiety (6). The hydroxylation of proline residues in ECM proteins, such as
collagens, is mediated by Prolyl-4-hydroxylase (7). Protein folding in the ER is assisted by a large number of chaperone proteins, many of
them HSPs (8). Many secreted cargo and surface proteins form disulfide bonds between cysteine residues (9). Anterograde trafficking
between the ER and Golgi is mediated by COPII vesicles (10), which dock and fuse to either the cis-Golgi or ERGIC (11). Trafficking
through the Golgi is likely to occur by a Golgi maturation mechanism (12), where earlier Golgi compartments are reformed by fusion of
retrograde trafficking of COPI vesicles containing compartment-specific enzymes (13). O-linked glycosylation – the addition of N-acetyl-
galactosamine sugars to oxygen atoms in polypeptides - also occurs in the Golgi (14 – not illustrated). COPII vesicles are also involved in
retrograde trafficking from the Golgi to ER (15). Cargo is sorted for transport to specific final destinations (lysosomes, endosomes, plasma
membrane) in the trans-Golgi (16). Some evidence suggests some compartmentalization of the trans-Golgi with respect to the ultimate
destinations of cargo proteins.
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2002). N-linked glycosylation involves the transfer of
a 14-sugar – Glucose3Mannose9N-acetyl glucosamine2
(Glc3Man9GlcNAc2) – from dolichol to asparagine residues
found in consensus sequences Asn-X-Ser or Asn-X-Thr (X is
any non-proline residue) as proteins enter the ER through the
translocation machinery (Fig. 1, step 5). The enzyme complex
that carries out N-linked glycosylation–Oligosaccharyltrans-
ferase or OST–is often found physically associated with the
Sec61 translocon. Indeed, the timing of this modification
makes it more of a co-translational rather than post-
translational modification. Trimming of the sugar residues
added by Ost is intimately linked to protein folding, quality
control and exit from the ER. O-linked glycosylation occurs
in the Golgi (Roth et al., 1994; Hirschberg et al., 1998; Naim
et al., 1999) and is the addition of N-acetyl-galactosamine
sugars to oxygen atoms in polypeptides.

Glycosylphosphatidylinositol (GPI) anchors are added en
bloc post-translationally to many types of proteins entering
the secretory pathway, including enzymes, adhesion mole-
cules, receptors, and prion proteins (Menon and Vidugiriene,
1994; Vidugiriene and Menon, 1994) (Fig. 1, step 6). The GPI
addition at the C terminus anchors the proteins in the outer
leaflet of the lipid bilayer facing the extracellular space.
Precursor proteins typically have the canonical N-terminal
signal sequence as well as a C-terminal signal sequence for
GPI anchor addition, which is a hydrophobic stretch long
enough to span a lipid bilayer preceded by a shorter
hydrophobic spacer adjacent to the GPI attachment site ω
(Orlean and Menon, 2007). The ω attachment site and the two
C-terminal residues are typically small amino acid residues
(Ala, Asn, Asp, Cys, Gly or Ser). The ER membrane localized
GPI- transamidase complex (composed of GPI8p and Gaa1p),
with its cysteine-protease-like catalytic subunit, simulta-
neously removes the C-terminal hydrophobic region and
attaches preformed GPI to the ω consensus site.

Prolyl hydroxylation is the most prevalent protein
modification that occurs to the human proteome (Fig. 1,
step 7). The process is mediated in most species by a hetero-
tetramer Prolyl-4-hydroxylase composed of two α and two β
subunits (Kivirikko et al., 1989). These ER lumenal enzymes
transfer a hydroxyl group to the fourth position of proline
using 2-oxoglutarate, Fe2+, and ascorbate as cofactors.
Substrates for prolyl hydroxylation include major compo-
nents of the extracellular matrix (ECM), such as collagen and
elastin. Prolyl hydroxylation stabilizes collagen by raising the
melting temperature of the protein, allowing collagen to be
stable at body temperature (Gorres and Raines, 2010).
Interestingly, whereas only two different ER prolyl-4-
hydroxylase α subunits (PH4α) are encoded in the mamma-
lian genome, the Drosophila genome encodes at least 19,
almost all of which show tissue-specific expression patterns
(Abrams and Andrew, 2002). This is in contrast with the
variation of their substrates –> 30 collagens are encoded in
vertebrates and only two inDrosophila (Hulmes, 2008; http://
flybase.org/cgi-bin). Collagen and other secreted proteins are

also modified by lysyl oxidation, a reaction mediated by
membrane-bound homodimeric lysyl hydroxylase enzymes
found in the lumen of the ER (Guzman et al., 1976). Both
prolyl and lysyl hydroxylation are irreversible modifications
that increase protein stability (Berg and Prockop, 1973;
Quinn and Krane, 1976).

Other events that occur in the ER include protein folding
and disulfide bond formation (Braakman and Bulleid, 2011;
Gidalevitz et al., 2013). Folding of proteins in the ER
environment has unique challenges: The ER is an oxidizing
environment with huge redox potential. There is far greater
crowding than in the cytosol and unique machinery exists for
protein modifications (glycosylation and disulfide bond
formation) (Csala et al., 2012) (Fig. 1, step 8). In keeping
with the unusual conditions for protein folding in this
environment, the most abundant ER proteins are involved
in folding: chaperones, protein disulfide isomerases and
peptidylprolyl isomerases (collectively referred to as fol-
dases) and glycosylation enzymes (Gidalevitz et al., 2013;
Luo and Lee, 2013). Indeed, Kar2/Bip, the chaperone that
ratchets proteins into the ER during translocation, prevents
unfavorable interactions between the protein and the ER
membrane, and channels proteins down more favorable
folding pathways (Hamman et al., 1998).

Disulfide bond formation occurs in the ER and is the
covalent attachment of two cysteine residues (often quite
widely separated along the polypeptide chain) through a
disulfide bridge (Bulleid and Ellgaard, 2011; Bulleid, 2012;
Oka and Bulleid, 2013) (Fig. 1, step 9). The PDI family of
dithiol-disulfide oxidoreductases (of which there are about 20
different proteins) catalyzes disulfide bond formation in the
ER. Once PDIs introduce disulfides into newly synthesized
proteins, PDIs are re-oxidized by ER-specific oxidases, such
as yeast Ero1p (vertebrate Ero1α and Ero1β) (Frand et al.,
2000).

Unfolded protein structures can be recognized as exposed
hydrophobic regions, unpaired cysteine residues or immature
glycans; these proteins are removed from the ER by the ER-
associated protein degradation (ERAD) pathway (Thibault
and Ng, 2012; Merulla et al., 2013; Olzmann et al., 2013). As
mentioned earlier, Glc3Man9GlcNac2 is added to proteins as
they emerge from the translocon into the lumen of the ER.
Enzymatic trimming of these oligosaccharides indicates
proper protein folding and allows exit from the ER
(Määttänen et al., 2010). The terminal α1,2 glucose residue
is removed by glucosidase I and the second α1,3 glucose
residue is removed by glucosidase II (Deprez et al., 2005).
Calnexin (membrane proteins) or calreticulin (lumenal
proteins) binds Glc1Man9GlcNac2 (Williams, 2006). The
protein is released from calnexin or calreticulin as the last
glucose is removed and it is able to move through the
secretory pathway. If a protein is misfolded, an enzyme
known as UGGT/UGT functions as a folding sensor that adds
one α1,3 glucose (Sousa et al., 1992), allowing calnexin or
calreticulin to rebind (D’Alessio et al., 2010). Correctly
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folded proteins, free of calnexin and calreticulin, are directed
to ER exit sites (Ellgaard and Helenius, 2003). After a few
cycles of calnexin/calreticulin binding, misfolded proteins are
targeted for ERAD, which involves ubiquitylation, unfolding,
and removal of the protein from the ER and subsequent
targeting to the proteasome (Meusser et al., 2005).

ER and Golgi anterograde and retrograde
trafficking

The next major organelle in the secretory pathway is the
Golgi, which further modifies, sorts and packages proteins for
their final destinations either within or outside the cell
(Nakamura et al., 2012). The Golgi comprises stacks of
membrane-bound cisternae organized into functional
domains - cis, medial and trans. Within each Golgi domain
are distinct arrays of enzymes that sequentially modify
secretory cargo. Proteins traffic in coated vesicles from the
ER to the cis-Golgi – the earliest Golgi compartment (Gillon
et al., 2012; D’Arcangelo et al., 2013; Miller and Schekman,
2013; Venditti et al., 2014). The protein coats on vesicles
function to recruit cargo (inner coat) and to bend the
membrane to form vesicles of specific sizes and shapes
(outer coat) (Miller and Schekman, 2013). Anterograde
COPII coated vesicles form in the ER in ER Exit Sites –

ERES – and directly fuse with the cis-Golgi, in the case of
yeast, or to a sub-compartment known as the ER/Golgi
Intermediate Compartment– ERGIC–in the case of higher
eukaryotes (Brandizzi and Barlowe, 2013). The ERGIC is a
stable tubular-vesicular membranous sub-compartment char-
acterized by the presence of ERGIC53 as well as a number of
other proteins distinct from those of the ER or Golgi
(Appenzeller-Herzog and Hauri, 2006). The ERGIC is
proposed to be the first post-ER sorting station, where cargo
destined for further anterograde transport to the Golgi is
separated from cargo destined to return to the ER. The ERGIC
may also function as a last place to retrieve unfolded proteins
for return to the ER and subsequent ERAD processing.

The COPII vesicle coats include five highly conserved core
proteins: Sar1, Sec23, Sec24, Sec13 and Sec31 (Zanetti et al.,
2012; D’Arcangelo et al., 2013; Miller and Schekman, 2013).
Coat assembly begins with the recruitment of the Sar1
GTPase to the ER membrane by Sec12, a Sar1 GEF that
localizes to the ER membrane (Fig. 1, step 10). Insertion of
Sar1-GTP into the ER membrane leads to the sequential
recruitment of the inner (Sec23 and Sec24) then outer (Sec13
and Sec31) coat components. Sec23 is a Sar1-GAP and Sec24
is a transmembrane protein whose lumenal domain binds
cargo either directly or indirectly through the p24 and p24-
related cargo binding proteins (Strating et al., 2009; Dancourt
and Barlowe, 2010). Sec13 and Sec31 form a lattice-like cage
that deforms the membrane allowing for the COPII vesicles to
pinch off from the ER membrane. Fusion of COPII-coated
vesicles with either the cis-Golgi or the ERGIC requires

proteins that tether the vesicles to their target membranes,
proteins that remove the COPII coat, proteins that bring the
vesicle and target membrane in close enough contact for
membrane fusion, as well as cytoskeletal motor proteins
involved in active movement of the vesicles to their target
membranes if the distance is too great for passive diffusion
(Brandizzi and Barlowe, 2013) (Fig. 1, step 11).

In yeast, anterograde trafficking of proteins from the early
cis-Golgi compartment to the late trans Golgi compartment
most likely occurs through a maturation type mechanism
(Fig. 1, step 12), a model based on the absence of anterograde
transport vesicles (Martinez-Menárguez et al., 2001) and on
simultaneous live imaging of both cis- and trans- Golgi
components, which allowed direct visualization of Golgi
compartment maturation (Losev et al., 2006; Matsuura-Tokita
et al., 2006). In this model, ER- or ERGIC-derived vesicles
containing newly synthesized secretory proteins fuse to form
cisternae in the cis-Golgi, which then mature into the medial
and trans-Golgi (Bonfanti et al., 1998; Glick and Luini, 2011;
Luini, 2011; Mironov et al., 2001). Resident Golgi enzymes,
such as those involved in sequential glycosylation and other
processing events (Fig. 1, steps 13 and 14), are returned to
their appropriate earlier compartments by retrograde vesicular
transport.

COPI coated vesicles mediate both the retrograde transport
among the different Golgi compartments and between the
Golgi and ER (Cottam and Ungar, 2012) (Fig. 1, step 15).
Similar to the structure of COPII coated vesicles, COPI
vesicles include a GTPase (Arf1) that in its active GTP-bound
form initiates vesicle assembly, as well as both inner (γ, δ, ζ,
and β-COP) and outer coat components (α, β’ and ε-COP). As
with transport of COPII vesicles, the appropriate transport,
targeting, and fusion of COPI vesicles require a number of
distinct cargo binding proteins, adaptors, Golgi structural
proteins, fusion proteins and cytoskeletal proteins (Ungar et
al., 2002; Willett et al., 2013a; Willett et al., 2013b).

In mammals, protein traffic through the Golgi is more
complicated and seems to occur by multiple mechanisms.
Larger proteins, such as procollagen, are thought to traffic by
a Golgi maturation-type mechanism, whereas smaller cargo
appears to move either by vesicular transport or by diffusion
through intercisternal tubular structures – narrow tunnel-like
structures that connect individual cisternae (Beznoussenko et
al., 2014). Labeling cargo proteins as well as Golgi resident
proteins either green or red in two different cells that were
subsequently fused revealed mixing of small Golgi proteins
but not of large. Moreover, the small proteins appeared to
move in COPI sized vesicles in an Arf1-dependent manner
(Pellett et al., 2013), supporting COPI-mediated anterograde
transport of cargo through the Golgi cisternae. Recent work
also suggests that different regions of the Golgi (the central
region versus the rim) may be linked to trafficking of different
sized cargo through this organelle (Cobbold et al., 2004;
Lavieu et al., 2013).

The details of how ER resident proteins are retrieved from
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the Golgi are a bit better understood than those targeting
proteins to different Golgi compartments (Cosson et al.,
1998). Retrieval of many ER proteins requires either of two
well characterized sorting signals: a C-terminal HDEL/KDEL
in soluble ER proteins (Semenza et al., 1990; Capitani and
Sallese, 2009) and a C-terminal, membrane proximal K(X)
KXX motif in transmembrane ER proteins (Gaynor et al.,
1994; Townsley and Pelham, 1994). The KDEL/HDEL
sequences in soluble proteins bind to the Erd2 transmembrane
receptor protein (also known as the KDEL receptor), linking
the proteins to COPI vesicles, whereas the K(X)KXX motif is
directly bound by the COPI coat proteins (Cosson et al.,
1997). Other ER proteins are retrieved through di-basic
signals that are also directly bound by proteins in the Cop1
coat (McBride et al., 2007). Finally, some resident ER
proteins bind to a transmembrane cargo-adaptor protein
known as Rer1 (Nishikawa and Nakano, 1993; Sato et al.,
2003).

Post-Golgi trafficking

Secreted and transmembrane proteins are sorted for delivery
in the trans-Golgi network (TGN), with proteins targeted to
the lysosome, either directly or through endosomes, to
secretory vesicles, for constitutive or regulated secretion, or
to distinct domains in the plasma membrane (Kienzle and von
Blume, 2014) (Fig. 1, step 16). As with all steps in the
secretory pathway, signals on the cargo proteins themselves
play a key role in determining their ultimate destination.
These signals, which range from specific sugar modifications
(Kaluza et al., 1990), tyrosine residues in a specific sequence
context (Alconada et al., 1996), di-aromatic residues
(Schweizer et al., 2000), specific phosphorylation events
(Johnston et al., 2005) and even disulfide bonds (Zanna et al.,
2008), bind adaptor proteins (Guo et al., 2013a; Guo et al.,
2013b) (Hirst et al., 2013), which connect them to the coat
proteins required to form and pinch off vesicles (Miller et al.,
2007; Kametaka et al., 2010). The coat proteins, in turn,
interact with specific target signals, tethering proteins and
molecules that bring both the vesicular membrane and target
membrane into close enough proximity for fusion (Fölsch et
al., 2001; Jacob and Naim, 2001; Chapuy et al., 2008; Pols et
al., 2013). Lipid molecules also appear to function in sorting
proteins to their final correct destinations (Carlton et al.,
2004). Recent evidence even suggests that cargo destined for
different locations may be sorted into distinct sub-domains
within the TGN (Gleeson et al., 2004).

As should be clear from this abbreviated description of the
events required to bring proteins into the secretory pathway,
to modify those same proteins and deliver them to their final
destinations requires the orchestration of a huge number of
distinct complexes containing protein, lipid, carbohydrate and
RNA components. How are the appropriate levels of each
component achieved and how do professional secretory cells,

such as those of the cartilage, bone, mammary glands or
pancreas, adjust to huge increases in the levels of protein
going through the system? How do cells respond to stress
conditions that overwhelm the secretory machinery? Studies
over the past couple of decades suggest that a large portion of
regulation is at the level of transcription and that the
transcription factors regulating secretory capacity are poised
to both sense and respond to the volume of proteins
trafficking through the system.

The Unfolded Protein Response (UPR) and
the regulation of secretory capacity

As mentioned earlier, the endoplasmic reticulum (ER) is
where secreted and transmembrane proteins enter the
secretory pathway, and it is where protein folding occurs
and post-translational processing begins. Whereas “house-
keeping” levels of components of the molecular machinery
appear sufficient for the functional demands of most cell
types, there are times when demands on the system require
some adjustment in component levels. Drug treatment,
disease or even normal physiologic changes in protein load
can affect ER function, leading to the accumulation of
unfolded proteins. To restore ER homeostasis, the cell
activates a pathway commonly known as the unfolded protein
response (UPR). The UPR alleviates ER stress by increasing
transcription of the chaperone proteins and lipids that increase
folding capacity in the ER, as well as upregulating other
components of the secretory machinery. The UPR also
decreases protein load by increasing production of the ERAD
machinery that degrades misfolded proteins (Travers et al.,
2000). Finally, the UPR reduces protein load through the
attenuation of protein translation (Harding et al., 1999;
Hollien and Weissman, 2006; Hollien et al., 2009). If ER
homeostasis is not restored, the UPR then triggers the
execution of cytotoxic programs leading to cell death.

The canonical UPR consists of three parallel “branches,”
each activating one of a set of related bZip transcription
factors (Fig. 2). An excellent recent review by Gardner et al.
provides a detailed description of the UPR pathway induction
(Gardner et al., 2013), which will not be discussed in detail
here. Instead, we provide a brief discussion of what is known
about the roles of each of these bZip transcription factors in
UPR, findings largely based on studies of cultured cells. We
then discuss what is known about the in vivo roles of each
transcription factor, which have been revealed through more
recent loss-of-function and overexpression studies in animal
systems.

Ire-1/XBP1

The most highly conserved branch of the UPR is regulated by
the transmembrane kinase, Ire-1, which has orthologs in all
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eukaryotes (Mori, 2009). Under normal conditions in the ER,
Ire-1 is bound to the ER lumenal chaperone BiP. In response
to ER stress, which is often induced during experimentation
by the drug tunicamycin, a glycosylation inhibitor that leads
to huge increases in unfolded ER proteins, BiP is recruited
away from Ire-1 (Fig. 3). In the absence of BiP binding, Ire-1
oligomerizes, thereby inducing a conformational change that
activates its RNAse domain (Kimata et al., 2007; Aragón et
al., 2009; Korennykh et al., 2009). The primary target of the
Ire-1 RNAse, which catalyzes an unconventional splicing
event, is the HAC1 mRNA in yeast (Cox and Walter, 1996)
and the related Xbp1 mRNA in metazoan cells (Yoshida et al.,
2001). The unconventional Ire-1 splicing of the Xbp1 mRNA
removes either 23 [worms (Calfon et al., 2002) and flies
(Ryoo et al., 2007; Souid et al., 2007)] or 26 nucleotides
[mammals (Yoshida et al., 2001)], causing a shift in the
downstream open reading frame, and resulting in the

production of a more stable and more active form of the
bZip Xbp1 transcription factor. Expression of the active stable
form of Xbp1 in NIH 3T3 cells, even in the absence of ER
stress, significantly expands the ER. Xbp1 does this, in part,
by upregulating the activity of enzymes that synthesize ER-
specific lipid pools, specifically the CDP choline membrane
biogenesis pathway enzymes (Sriburi et al., 2004; Bommia-
samy et al., 2009). Xbp1 transcriptional targets, identified by
genome-wide approaches, include genes involved in co-
translational translocation into the ER (i.e. Srp9, SR, Sec61α,
β, γ) disulfide bond formation (Ero1), foldases, glycosylation
enzymes, vesicle trafficking components (i.e. COPI and
COPII vesicle components), the KDEL receptor and proteins
involved in the retrograde trafficking, docking and fusion of
Golgi vesicles (Lee et al., 2003; Shaffer et al., 2004; Sriburi et
al., 2004).

During normal development, Xbp1 mRNA is highly

Figure 2 The bZip proteins implicated in modulating secretory capacity either during drug-induced or physiologic ER stress.
Alignments and Phylip rooted tree were generated using the N-terminal processed and active forms of the ATF6 and Creb3 proteins, using
the ClustalW program and Drawgram program available at the Biology Workbench 3.2 (http://seqtool.sdsc.edu/CGI/BW.cgi).
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Figure 3 Regulation and function of the bZip transcription factors that upregulate secretory capacity during the UPR and physiological
ER stress. (A). The Ire-1 kinase is held inactive by the binding of the chaperone protein BiP. Accumulation of unfolded proteins leads to
the release of BiP allowing it to oligomerize and autophosphorylate thereby activating the RNAse domain. The primary substrate for Ire-1
in mammalian cells is the Xbp1 mRNA, which gets spliced by Ire-1. Following translation, the active Xbp1 transcription factor
translocates to the nucleus where it activates target genes involved in the secretory pathway, membrane biogenesis, ERAD, and secretory
cell differentiation. (B). PERK also binds to BiP and is only activated following the release of BiP in the presence of unfolded proteins.
BiP release leads to dimerization of PERK and the subsequent phosphorylation of eIF2α, leading to translational attenuation. This event
also leads to the preferential translation of the ATF4 mRNA. ATF4 then functions in the nucleus to regulate genes involved in secretory
activity as well as UPR dependent cell death. (C). ATF6 is an ER membrane bound transcription factor that during the UPR traffics to the
Golgi and is cleaved by the Site-1 and Site-2 proteases releasing its N-terminal bZip domain. The active ATF6 transcription factor then
translocates to the nucleus where it regulates genes involved in protein folding, membrane biogenesis and ERAD. (D). The Creb3
transcription factors are also ER-membrane bound and similar to ATF6 undergo cleavage by the Site-1 and Site-2 proteases. Unlike ATF6
(or the other canonical members of the UPR), Creb3 proteins do not bind BiP but are instead activated by physiological changes in
secretory demand. Following cleavage, the N-terminal transcription factor domain translocates to the nucleus to activate gene
transcription. Creb3 family members are largely involved in regulating the protein machinery of the early secretory pathway.



expressed in secretory tissues. In the fly, the Xbp1 transcript is
detected to very high levels in several secretory organs,
including the salivary glands, the proventriculus, the
Malpighian tubules, the nervous system and the epidermis
(Ryoo et al., 2007; Souid et al., 2007; Ryoo et al., 2013; Sone
et al., 2013). Xbp1 expression in the fly embryo is regulated
by CrebA (R.F. and D.A., unpublished), another bZip
transcription factor that plays a key role in the secretory
capacity of Drosophila tissues. Mutations in Drosophila
Xbp1 are larval lethal (Souid et al., 2007) but the specific role
of Xbp1 during normal fly development is not fully
understood.

Xbp1’s role in secretory function is probably best
characterized in the B cells of the mammalian immune
system, which differentiate to become antibody secreting
plasma cells (Shaffer et al., 2004). Upon activation, B cells
upregulate the secretory machinery and begin producing and
secreting high levels of antibodies. Xbp1 is not required for
the differentiation of B cells into plasma cells (Todd et al.,
2008; Hu et al., 2009; Taubenheim et al., 2012). Instead,
Xbp1 loss leads to a significant reduction in secretory activity
(Shaffer et al., 2004; Sriburi et al., 2004). This reduced
secretion is largely due to a decrease in the activity of genes
required for membrane biogenesis and in the expression of
genes encoding secretory pathway machinery, thereby limit-
ing ER expansion and allowing for accumulation of unfolded
proteins (Sriburi et al., 2004; McGehee et al., 2009). A similar
phenotype is observed in the pancreatic cells of Xbp1 mutant
mice. Xbp1 deficient β-cells fail to increase secretory capacity
and consequently fail to secrete enough insulin to regulate
blood glucose levels (Lee et al., 2011a).

Xbp1 also affects secretory cell development and function
indirectly by regulating downstream transcription factors
such as Osterix and Mist1 (Huh et al., 2010; Tohmonda et al.,
2011). Osterix is essential for the differentiation of osteoblasts
that occurs in response to BMP2 signaling and is absolutely
dependent on Xbp1 for expression (Tohmonda et al., 2011).
Mist1 and one of its downstream targets, the E3 ubiquitin
ligase Mindbomb, are required for zymogenic cell differ-
entiation in the stomach (Huh et al., 2010; Capoccia et al.,
2013). In these cells, Xbp1 is both necessary and sufficient for
MIST1 activation (Huh et al., 2010). Finally, in the pancreas,
Xbp1 indirectly regulates the levels of genes involved in the
insulin secretion pathway as evidenced by the failure of Xbp1
to bind the enhancers of the target genes in chromatin-
immunoprecipitation experiments (Lee et al., 2011a). The
insulin secretion genes indirectly affected by Xbp1 include
the proprotein convertases PC1 and PC2, carboxypeptidase E
(CPE) and synaptophysin.

Xbp1 signaling has been implicated in the pathogenesis of
several human diseases. Importantly, overexpression of Xbp1
has been used to develop a mouse model of multiple
myeloma, a plasma cell cancer (Carrasco et al., 2007) and,
correspondingly, blocking Xbp1 or its upstream regulator Ire1
can induce myeloma cell toxicity (Papandreou et al., 2011;

Volkmann et al., 2011; Cross et al., 2012). Loss of Xbp1, on
the other hand, has been implicated in diseases whose
hallmarks are protein misfolding and aggregation. Specifi-
cally, targeted knockdown of Xbp1 in dopaminergic neurons
triggers chronic ER stress and, consequently, neuronal
degeneration, a phenotype characteristic of Parkinson’s
disease (Valdés et al., 2014). Moreover, selective expression
of Xbp1 in neurons can provide protection from degeneration
during forced ER stress (Valdés et al., 2014). These studies
highlight the importance in identifying Xbp1 regulated genes
as potential key targets for therapies to treat secretory
diseases.

In metazoans, Ire-1 also induces degradation of mRNAs
encoding secretory cargo through the Regulated Ire-1-
Dependent Decay (RIDD) pathway, thus also decreasing
protein influx into the ER (Hollien and Weissman, 2006;
Hollien et al., 2009).

PERK/ATF4

The second branch of the UPR is activated by the
transmembrane kinase– PRKR-like endoplasmic reticulum
kinase or PERK– which initially promotes survival of cells
undergoing ER stress, and then activates apoptosis in cells
unable to overcome the accumulation of unfolded proteins.
As with Ire-1, BiP is normally bound to the inactive PERK
receptor. In response to ER stress, BiP is released, PERK
autophosphorylates, and subsequently phosphorylates and
inactivates eIF2α, thereby reducing general protein transla-
tion and decreasing secretory protein load (Harding et al.,
1999). PERK increases the translation of mRNA transcripts
that contain inhibitory upstream open reading frames,
including those of the bZip transcription factor ATF4
(Harding et al., 2000) (Fig. 3). Unlike many of the other
transcription factors that are discussed in this review, ATF4 is
not a membrane bound transcription factor and therefore does
not undergo Regulated Intramembranous Proteolysis (RIP)
for activation. Instead, ATF4 has many dimerization partners
and, upon dimerization, the ATF4 transcription factor
becomes active. ATF4 target genes have important roles in
the UPR – the downstream target GADD34 reverses the
translational attenuation induced by PERK and the down-
stream target CHOP activates the pro-apoptotic response
should ER stress not be alleviated. Microarray and ChIP-seq
experiments conducted in Atf4 – / – cells revealed that ATF4
has a much broader role in secretory function than previously
thought. Target genes include those encoding the proteins that
import amino acids into the cell, as well as those encoding
proteins that respond to oxidative stress (Han et al., 2013;
Harding et al., 2003). During increased secretory function, the
production and secretion of proteins both depletes amino
acids and increases reactive oxygen species. ATF4 appears to
be the major factor, through its target genes, that allows for
the replenishment of amino acids, either through import or
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biosynthesis, and the alleviation of oxidative stress in
secretory cells. More recently, ATF4 has been shown to
dimerize with different partners to regulate secretory function,
both positively and negatively, in several different cell types.
Downstream of the Toll-like receptor 4 (TLR4), ATF4
partners with phosphorylated c-Jun to activate genes
necessary for the secretion of inflammatory cytokines from
monocytes (Zhang et al., 2013). In osteoblasts, ATF4 and
FoxO1 physically interact to suppress the secretion of
osteocalcin, a hormone that increases insulin secretion from
the pancreas (Yoshizawa et al., 2009; Kode et al., 2012).
Hence, in the absence of ATF4 or FoxO1, osteocalcin
secretion is enhanced and blood glucose levels rise, resulting
in reduced glucose tolerance (Kode et al., 2012). Thus,
identifying new partners for this widely expressed transcrip-
tion factor will help elucidate novel pathways with critical
roles in the function of secretory organs and could reveal new
strategies for combating diabetes and other metabolic
diseases.

ATF6

The final branch of the canonical UPR pathway is mediated
through the bZip transcription factor ATF6, of which there are
two ubiquitously expressed isoforms in mammals, ATF6α
and ATF6β (Haze et al., 1999, 2001). During ER stress, both
isoforms translocate to the Golgi where they undergo RIP by
the Site-1 and Site-2 proteases, releasing the N-terminal bZip
domain to enter the nucleus where it upregulates the
expression of genes through the well-characterized ER stress
response elements (ERSE) found in the enhancer regions of
many UPR target genes (Yoshida et al., 1998; Haze et al.,
1999) (Fig. 3). ATF6α appears to be the predominant isoform
of active ATF6 and its targets encode a wide range of proteins
involved in mediating ER homeostasis, including those
required for protein folding, such as ER chaperones
(GRP94/HSP90B1, GRP78/BiP, calreticulin), folding
enzymes (ERp72, PDI), as well as those required for ERAD
(EDEM, Derlin-3) (Okada et al., 2002; Wu et al., 2007;
Yamamoto et al., 2007; Adachi et al., 2008; Bommiasamy et
al., 2009; Belmont et al., 2010).

Neither ATF6α nor ATF6β are essential; mice harboring
null mutations in either gene are completely viable (Wu et al.,
2007). Single mutants are more sensitive to ER stress, as
injection of tunicamycin can induce acute liver and kidney
damage. ATF6 is required for normal development, since
double knockout mice do not survive, indicating some level
of functional redundancy between the two isoforms. ATF6α
has recently been shown to increase membrane biogenesis in
an Xbp1-independent manner. Overexpression of ATF6α in
Chinese hamster ovary (CHO) cells lead to a dramatic
enlargement of the ER, a result that was subsequently
replicated in two human cell lines. Moreover, ATF6 was able
to increase ER membrane in the absence of Xbp1, suggesting

that it has the capability to upregulate membrane biogenesis
genes on its own. Interestingly, ATF6 regulates different
genes than XBP1 in the CDP-choline membrane biogenesis
pathway. Xbp1 largely regulates the activity of the trans-
ferases CCT, CPT and CEPT, whereas ATF6 overexpression
results in only a slight increase in CCT activity and a robust
increase in choline kinase activity. Transcriptome analysis,
however, revealed that the increases in transferase activity are
largely controlled at the post-transcriptional level; mRNAs
for each gene are not increased in XBP1 or ATF6 over-
expressing cells (Bommiasamy et al., 2009).

The Creb3 family of UPR sensors

Recently, an additional family of UPR responsive transcrip-
tion factors has been described, which we will refer to as the
Creb3 family of bZip transcription factors. The Creb3 family
is highly conserved, with orthologs identified in species
ranging from sponges to humans (Barbosa et al., 2013).
Creb3 proteins are distinguished by a conserved domain of
~30 amino acids adjacent to the bZip DNA binding domain,
the ATB domain (Adjacent To BZip) (Bailey and O’Hare,
2007; Barbosa et al., 2013). Whereas, the ATB domain is
found in all Creb3 orthologs, it is absent from all other bZip
transcription factors, of which there are 55 in humans. The
Creb3 proteins can be classified into three different group-
ings, with classes A and B being ER-bound factors that
undergo the same RIP processing that activates ATF6 during
the UPR (Liang et al., 2006; Murakami et al., 2006; Stirling
and O’Hare, 2006; Zhang et al., 2006; Kondo et al., 2007).
The major differences between class A and class B Creb3
proteins are residues within the transmembrane domain that
are likely to reflect some variability in the proteolytic
processing of each class (Barbosa et al., 2013). Class C
Creb3 proteins completely lack the transmembrane domain
and are constitutively nuclear (Barbosa et al., 2013).

The Creb3 family and transcriptional
regulation of secretory capacity

Most of the initial studies on mammalian Creb3 proteins were
done in tissue culture cells using pharmacological agents to
induce ER stress, since their regulation by RIP suggested that
they were likely to function primarily in the UPR. As mouse
knockouts have been characterized over the past five years, it
is clear that these factors function during normal organ
development. Their relative contributions are likely to be
underestimated, however, due to potential functional redun-
dancy among the multiple members of this family. Thus,
experiments in genetic model systems–with only one or two
Creb3 proteins–have been key to revealing how these factors
function during normal physiology in the regulation of
secretory capacity.
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Drosophila CrebA is the major regulator of
secretory capacity

Drosophila encodes only a single Creb3 family member–
CrebA, which, unlike its mammalian orthologs, does not
contain a transmembrane domain, does not undergo proces-
sing by RIP and is constitutively nuclear (Fox et al., 2010).
CrebA is expressed in multiple secretory organs in Droso-
phila embryos, larvae and adults, with the highest levels of
expression in the embryonic and larval salivary glands
(Smolik et al., 1992), epidermis, larval imaginal discs and
the adult male accessory gland (ModEncode data). Indeed,
CrebA was first discovered to regulate the secretory pathway
in a screen to identify the transcription factors regulating the
elevated levels of secretory pathway component genes
(SPCGs) observed in the embryonic salivary glands (SG)
(Abrams and Andrew, 2005). Abrams et al. (Abrams and
Andrew, 2005) found that although both CrebA and the FoxA
factor, Fork head (Fkh), were required for wild-type
expression levels of all 34 SPCGs that were tested, Fkh
only indirectly regulates SPCG expression by maintaining
CrebA expression (Abrams and Andrew, 2005; Fox et al.,
2010). CrebA directly regulates SPCG expression through a
consensus motif that closely resembles the previously
identified Creb Response Element (CRE). Subsequent
microarray experiments identified close to 400 genes that
were downregulated in CrebA mutant embryos (Fox et al.,
2010). Of these, nearly one-third were annotated by Gene
Ontology to be components of the secretory pathway. Close
examination of the target genes revealed that CrebA has a
major role in regulating secretion in that it not only regulates
the protein components of the secretory machinery (Table 1),
but it also upregulates expression of genes encoding secreted
cargo proteins (Fox et al., 2010). In the SG, the regulation of
secretory cargo may be indirect, since CrebA boosts
expression of a SG-specific bHLH factor, Sage. Sage, with
Fkh, directly activates SG genes that encode secreted proteins
and the enzymes that modify secreted proteins (Fox et al.,
2013). Thus, CrebA increases secretory capacity of tissues
both directly, through upregulation of SPCGs, and indirectly,
by boosting expression of the transcription factors that
activate tissue-specific secretory cargo genes and their
modifying enzymes. Importantly, not only is CrebA required
for upregulation of the general secretory machinery, it is also
sufficient (Fox et al., 2010).

CrebA mutants have phenotypes consistent with CrebA’s
role in secretion. The SG lumens are smaller and there are
significantly fewer and smaller apical secretory vesicles than
in wild type (Abrams and Andrew, 2005; Fox et al., 2010).
The larval cuticle (secreted by epidermal cells) of CrebA
mutants is weaker and less pigmented than that of wild type
larvae (Abrams and Andrew, 2005). CrebA also functions in
dendritic arborization in the sensory neurons during larval
development (Iyer et al., 2013). Dendritic arborization is
essential to form the neural circuits necessary for signaling.

The homeodomain transcription factor Cut is required for
dendritic elaboration as is elevated trafficking through the
secretory pathway (Grueber et al., 2003; Cui-Wang et al.,
2012). Iyer et al., recently showed that Cut regulation of
COPII secretory components is indirect and requires CrebA,
fully consistent with the previously described role for CrebA
in upregulating secretory machinery in embryonic tissues
(Iyer et al., 2013). As the phenotypic defects associated with
the loss of the mammalian Creb3 proteins have emerged, it is
clear that each family member also upregulates secretory
capacity.

Creb3/Luman

Creb3/Luman/LZip was first identified in a yeast two-hybrid
screen to find proteins that interact with the transcriptional co-
activator host cell factor (HCF) protein (Lu et al., 1997). Early
overexpression-based studies also identified Creb3 as an
interacting protein with the Hepatitis C core protein (Jin et al.,
2000), the CC chemokine receptor 1 (Ko et al., 2004), DC-
STAMP (Eleveld-Trancikova et al., 2010), and Luman
Recruitment Factor (Audas et al., 2008). Although Creb3
transcripts are detected quite broadly, the protein has been
observed in only the trigeminal ganglion neurons, monocytes
and bone marrow dendritic cells (Eleveld-Trancikova et al.,
2010; Ko et al., 2004; Lu and Misra, 2000). One early study
suggested a major role for Creb3 in the ERAD pathway since
it binds the promoters of both the Herp and EDEM genes, two
ERAD associated genes (Liang et al., 2006). More recent
analysis of the gene expression changes associated with
driving a constitutively-active form of Creb3 in the antigen-
presenting dendritic cells of the bone marrow led to the
identification of nearly 40 upregulated genes, including Creb3
itself (Sanecka et al., 2012). Importantly, several secretory
pathway genes were highly upregulated, including Sec23a
and Sec24d – COPII coat components and targets of other
Creb3 family members – as well as Golga4, a Golgin protein,
GBF1 (Golgi localized Arf GEF) and Arf4 (Golgi GTPase)
(Sanecka et al., 2012).

Creb3-Arf4 signaling has recently been implicated in the
Golgi stress response. Arf4 was identified in a screen
designed to identify factors that confer resistance to Brefeldin
A (BFA) induced apoptosis (Reiling et al., 2013). Arf4
knockdown prevented Golgi fragmentation and restored
secretory function to BFA-treated cells (Reiling et al.,
2013). Previous studies had indicated that Creb3 activated
Arf4 (Jang et al., 2012), and, consistent with these findings,
Creb3 transcriptionally upregulates Arf4 in response to BFA
treatment. Several known pathogens, including Chlamydia
and Shigella, utilize Golgi fragmentation both to acquire
lipids from host cells and to interrupt secretory pathway
function to prevent secretion of the cytokines that would
trigger an immune response by the host (Heuer et al., 2009).
Knocking down Arf4 prevents pathogen spread by preventing
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Table 1 Secretory pathway component genes regulated by CrebA bZip transcription factor

General functional
category

Human or (yeast)
gene

D. melanogaster
gene name and/ or CG #

E-value for
relatedness

Fold change in
CrebA null

Requires CrebA
based on in situ

Signal recognition
particle- SRP

Srp9 Srp9/CG8268 2.250e-13 – 2.00 Yes

Srp68 Srp68/CG5064 1.19e-128 – 2.04 Yes

Srp72 Srp72/CG5434 3.97e-124 – 1.81 Yes

Srp54 Srp54k/CG4659 0 – 1.44 Yes

Srp14 Srp14/CG5417 3.705e-13 – 1.59 Yes

Srp19 Srp19/CG4457 4.836e-29 – 1.89 Yes

SRP Receptor- SR
SrpRα Gtp-bp/CG2522 1.99e-177 Not on array Yes

SrpRβ SrpRβ/CG33162 1.859e-37 – 3.31 Yes

Sec61 translocon
complex

Sec61α Sec61α/CG2522 0 – 1.78 Yes

Sec61β Sec61β/CG10130 2.531e-27 – 1.99 Yes

Sec61γ Sec61γ /C14214 2.530e-29 – 2.08 Yes

Sec63 complex:
post-translational
translocatio

Sec62 Trp1/CG4785 1.049e-55 – 1.62 Yes

Sec63 Sec63/CG8583 1.02e-176 – 2.03 Yes

Sec71 (yeast) Sec71/CG7578 0 – 1.24 Yes

TRAM TRAM/CG11642 2.429e-65 – 5.21 Yes

TRAPδ TAPδ/CG9035 1.798e-21 – 2.12 Yes

ER lumenal Hsp70s

BiP Hsc70-3/CG4147 0 – 1.32* n.d.

Jem1 CG9356 1.119e-16 – 1.50 n.d.

Sil1 CG10420 4.567e-31 – 1.87 n.d.

Lhs1 (yeast) CG2918 1.226e-44 – 1.45 n.d.

ER morphology
proteins

Spastin spas/CG5977 3.19e-138 – 1.41 n.d.

Atlastin atl/CG6668 3.38e-178 – 1.23* n.d.

Reep3 CG8331 1.978e-20 – 1.84 n.d.

Rtn1/Rtn2 Rtnl1/CG33113 4.606e-58 – 1.33 n.d.

Signal peptidase
complex

Spase 22-23 Spase 22-23/CG5677 1.138e-56 – 1.81* Yes

Spase 12 Spase12/CG11500 1.755e-16 – 2.5 Yes

Spase 18-21 twr/CG2358 2.639e-77 – 2.3 Yes

Spase 25 Spase25/CG1751 2.074e-40 – 2.2 Yes

N-linked glycosylation

MagT1 Ostγ/CG7830 6.43e-101 – 1.43 Yes

Ost4 CG33774 2.177e-07 Not on array n.d.

Stt3 (yeast) OstStt3/CG7748 0 – 1.72 n.d.

Disulfide bond
formation

Pdi1 (yeast) Pdi/CG6988 3.701e-52 – 1.40 n.d.

Mpd1 (yeast) CaBP1/CG5809 2.393e-18 – 1.52* n.d.

Mpd2 (yeast) ERp60/CG8983 3.340e-06 – 1.30 n.d.

Eps1 (yeast) prtp/CG1837 3.572e-08 – 1.29* n.d.

Prolyl hydroxylation Ph4α (isoform 2)

Ph4αPV 3.000e-88 – 1.40 n.d.

Ph4αMP 2.000e-96 – 1.54 n.d.

PH4αSG1 2.000e-90 – 1.54 n.d.

Sugar trimming and
protein folding

UGGT Ugt/CG6850 0 – 1.54 n.d.

Calreticulin Crc 0 – 1.42 n.d.

ER cargo receptors

CHOp24 CHOp24/CG3564 2.648e-68 – 2.2 Yes

TMED7 P24-1/CG1967 1.951e-51 – 1.60 Yes

TMED4 P24-2/CG33105 3.647e-77 – 1.9 Yes

COPII components

Sar1 Sar1/CG7073 2.606e-79 – 1.28 Yes

Sec23 Sec23/CG1250 0 – 1.73* Yes

Sec24B Sec24/CG1472 0 – 1.18* Yes

Sec13 Sec13/CG6773 1.10e-100 – 2.44 Yes

Sec31 Sec31/CG8266 0 – 1.8 Yes

COPII regulators

Sec12 (yeast) Smu1/CG5451 2.178e-04 – 1.21 n.d.

PREB CG9175 4.163e-54 – 1.49 n.d.

Sec16A Sec16/CG32654 8.358e-60 – 1.54 n.d.
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Golgi fragmentation, restoring function, and subsequently
maintaining secretory pathway function (Reiling et al., 2013).
Altogether these findings suggest that Creb3 proteins are not
limited to stress in the ER but are also induced when other
secretory organelles undergo stress. Clearly, bacterial patho-
gens have evolved to use this stress response to their
advantage.

Creb3L1/OASIS

Creb3L1/OASIS was first identified as a gene enriched in
astrocytes cultured long-term. Creb3L1 was subsequently
revealed to be expressed at high levels in several secretory
tissues, most notably in astrocytes, skeletal tissues, salivary
glands, intestine, prostate gland and pancreas (Nikaido et al.,
2001; Omori et al., 2002; Murakami et al., 2009).
Importantly, recent reports analyzing the Creb3L1 mutant
mouse have revealed a role for Creb3L1 in the differentiation,
function and survival of many of the cell types in which it is
expressed.

Creb3L1 is required for the differentiation of astrocytes and
intestinal goblet cells. Differentiation of astrocytes requires
demethylation of the Gfap promoter, a process regulated by
the transcription factor GCM1 (Saito et al., 2012). Interest-
ingly, Gcm1 transcription can be dramatically induced by co-
expression of Creb3L1 and Creb3L4, suggesting that
heterodimerization may synergistically activate certain down-
stream target genes (Saito et al., 2012). On the other hand, co-
expression of Creb3L1 with Creb3 caused a downregulation
in Gcm1 promoter activation, suggesting that Creb3 may act
to inhibit the formation of the Creb3L1-Creb3L4 heterodimer
necessary for the gene activation associated with astrocyte
differentiation (Saito et al., 2012). This study suggests that
co-expression of Creb3 proteins may not necessarily be for
the purpose of redundancy, but may instead be to provide
additional developmental control on gene transcription.
Notably, there are fewer astrocytes in Creb3L1 mutants,
suggesting a delay in differentiation.

In the intestine, Creb3L1 – / – mice also display fewer
mature goblet cells than their heterozygous littermates (Asada

(Continued)

General functional
category

Human or (yeast)
gene

D. melanogaster
gene name and/ or CG #

E-value for
relatedness

Fold change in
CrebA null

Requires CrebA
based on in situ

COPII vesicle-
Golgi membrane
fusion

Bos1 eya/CG9554 1.28e-122 – 1.50 n.d.

SCFD1 Slh/CG3539 0 – 1.46 n.d.

Golgi structural
proteins

Grasp65 Grasp65/CG7809 5.305e-61 – 2.38 n.d.

GCC88 GCC88/CG10703 1.048e-58 – 1.20 n.d.

Golgin-84 Golgin84/CG17785 1.177e-25 – 1.35 n.d.

O-linked glycosylation
Pmt1,2,3,5,6 (yeast) tw/CG12311 1.757e-88 – 1.76 n.d.

Pmt4,7 (yeast) rt/CG6097 5.727e-89 – 1.31 n.d.

COPI vesicle
components
(Golgi – ER)

α-Cop α-Cop/CG7961 0 – 2.11 n.d.

β-Cop β-Cop/CG6223 0 – 1.9 n.d.

β’-Cop β’-Cop/CG6699 0 – 1.9 n.d.

γ-Cop γ-Cop/CG1528 0 – 1.74 Yes

δ-Cop δ-Cop/CG14813 1.70e-168 – 1.68* n.d.

ε-Cop ε-Cop/CG9543 1.470e-50 – 1.77* Yes

�-Cop �-Cop/CG3948 1.878e-62 – 2.7/-1.95 Yes

Arf1 ARF79F/CG8385 8.49e-101 – 1.2* Yes

Arf-1 GAPs
Gcs1 (yeast) ArfGAP1/CG4237 2.380e-36 – 1.95 n.d.

Glo3 (yeast) ArfGAP3/CG6838 4.538e-29 – 1.58 n.d.

ER retrieval from
Golgi

KDEL-R KdelR/CG5183 1.303e-93 – 1.68 n.d.

Rer1 CG11857 8.289e-37 – 1.43 n.d.

Early Golgi
retrograde traffic
tethers –COG
complex

Cog1 CG4848 5.633e-38 – 1.60 Yes

Cog2 ldlCp/CG6177 7.74e-101 – 1.27 n.d.

Cog3 Cog3/CG3248 3.817e-77 – 1.43 n.d.

Cog4 CG7456 7.34e-160 – 1.44 n.d.

Cog5 fws/CG6549 5.463e-60 – 1.22 n.d.

Cog6 CG1968 6.83e-153 – 1.26 n.d.

Cog7 Cog7/CG31040 2.033e-23 – 1.71 n.d.

Cog8 CG6488 1.510e-23 – 1.34 n.d.

Regulation by CrebA is based on microarray and/or in situ hybridization comparing CrebA null embryos to wild-type embryos. Note that fold change is from
entire embryos, with many wild-type tissues not expressing CrebA. * indicates numbers with p values> 0.05. For all other numbers, p values were≤0.05. n.d. =
not done. A comprehensive table of all secretory genes specifically examined for regulation by CrebA is included in the supplemental materials.
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et al., 2012). Whereas early markers for intestinal cell
specification are expressed normally or in some cases are
increased (trefoil factor 3, tff3), markers for mature goblet
cells, including mucin x2 (Muc2), Anterior gradient 2 (Agr2)
and resistin-like β (Retnlb) are markedly reduced (Asada et
al., 2012). Phenotypically, the goblet cells from the mutants
have fewer, smaller secretory vesicles, and exhibit protein
aggregation in the ER suggestive of secretory pathway
dysfunction. The failure of the intestinal cells to fully mature
suggests a potential link between terminal differentiation and
upregulation of secretory capacity, mediated through
Creb3L1.

Creb3L1 is also highly expressed in osteoblasts of the
developing skeleton. Indeed, the most overt phenotype
associated with loss of Creb3L1 is severe osteopenia, a
disorder characterized by reduced bone density (Murakami et
al., 2009). Microscopic analysis of the bone tissues revealed
an accumulation of bone matrix proteins in the ER,
suggesting a defect in protein transport through the secretory
pathway. Gene expression analysis revealed that Creb3L1
does not regulate genes required for osteoblast specification
but instead regulates the secreted components of the bone
matrix, including col1a1 and col1a2 (Murakami et al., 2009).
Additional targets of Creb3L1 were Xbp1 and the chaperone
protein BiP, genes commonly upregulated during ER stress.
Murakami et al. also showed that Creb3L1 mRNA is
increased by the Runx2 transcription factor, which is
activated downstream of BMP2 signaling. BMP2 signaling
also induces mild ER stress in osteoblasts, thereby increasing
the processing and activation of Creb3L1, and increasing
bone matrix deposition (Murakami et al., 2009). A recent
report indicates that the same pathways are activated during
the healing of bone fractures (Funamoto et al., 2011).

In the pancreas, Creb3L1 is highly expressed during
embryonic development with levels tapering off as differ-
entiation occurs (Vellanki et al., 2010). It should be noted that
Creb3L1 is detected in mature pancreatic islet cells, just at
lower levels. Microarray studies in which Creb3L1 was
overexpressed using the inducible β cell line, INS-1 832/13,
resulted in the upregulation of genes associated with ECM
production and trafficking, including the COPI vesicle
transport protein, COPδ2, and the KDEL receptor, Kdelr3.
Altogether, these findings are consistent with studies in
Drosophila indicating that Creb3 proteins function in
upregulating core components of the secretory pathway
(Vellanki et al., 2010). Similarly, overexpression of activated
Creb3L1 in HeLa cells induced expression of a large array of
secretory pathway components, including proteins involved
in cotranslational translocation, vesicle formation and
trafficking (Fox et al., 2010).

Recent reports also suggest an unexpected role for
Creb3L1 in the regulation of cell proliferation and survival
following external cellular insults. Denard et al., showed that
during virus infection, Creb3L1 is activated and functions to
increase transcription of cell cycle inhibitors and to block

expression of factors that promote cell proliferation (Denard
et al., 2011). The same group has also shown that cancer cells
expressing Creb3L1 are more sensitive to treatment with the
chemotherapeutic agent doxorubicin (Denard et al., 2012).
Cancer cell lines that express Creb3L1, when treated with
doxorubicin, undergo RIP, activating Creb3L1 and increasing
the expression of cell cycle inhibitor genes, again preventing
cell proliferation. These studies suggest that tumors with high
levels of Creb3L1 expression are more likely to respond to
treatment with doxorubicin than those that do not express
Creb3L1 (Denard et al., 2012). In mammary cancer lines,
Creb3L1 is downregulated in highly metastatic cancers
(Mellor et al., 2013). Mellor et al. recently found that
mammary cancer cells that do express Creb3L1 are less
invasive, less migratory and are more sensitive to hypoxia-
induced apoptosis. Microarray analysis revealed a number of
genes regulated by Creb3L1 that control cell proliferation and
apoptosis (Mellor et al., 2013). Correspondingly, injection of
cancer cells expressing Creb3L1 into mice resulted in smaller
tumors and, in 70% of the mice, the tumor actually regressed
in size (Mellor et al., 2013). Thus, expression of Creb3L1
correlates with inhibition of cell proliferation, perhaps
coupling terminal differentiation with the cessation of cell
division.

Creb3L2/BBF2H7

Creb3L2/BBF2H7 was first identified as a fusion protein with
FUS that causes low-grade fibromyxoid sarcoma (Storlazzi et
al., 2003). Recent studies in Xenopus, zebrafish and in mice
point to Creb3L2 having an important role in regulating
secretory function. In Xenopus, Creb3L2, as well as Xbp1,
were identified by microarray analysis as transcription factors
with preferentially increased notochord expression (Tanega-
shima et al., 2009). GO analysis of notochord enriched genes
revealed that the 12 most over-represented GO terms refer to a
single pathway, the secretory pathway (Tanegashima et al.,
2009). Knockdown of Xbp1 by morpholino injection resulted
in reduced secretory pathway gene expression, whereas
Creb3L2 knockdown had little to no effect on secretory gene
expression. Overexpression of either gene, nonetheless, was
sufficient to increase secretory pathway expression, suggest-
ing that Xbp1 and Creb3L2 may act coordinately to promote
the high-level secretory pathway gene expression necessary
for notochord development (Tanegashima et al., 2009).

In mammals, Creb3L2 is expressed in many tissues with
very high expression in the chondrocytes of maturing
cartilage (Saito et al., 2009). Creb3L2 functions at multiple
levels during cartilage formation with a cell autonomous role
in upregulating secretory pathway genes and a cell non-
autonomous role in promoting the proliferation of undiffer-
entiated chondrocytes. As such, mice and zebrafish deficient
for Creb3L2 have shortened limbs or shortened cartilage
structures, respectively (Saito et al., 2009; Melville et al.,

Rebecca M. FOX and Deborah J. ANDREW 41



2011). Microscopic analysis revealed defects in collagen
secretion resulting in reduced cartilage associated ECM. Gene
expression analysis in mice revealed that many secretory
pathway genes are downregulated in Creb3L2 – / – chondro-
cytes, with Sec23a, a COPII vesicle protein, showing the
greatest downregulation (Saito et al., 2009). Correspondingly,
the Sec23a or Sec24d knockdown phenotypes in zebrafish are
quite similar to those of the Creb3L2 mouse mutant (Melville
et al., 2011). Sox9 is considered the “master regulator” of
chondrocyte differentiation since it is required for the
secretion of ECM proteins, including two collagen genes,
Col2a and Col11 (Lefebvre et al., 1997; Bridgewater et al.,
1998). A recent study has shown that Creb3L2 is also directly
regulated by Sox9, leading to a model wherein Sox9 has the
dual role of upregulating Creb3L2 to increase the secretory
machinery and upregulating the collagen cargo genes, thereby
allowing for proper chondrocyte differentiation (Hino et al.,
2014). In this case, Creb3L2 is facilitating collagen secretion
by increasing the capacity of the secretory pathway
machinery for increased cargo secretion.

The non-autonomous role for Creb3L2 in regulating
chondrocyte proliferation maps to the C-terminal lumenal
domain of the protein. In Creb3L2 – / – mice, the number of
proliferating chondrocytes is significantly reduced (Saito et
al., 2009). Whereas the N-terminal domain failed to rescue
the proliferation defect, expression of the C-terminal domain
restored cell division in cultured fibroblasts (Saito et al.,
2014). The secreted C terminus binds to Indian hedgehog
(Ihh) and its receptor, Patched, to activate Hh signaling in
neighboring cells, leading to an increase in parathyroid
hormone related protein (PTHrP), which increases chondro-
cyte cell proliferation (Saito et al., 2014). Whether additional
Creb3 family members can mediate cell signaling is
unknown, but it is worth noting that, in an inducible cell
culture system, ER stress induced secretion of the C-termini
of both Creb3L1 and Creb3L4 (Saito et al., 2014).

Creb3L3/CrebH

Creb3L3/CrebH was first discovered to be highly expressed
in hepatocytes and to be enriched in the small intestine and
stomach. Subsequently, Creb3L3 has been shown to have
important roles in the innate immune response, and in the
regulation of iron, glucose and lipid homeostasis. In all cases,
Creb3L3 upregulates genes encoding the liver or intestine
secreted proteins required to maintain homeostasis.

During the inflammatory response, the liver increases
production of the acute phase response (APR) proteins, which
includes serum amyloid P (SAP) and C-reactive protein
(CRP). This effect is largely regulated by the cleavage and
activation of Creb3L3 by inflammatory cytokines, which
activates transcription of both SAP and CRP (Zhang et al.,
2006). Interestingly, enhanced expression of APR genes can
be achieved through co-expression of Creb3L3 and ATF6,

suggesting that heterodimerization of these two factors
increase APR gene transcription (Zhang et al., 2006).
Heterodimerization of Creb3L3 with other bZip factors
seems to be a common theme as it has also been shown to
interact with Xbp-1 to synergistically activate the hepcidin
promoter (Vecchi et al., 2009). Hepcidin is a small peptide
produced by the liver and required for iron homeostasis and it,
too, is upregulated in response to proinflammatory cytokines
(Vecchi et al., 2009).

Creb3L3 also has an important role in normal physiologic
responses that require high-level secretory function, including
gluconeogenesis and the production of liver- and intestine-
specific secreted products. In response to fasting, the levels of
nuclear Creb3L3 are increased to upregulate the expression of
gluconeogenesis genes including PEPCK-C and G6Pase (Lee
et al., 2010). Furthermore, in diabetic mice treated with
Creb3L3 RNAi, the fasting blood glucose levels were
significantly reduced, indicating that Creb3L3 is the major
activator of the gluconeogenic program in mice under fasting
conditions (Lee et al., 2010).

Apolipoproteins are secreted by the liver and intestine and
are required for the transport of lipid molecules into the
circulatory system. In cultured liver Hep-G2 cells, Creb3L3
expression was sufficient to induce the production and
elevated secretion of cell-type specific cargoes including
ApoA-IV and ApoA-1 (Barbosa et al., 2013). In vivo,
expression analysis of the apolipoprotein genes revealed that
Creb3L3 was not only required for ApoA-IV production but
also for the production of ApoC2 (Xu et al., 2014). During
disease states, such as liver steatosis, or fatty liver, the levels
of Creb3L3 are significantly elevated and, correspondingly,
the levels of ApoA-IV are increased (Xu et al., 2014).
Because the liver plays such a crucial role in the regulation of
circulating lipid levels, it is not surprising that Creb3L3 also
has a role in the clearance of triglycerides from the plasma.
Creb3L3 – / – mice have higher circulating triglyceride levels
than wild-type mice (Lee et al., 2011b), and microarray
analyses revealed that in addition to the apolipoprotein genes
being affected, there are also changes in additional triglycer-
ide metabolism genes including Fgf21, a known regulator of
plasma triglycerides (Lee et al., 2011b).

Similar to Creb3L1 and Creb3L2, Creb3L3 may also
regulate cell proliferation. Creb3L3 transcript is significantly
reduced in hepatocellular carcinoma cells (HCC) as compared
to wild-type liver cells (Chin et al., 2005). Experiments in the
HCC cell line HepG2 revealed that overexpression of
Creb3L3 in these cells was sufficient to inhibit cell
proliferation; the targets of Creb3L3 that affect cell prolifera-
tion, however, are currently unknown (Chin et al., 2005).

More is known about the mechanisms of Creb3L3
processing than for other family members. Creb3L3 is
relatively unstable, with the nuclear form being degraded
within an hour and the full-length form being completely
degraded in 2–3 h (Bailey et al., 2007). Creb3L3 is N-
glycosylated at three consensus glycosylation sites in the
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luminal domain (Chan et al., 2010). Mutating these sites leads
to a significant reduction in Creb3L3-dependent transcrip-
tional activation suggesting that N-glycosylation is critical for
RIP cleavage and Creb3L3 activation (Chan et al., 2010).

Creb3L4/Creb4

Much of what is known about Creb3L4 function in humans
was discovered through genome-wide expression studies to
identify its downstream target genes (Ben Aicha et al., 2007).
Consistent with the Creb3 factors in regulating secretory
pathway genes, the major Creb3L4 targets include genes
encoding the KDEL receptor (KDELR3), chaperone proteins,
the O-glycosylating enzyme (GALNT3), and a Golgi
assembly protein (Ben Aicha et al., 2007). Other major
gene groups regulated by Creb3L4 include genes involved in
transcription, sugar and lipid metabolism, channels and
transporters, and genes involved in signal transduction, all
classes of genes found to be regulated by the other members
of this family. Creb3L4 is also expressed in the Paneth and
Goblet cells of the intestine, and is regulated by the ETS-
domain factor SPDEF (SAM-pointed domain containing
ETS-like factor) (Gregorieff et al., 2009). SPDEF is required
for Paneth and goblet cell maturation, with secretory
progenitor cells accumulating in the SPDEF – / – mice
(Gregorieff et al., 2009). Upregulation of Creb3L4 by
SPDEF may be required in the Paneth and goblet cells to
upregulate the secretory pathway components allowing them
to differentiate and perform their secretory functions (Asada
et al., 2011).

Creb3L4 may have an additional role in regulating cell
survival; prostate cancer lines express Creb3L4 to higher
levels than non-cancerous cells (Qi et al., 2002). In mice, loss-
of-function mutations in Creb3L4 lead to viable, fertile
animals despite there being a significant reduction in the
number of sperm in the seminiferous tubules (Adham et al.,
2005). This decrease in sperm count is due to increased
apoptosis of the germ cells, suggesting that Creb3L4
promotes cell survival in both prostate cancer cells and in
mouse sperm (Adham et al., 2005).

Concluding remarks

Studies of the UPR have both directly and indirectly
implicated several transcription factors in adjusting secretory
capacity in response to increased secretory load. Interestingly,
all of the proteins are bZip transcription factors, including the
proteins directly implicated in the UPR: ATF4, XBP1 and
ATF6. These proteins function in yeast and in tissue culture
cells to restore ER homeostasis by attenuating translation, by
increasing the ERAD machinery to turnover unfolded
proteins, and by increasing levels of many or most of the
components of the secretory pathway. The Creb3 transcrip-
tion factors were implicated in the UPR primarily because

they are activated by the same mechanism (RIP) through
which the UPR activates ATF6. This proteolytic processing
liberates the N-terminal cytosolic transcription factor domain
from the ER membrane, allowing these bZip proteins to enter
the nucleus and regulate gene expression. Studies of the roles
of the Creb3 family, in both tissue culture cells and in vivo,
suggest a more physiologic role in secretion, as well as other
functions. Indeed, in vivo studies of the canonical UPR
proteins suggest that they also function in physiological
secretion, often functioning either downstream or in parallel
with the Creb3 family of proteins.

Studies of the Drosophila Creb3 protein, known as CrebA,
have provided the most insight regarding the shared roles of
all Creb3 proteins. CrebA is the only Creb3 family member in
Drosophila and a combination of microarray studies, in situ
analysis, as well as in vitro and in vivo DNA binding assays
has revealed that CrebA regulates almost every known
component of the early secretory pathway– acting directly in
most cases (Table 1) (Abrams and Andrew, 2005; Fox et al.,
2010). CrebA is not only necessary for the activation of
secretory pathway component genes, it is also sufficient to
activate every secretory pathway component gene that has
been tested, as was nicely demonstrated using the engrailed
enhancer to drive ectopic expression of CrebA in stripes in the
embryonic ectoderm. Importantly, the same assay was used to
drive expression of each of the five human Creb3 family
members. The activated form of all five genes–Creb3,
Creb3L1, Creb3L2, Creb3L4 and Creb3L4 – induced
expression of every target gene that was tested, with each
target gene encoding a component of a different complex in
the secretory pathway (Fox et al., 2010; Barbosa et al., 2013).
The ability to activate secretory gene expression in this
heterologous system required the ATB domain that is unique
to the Creb3 subfamily of bZip proteins (Barbosa et al.,
2013). Moreover, CrebB, the Drosophila gene most closely
related to CrebA–which does not have an ATB domain, did
not have the same activity. Thus, coordinate transcriptional
activation of secretory component machinery is an ancient
role for the CrebA/Creb3 branch of bZip transcription factors,
a role potentially masked in studies of mice mutants because
of functional redundancy among family members.

Recent studies also suggest that Creb3 proteins may link
upregulation of secretory pathway components to terminal
differentiation, which typically involves cessation of cell
division. In either virally infected or transformed cells, Creb3
members have been shown to either inhibit expression of cell
cycle activators and/or activate expression of cell cycle
inhibitors. Indeed, loss-of-function studies suggest that Creb3
activation is also linked to cell cycle regulation during the
terminal differentiation of multiple secretory cell types.
Determining if expression of the active forms of these
molecules can both promote cell cycle exit and induce
secretory programs in precursor cells is an important next test.
If so, developing methods for expressing the active proteins in
cancer cells could be a useful therapy.
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