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Abstract: Primary Sjögren’s syndrome (SjS) is an inflammatory autoimmune disorder which targets
the lacrimal and salivary glands, resulting in glandular dysfunction. Currently, the immune drivers
of SjS remain poorly understood and peripheral biomarkers of disease are lacking. The present
study therefore sought to investigate the immune cell constituents of the SjS peripheral blood, and
to assess the role of the BTLA/HVEM/CD160 co-stimulatory network by characterizing expression
within the periphery. Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood
of n = 10 patients with SjS and n = 10 age- and sex-matched healthy control donors. Cells were
divided and stained with three panels of antibodies, allowing assessment of T, B, and myeloid cell
subsets, and measurement of BTLA, HVEM, and CD160 surface expression by flow cytometry. We
identified distinct alterations in proportions of peripheral T, B, and myeloid cell types in SjS compared
with healthy controls. Expression of BTLA/CD160/HVEM and frequency of BTLA/CD160/HVEM-
expressing cells were significantly altered in peripheral SjS lymphocytes. The proportion of T cells co-
expressing BTLA/HVEM and CD160/HVEM were significantly reduced in SjS. We found decreased
BTLA and HVEM levels on peripheral B and T cells of SjS patients, and decreased BTLA/HVEM
and CD160/HVEM co-expression, demonstrating dysregulation of the BTLA/HVEM axis in the
peripheral blood of SjS patients. These results indicate the potential of targeting the BTLA-HVEM
axis for the treatment of SjS.

Keywords: Sjögren’s syndrome; BTLA; HVEM; co-stimulation

1. Introduction

Activation of T lymphocytes requires multiple signals: (1) antigen binding to the
T cell receptor (TCR), and (2) additional interaction with co-signaling molecules. These
can exert stimulatory or inhibitory signals in the T cell, and act in a tightly controlled,
coordinated manner to maintain homeostasis [1]. B and T lymphocyte attenuator (BTLA;
CD272) is a co-signaling molecule of the CD28 immunoglobulin superfamily [2]. Similar to
the well-characterized co-inhibitory molecules programmed cell death protein 1 (PD-1) and
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), BTLA signaling in T cells inhibits
cell activation and cytokine production [1]. This signaling is elicited through interaction
with its ligand, herpes virus entry mediator (HVEM; TNFRSF14; CD270). Along with
BTLA, HVEM has the additional interaction partners CD160 and LIGHT (TNFSF14; CD258).
Together, the HVEM/BTLA/CD160/LIGHT molecules form an intricate, bi-directional,
regulatory network capable of producing either co-stimulatory or co-inhibitory signals [3].
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This complex network is important for the maintenance of self-tolerance; in cis, BTLA and
HVEM form a heterodimeric complex which prevents HVEM binding in trans, preventing
NF-κB signaling, and maintaining T cell tolerance [1]. Additionally, BTLA-expressing
dendritic cells have been demonstrated to be critical for the differentiation of regulatory T
(Treg) cells [4].

Primary Sjögren’s syndrome (SjS) is a chronic, inflammatory autoimmune disease
which most commonly affects the lacrimal and salivary glands. While the specific immune
drivers of SjS remain poorly understood, a breakdown of self-tolerance is central to disease,
and thus, there is an interest in the role of checkpoint molecules in contributing to SjS.
Specifically, deletion of CTLA-4 in adult mice has been shown to result in an autoimmune
condition resembling human SjS [5], and BTLA knockout mice have been reported to
develop symptoms characteristic of SjS [6]. Yet, despite these findings, the specific role of
BTLA and its associated signaling pathway in SjS remains unstudied.

Here, we sought to examine the BTLA/HVEM/CD160/LIGHT co-signaling network
in SjS to elucidate the role of this pathway in disease pathogenesis, to identify peripheral
blood biomarkers of disease, and to investigate the potential of targeting this network
therapeutically. Using flow cytometry, we investigated the expression, co-expression, and
frequency of BTLA/HVEM/CD160-expressing cells in the peripheral blood of patients
with primary SjS.

2. Materials and Methods
2.1. Human Subjects

Whole blood samples were collected from 10 SjS patients (mean age 66 years (range 55–82))
with anti-Ro/La autoantibodies and 10 age- and gender-matched healthy control donors.
SjS patients fulfilled at least four of the six American–European Consensus Group Criteria.
No other autoimmune conditions occurred within the study group, and none of the patients
were being treated with any immunomodulatory medications at the time of blood sampling.
Patient demographics are summarised in Table 1. The study was approved by the Southern
Adelaide Human Research Ethics Committee, approval number 39.034.

Table 1. Patient demographics.

Patient Characteristics (n = 10)

Gender (% male/female) 20/80

Age (years)
Mean: 65.6

Min: 55
Max: 80

Glandular enlargement (% yes/no) 70/30
Serology (% pos/neg)

Anti-Ro60 100/0
Anti-Ro52 100/0

Anti-La 70/30

EULAR Sjogren’s Syndrome disease
activity index (ESSDAI)

Mean: 7
Min: 2

Max: 14

2.2. Purification of Peripheral Blood Mononuclear Cells

Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood samples
using Lymphoprep™ (StemCell Technologies, Vancouver, Canada). Briefly, blood was
diluted 1:1 in phosphate buffered saline (PBS) prior to being layered onto Lymphoprep™
and centrifuged for 20 min at 500× g with no brake. Following centrifugation, the PBMC-
containing band was aspirated and washed in PBS (300× g, 10 min). Cells were counted
using a haemocytometer and viability judged by their ability to exclude trypan blue. For
cryopreservation, cells were cryopreserved in freezing media containing 10% foetal calf
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serum, 80% RPMI-1640 media, and 10% DMSO. Cells were incubated in a ‘Mr. Frosty’ Freez-
ing Container (ThermoFisher Scientific, Waltham, MA, USA) overnight at −80 ◦C before
transferal into liquid nitrogen for long-term storage. Prior to use, cryopreserved PBMCs
were removed from storage and thawed rapidly at 37 ◦C before washing in RPMI-1640.

2.3. Flow Cytometry

Thawed PBMCs were washed in 1 × PBS + 10% FCS. Cells were resuspended in
PBS + 1% BSA at 1 × 106 cells per test, and Fc receptors blocked using Human BD Fc
Block™ (BD Biosciences). Following blocking, cells were stained with either myeloid, T cell,
or B cell panels (summarised in Table S1). Following incubation, cells were washed in
PBS + 1% BSA + 2 mM EDTA, resuspended in 4% paraformaldehyde, and incubated for
10 min at 4 ◦C in the dark. Cells were washed in PBS + 1% BSA + 2 mM EDTA prior to
acquisition on a BD™ LSR II flow cytometer.

2.4. Statistical Analysis

To compare cell population frequencies and protein expression, GraphPad Prism
8.0 software (GraphPad, San Diego, CA, USA) was used to conduct two-tailed, unpaired
Student’s t-test. Statistical significance was defined as p < 0.05.

3. Results
3.1. Altered PBMC Population Frequencies in SjS

Firstly, we assessed for differences in immune cell frequencies in the blood between
patients with SjS and healthy controls. We observed significantly increased proportions
of naive B cells and transitional B cells, and decreased non-class switched B cells, class-
switched B cells, double-negative B cells, and total CD11c+ B cells in SjS (Figures S1 and 1A).
In the T cell compartment (Figure S2), we observed decreased frequencies of T regulatory
cells (Treg), CD4+ T effector memory (Tem) cells, CD8+ memory T cells, CD8+ T central
memory (Tcm) cells, CD8+ Tem cells, and naïve CD8+ T cells compared with healthy controls
(Figure 1B,C). In the myeloid compartment (Figure S3), we found increased frequencies
of non-classical monocytes, and decreased frequencies of plasmacytoid dendritic cells,
CD16−CD56hi NK cells, CD16hiCD56int NK cells, and NKT cells (Figure 1D). Summary of
differences in cell frequencies is shown in Figure 1E.

3.2. BTLA/HVEM/CD160 Expression in SjS

Next, we examined cell surface expression of BTLA, HVEM, and CD160. In SjS, we
observed significantly reduced expression of BTLA in most B cells, and all assessed T
cell populations, while we found no difference between myeloid populations (Figure 2A).
These were reflected by reduced frequencies of BTLA-expressing B cells and most BTLA-
expressing T cells (Figure S4).

HVEM expression was largely unchanged in SjS B cells compared with healthy cells,
aside from a significant reduction in class-switched B cells and plasmablasts. Similarly to
BTLA, we found reduced HVEM expression on all assessed T cell populations (Figure 2B),
reflected by reduced frequencies of HVEM+ T cells (Figure S4B). Conversely, in myeloid
cells, we found increased HVEM expression on classical monocytes (mono), conventional
dendritic cells (cDC), CD16hiCD56int NK cells, and CD16intCD56+ NK cells (Figure 2B).

CD160, the additional binding partner of HVEM, is expressed by CD8+ T cells and
myeloid subsets. Thus, we next investigated CD160 expression on these cells in SjS. In
CD8+ T cells, we found reduced CD160 expression on CD8+ memory T cells, CD8+ Tem,
and naïve CD8+ T cells (Figure 2C). This was reflected by reduced frequencies of all CD160-
expressing CD8+ populations (Figure S4). Conversely, in the myeloid compartment, we
found significantly increased CD160 expression on all assessed populations, aside from
CD16hiCD56int NK cells (Figure 2C).
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(E) Summary of differences in cell frequencies in SjS. Data are expressed as geometric mean fluores-
cence intensity (gMFI) and are representative of n = 10 experiments, * p < 0.05, ** p < 0.01, *** p < 
0.001, **** p < 0.0001, unpaired, two-tailed Student’s t test. 
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Figure 1. Peripheral blood mononuclear cell frequencies from patients with primary SjS
(green) versus healthy controls (blue). (A) Frequencies of B cell populations, (B) CD4+ T cell
populations, (C) CD8+ T cell populations, and (D) myeloid cell populations in SjS compared with
healthy controls. (E) Summary of differences in cell frequencies in SjS. Data are expressed as geometric
mean fluorescence intensity (gMFI) and are representative of n = 10 experiments, * p < 0.05, ** p < 0.01,
*** p < 0.001, **** p < 0.0001, unpaired, two-tailed Student’s t test.
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Figure 2. Expression of the BTLA/HVEM/CD160 regulatory network in T, B and myeloid compart-
ments from SjS peripheral blood (green) compared with healthy controls (blue). Surface expression
of (A) BTLA, (B) HVEM, and (C) CD160 in the indicated cell populations are shown. Data are ex-
pressed as geometric mean fluorescence intensity (gMFI) and are representative of n = 10 experiments,
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, unpaired, two-tailed Student’s t test.
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We additionally attempted to assess expression of the alternative HVEM binding partner
LIGHT (TNFSF14) on SjS and healthy T cells but found this expression to be undetectable
(not shown). This is likely due to the rapid and transient nature of LIGHT expression
on activated T cells.

3.3. Checkpoint Molecule Co-Expression

In naïve T cells, BTLA and HVEM interact in cis to constitutively exert inhibitory signal-
ing [3]. CD160 is similarly able to interact with HVEM in cis to suppress T cell function, or in a
stimulatory manner on NK cells [7]. Thus, it was of interest to investigate BTLA/HVEM and
CD160/HVEM co-expression in SjS lymphocytes. To do this, we utilized uniform manifold
approximation and projection (UMAP) to visualize our data and compare populations between
healthy controls (Figure 3A) and SjS (Figure 3B). In CD4+ cells (Figure 3C), we found that levels
of co-expression of BTLA/HVEM were indeed altered in SjS. Proportions of BTLA−HVEM−

CD4+ cells were significantly enriched in SjS samples (p = 0.0021) along with BTLA+HVEM−

(p = 0.0039) and BTLA−HVEM+ cells (p = 0.0268), while BTLA+HVEM+ CD4+ cells were re-
duced (p < 0.0001). Similarly, in CD8+ T cells (Figure 3D), BTLA−HVEM− cells were enriched
(p < 0.0001), while BTLA−HVEM+ (p = 0.0083) and BTLA+HVEM+ (p < 0.0001) cells were
reduced. BTLA+HVEM− cells were unchanged. Meanwhile, CD160−HVEM− cells were
enriched (p < 0.0001), CD160−HVEM+ (0.001) and CD160+HVEM+ cells (p < 0.0001) were
reduced, and CD160+HVEM− cells were unchanged (Figure 3D).J. Clin. Med. 2022, 11, x FOR PEER REVIEW 6 of 9 

 

 

 
 

 
 
 
 

 
 
 
 
 

 
 

 
 
 
 

 
 
 

 
 

Figure 3. Checkpoint molecule co-expression in lymphocytes of SjS patients versus healthy controls. 
UMAP plots of flow cytometry data from (A) healthy control and (B) SjS lymphocytes. Color indi-
cates cellular expression of labelled marker. (C) Summary of CD4+ lymphocyte BTLA/HVEM co-
expression in healthy controls compared with SjS. (D) Summary of CD8+ lymphocyte BTLA/HVEM 
and CD160/HVEM co-expression in healthy controls compared with SjS. For (C,D), data are ex-
pressed as proportions of CD4+ or CD8+ T cells and are representative of n = 10 experiments. 

4. Discussion 
The high impact of SjS on patient quality of life and the large economic burden cur-

rent symptomatic treatments impose suggest a need for new, improved therapeutic strat-
egies [8]. This investigation has identified distinct expression changes in the 
BTLA/CD160/HVEM regulatory network in SjS and suggests the potential of targeting this 
pathway as a future therapeutic strategy. 

We have identified distinct differences between the SjS and healthy peripheral blood. 
In SjS, we observed decreased proportions of CD27+ class-switched and non-class 

Figure 3. Checkpoint molecule co-expression in lymphocytes of SjS patients versus healthy controls.
UMAP plots of flow cytometry data from (A) healthy control and (B) SjS lymphocytes. Color
indicates cellular expression of labelled marker. (C) Summary of CD4+ lymphocyte BTLA/HVEM co-
expression in healthy controls compared with SjS. (D) Summary of CD8+ lymphocyte BTLA/HVEM
and CD160/HVEM co-expression in healthy controls compared with SjS. For (C,D), data are expressed
as proportions of CD4+ or CD8+ T cells and are representative of n = 10 experiments.
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4. Discussion

The high impact of SjS on patient quality of life and the large economic burden current
symptomatic treatments impose suggest a need for new, improved therapeutic strategies [8].
This investigation has identified distinct expression changes in the BTLA/CD160/HVEM
regulatory network in SjS and suggests the potential of targeting this pathway as a future
therapeutic strategy.

We have identified distinct differences between the SjS and healthy peripheral blood.
In SjS, we observed decreased proportions of CD27+ class-switched and non-class switched
B cells, double negative B cells, and CD11c+ B cells, supporting previous findings [9].
This was reflected by increased naïve B cells and transitional B cells, supporting im-
paired B cell homeostasis in SjS [10]. Outside of the B cell compartment, the immune
cell profile of our SjS cohort was characterized by decreased frequencies of Treg, Tcm,
pDC, CD16−CD56int NK and CD16hiCD56int NK cells, and NKT cells, and an increased
frequency of non-classical monocytes.

On SjS B cells, there was minimal modulation in HVEM expression compared with
healthy controls, in contrast with significant decreases in BTLA expression on almost all
assessed populations. Ligation of BTLA with HVEM in cis on B cells mediates B cell
function similarly to T cells through inhibiting cell proliferation, cytokine production, and
the up-regulation of other co-stimulatory molecules [11]. Thus, our finding of reduced
BTLA expression on SjS B cells suggests that there is a lack of immune control in the form
of dysregulated BTLA-mediated inhibitory regulation in SjS B cells.

In both CD4+ and CD8+ T cells, we found significantly reduced expression of BTLA
(Figure 2A), and this was reflected by reductions in BTLA-expressing cell frequencies
(Figure S4). Initial characterization studies of BTLA on healthy human cells report a steady
reduction in BTLA expression upon activation of CD4+ T cells [12]. While this was the case
in our healthy controls, in our cohort of SjS PBMCs, we did not observe a difference in
the expression levels of BTLA by naïve CD4+ T cells and CD4+ Tmem or in the BTLA+ cell
frequencies. These findings therefore suggest that signaling provided to T cells through
BTLA is decreased in SjS, and that the regulation of BTLA expression in CD4+ T cells upon
activation is impaired.

Activation of HVEM expressed by T cells induces activation of NF-κB and promotes
cell survival [3]. In our cohort, HVEM expression was reduced in all T cell populations,
suggesting that T cell survival signaling through HVEM may be impaired. Engagement
of HVEM on a T cell by BTLA+ DC can induce the differentiation of Tregs [4]. Thus, our
finding of decreased Tregs in SjS PBMCs could be explained by the decreased expression of
HVEM on T cells.

Reduced CD160 expression in CD8+ T cells has been associated with autoimmu-
nity [13]. Here, we found reduced expression of CD160 and reduced frequencies of
CD160-expressing CD8+ cells in SjS. However, on myeloid cells, we found increased
CD160 expression, particularly by CD16−CD56hi and CD16intCD56+ NK cells. On NK cells,
CD160 is important for the production of interferon-γ (IFNγ) [14]. In SjS, an ‘IFN-signature’
whereby IFN-inducible genes are enriched in salivary glands and peripheral blood has been
described [15]. Thus, increased CD160 on peripheral blood NK cells may be a contributing
cell type to this signature.

In cis, BTLA/HVEM and CD160/HVEM interactions exert inhibitory signals to main-
tain tolerance, or T cell naivety. We found reduced BTLA/HVEM co-expression on CD4+

and CD8+ T cells, and reduced CD160/HVEM co-expression on CD8+ T cells in SjS. This
suggests that the cis regulatory interactions between BTLA/HVEM and CD160/HVEM are
imbalanced in SjS.

Disease activity (measured by ESSDAI) of our patient cohort ranged from 2–14, with
four patients measuring low disease activity (<5), and six patients measuring moderate-
high activity (≥5). Despite observing significant changes in immune cell frequencies and
expression of the BTLA regulatory network members in the SjS peripheral blood, regres-
sion modelling between these parameters and ESSDAI scores did not reveal significant
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correlations. Although this is not infrequent in clinical practice where patient-reported
severity as measured by the ESSPRI (EULAR Sjogren’s Syndrome Patient Reported Index)
does not necessarily correlate with ESSDAI, it may also be the result of the spread of the
ESSDAI measurements in our cohort.

In the present study, we characterized the expression of the BTLA/HVEM/CD160
regulatory network in the periphery of patients with SjS, identifying distinct differences
compared with healthy controls. However, this study is not without limitations. We
were unable to detect the alternative HVEM binding partner LIGHT on the surface of
lymphocytes, or as a soluble form in the serum of patients with SjS and healthy controls.
This is likely due to the rapid nature of LIGHT expression on T cells following an activating
stimulus. The function of LIGHT–HVEM interactions are context specific; in trans, LIGHT
binding to HVEM transduces a co-stimulatory response in the HVEM-expressing T cell
while in cis, LIGHT expression negatively regulates that of HVEM [3]. Thus, LIGHT is
a critical controller of the BTLA/HVEM/CD160 network, and future investigation into
LIGHT and its role in SjS are needed to fully understand the role of this pathway in SjS and
other autoimmune conditions.
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from SjS peripheral blood compared with healthy controls.
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