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Abstract

The effects of tau hyperphosphorylation and aggregation on axonal transport were investigated in the optic nerve of mice
transgenic for human mutant P301S tau. Transport was examined using cholera toxin B tracing. Retrograde transport was
reduced in transgenic mice at 3 and 5 months of age, when compared to C57/Bl6 control mice. Anterograde axonal
transport was also reduced in 3-month-old transgenic mice. Mild excitotoxic injury of retinal ganglion cells resulted in
greater nerve cell loss in retinas from 3- and 5-month old P301S transgenic mice, when compared to controls. In conjunction
with the detection of abnormal tau in the optic nerve in human and experimental glaucoma, the present findings suggest
that tau hyperphosphorylation and aggregation may constitute targets for neuroprotective therapies in glaucoma as well as
tauopathies.
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Introduction

Microtubule-associated protein tau is believed to play a role in the

assembly and stabilisation of microtubules [1]. Its binding to

microtubules is negatively regulated by phosphorylation. In several

neurodegenerative diseases, tau protein assembles into abnormal

filaments, where it is abnormally hyperphosphorylated. The identi-

fication of MAPT mutations in inherited frontotemporal dementia and

parkinsonism linked to chromosome 17 (FTDP-17T) has established

that dysfunction of tau protein is sufficient to cause neurodegeneration

and dementia [2–4]. Most mutations are located in or near the repeat

region of tau, which is essential for microtubule binding. Conse-

quently, mutant tau has been shown to exhibit reduced microtubule

binding [5,6], suggesting that a partial loss of function may be required

for filament assembly and abnormal hyperphosphorylation. In

addition, many MAPT missense mutations also increase the propensity

of tau protein to assemble into filaments [7,8].

Transgenic models expressing human mutant tau in nerve cells

have been useful for investigating the toxicity of tau aggregation and

how dysfunctional tau interferes with axonal transport. Defective

axonal transport, both anterograde and retrograde, has been

described in some of these models [9,10]. We previously showed

that in retinal ganglion cells from a mouse line transgenic for human

mutant P301S tau, dynactin, which is required for the binding of

cargo to dynein motor proteins, is abnormally distributed [11]. We

also showed that recombinant human tau promotes attachment of

the dynactin complex to axonal microtubules, indicating a potential

role for tau in axonal transport. Dynein-mediated retrograde axonal

transport of target-derived neurotrophic factors, such as brain-

derived neurotrophic factor (BDNF), is essential for the survival of

adult retinal ganglion cells (RGCs) [12]. Disruption of BDNF

transport contributes to retinal ganglion cell death in glaucoma

[13,14] where, in an experimental model, we have previously

described an altered distribution of dynein [15].

Here we examined the effects of human mutant P301S tau

expression in retinal ganglion cells on axonal transport and nerve

cell survival in vivo. In this transgenic line, human mutant P301S

tau is expressed downstream of the murine Thy1 promoter [16].

By 5 months of age, homozygous mice exhibit widespread tau

aggregation and neurodegeneration, accompanied by behavioural

impairment and motor dysfunction. We previously described the

presence of aggregated human mutant tau in RGCs of these mice

[17]. However, nerve cell loss was not observed and retrograde

axonal transport in retinal explant cultures appeared to be normal.

We now show that aggregation of human mutant P301S tau in

RGCs is associated with a reduction of both anterograde and

retrograde axonal transport in vivo, and with a markedly increased

effect of mild excitotoxic injury.

Materials and Methods

Ethics statement
Animals had unrestricted access to food and water, and were

maintained on a 12 h light/dark cycle. All experiments were
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carried out in accordance with the UK Home Office Regulations

for the Care and Use of Laboratory Animals and the UK Animals

(Scientific Procedures) Act 1986. All methods were approved by

the University of Cambridge Animal Ethics Committee (project

licences 80/1914 and 80/2360).

Animals
Homozygous male mice transgenic for human mutant P301S

tau were used at 1, 3 and 5 months of age. At 5 months, these mice

exhibit abnormal motor behaviour. No such abnormality is

present in animals aged 3 months or 1 month. Filamentous

inclusions made of hyperphosphorylated tau are present in the

central nervous system of 3- and 5-month old transgenic mice

[18]. We previously described the expression of human mutant

P301S tau in RGCs and the formation of tau inclusions [17].

Based on staining with the fluorescent Congo red derivative FSB

[19], the first filamentous tau aggregates in RGCs were observed

in 7-week old mice. Age- and sex-matched C57/Bl6 mice (Harlan,

UK) were used as controls. Animals had unrestricted access to

food and water, and were maintained on a 12 h light/dark cycle.

All experiments were carried out in accordance with the UK

Home Office Regulations for the Care and Use of Laboratory

Animals and the UK Animals (Scientific Procedures) Act 1986.

They were approved by the University of Cambridge Animal

Ethics Committee (project licence 80/1914).

Tracing of anterograde axonal transport
Mice aged 1 month (P301S, n = 6; C57/Bl6, n = 6), 3 months

(P301S, n = 5; C57/Bl6, n = 5) and 5 months (P301S, n = 6; C57/

Bl6, n = 4) were used. The vitreous body of the left eye was

injected with 2 ml of a 0.1% solution of cholera toxin B protein

(CTB) conjugated to Alexa Fluor-555 in sterile phosphate-buffered

saline (PBS) (Invitrogen Inc., Paisley, UK). Following the injection,

the needle was held in place for 30 s, to prevent leakage. Mice

were perfused intracardially 1 day after the injection.

Tracing of retrograde axonal transport
Mice aged 3 months (P301S, n = 6; C57/Bl6, n = 6) and 5

months (P301S, n = 10; C57/Bl6, n = 4) were used. They were

fixed in a stereotaxic frame (World Precision Instruments Ltd.,

Stevenage, UK), an incision was made through the scalp to expose

the skull and Bregma identified as the zero point. One ml of a 1%

solution of CTB conjugated to Alexa Fluor-555 was injected

bilaterally into the superior colliculus (coordinates: anterior-

posterior 22.92 mm and medio-lateral 60.5 mm from Bregma;

dorso-ventral 22 mm from the surface of the skull). Injections

were performed over 2 min and the needle left in place for 1

additional min. Mice were perfused intracardially 3 days after the

injection.

Excitotoxic lesioning in vivo
Mice aged 1 month (P301S, n = 4; C57/Bl6, n = 4), 3 months

(P301S, n = 6; C57/Bl6, n = 4), and 5 months (P301S, n = 7; C57/

Bl6 n = 6) were used. One ml of 2 mM NMDA (N-methyl-D-

aspartate; Sigma-Aldrich UK, Gillingham, UK) and 5 mM

glycine (Sigma-Aldrich UK) in PBS was injected into the vitreous

body of the left eye. The needle was held in place for 30 s

following injection, to prevent leakage. This resulted in a

concentration of 2 nmol NMDA and 5 nmol glycine per eye,

which caused a mild excitotoxic injury of the retina [20]. Mice

were perfused intracardially after 7 days.

Quantification of retinal ganglion cells
The retinas of perfused mice were dissected and four radial cuts

made in each retina, to facilitate whole mount staining and

analysis. This was followed by a 2 h post-fixation in 4%

paraformaldehyde/0.1 M PBS. The retinas were washed in

PBS, followed by a 60 min incubation in blocking solution

consisting of 0.2% Triton-X100 (Sigma-Aldrich UK) and 5% goat

serum (Invitrogen Inc.) in PBS. They were then incubated for 24 h

at 4uC with monoclonal anti-NeuN antibody (1:500, Millipore,

Watford, UK) in blocking solution, followed by washing in PBS.

The retinas were incubated for 18 h at 4uC with Alexa Fluor-555

conjugated goat anti-mouse antibody (1:1,000, Invitrogen Inc.) in

blocking buffer. Following washing in PBS, the tissues were

mounted on glass slides. Analyses were carried out blind with

respect to treatment groups. The RGC layer was viewed under

epifluorescent illumination and three images (central, medial and

peripheral) per retinal quadrant captured using a 406 objective

(Figure 1A). Each image sampled an area of 0.093 mm2; thus, with

12 images per retina (1.116 mm2), and given an explant area of

15.7660.31 mm2, approximately 7% of the flat mount area of the

retina was sampled. NeuN-positive cells were counted and the

number of RGCs determined. The percentage loss of RGCs

following excitotoxin administration was calculated by comparing

the treated and untreated eyes.

Excitotoxic lesioning in vitro
Retinas from mice aged 5 months (P301S, n = 4 mice; C57/Bl6,

n = 4 mice; both retinas from each mouse were pooled) were

dissociated into single cell suspensions using a papain dissociation

system (Worthington Corporation, Lakewood, NJ, USA), follow-

ing the manufacturer’s instructions. The cells were plated at a

density of 46105 cells/well (24-well plates) on poly-L-lysine

Figure 1. Quantification Methodology. (A), Retinal ganglion cell
(RGC) survival following excitotoxic injury in vivo was quantified using
retinal flat mounts immunohistochemically labelled for NeuN. Twelve
images (3 per quadrant at central, medial and peripheral locations;
approximate positions defined by boxes) were captured per retina
using a 406 objective; NeuN-positive nuclei were counted in each
image and their average number calculated for each retina. RGC loss
was calculated compared to NeuN counts from the uninjured
contralateral eye. (B), Axonal transport of fluorescent cholera toxin B
(CTB) in the optic nerve was quantified by measuring average
fluorescence intensity across the width of the optic nerve at 100 mm
intervals along the full length of each nerve. A representative image is
shown, with the white lines indicating example regions where average
fluorescence intensity was measured. Scale bar, 100 mm.
doi:10.1371/journal.pone.0034724.g001

Axonal Transport Deficits in P301S Mice
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(100 mg/ml; Sigma-Aldrich UK) and laminin (1 mg/ml; Sigma-

Aldrich UK) coated glass coverslips in control medium (to make

25 ml: 24.2 ml Neurobasal-A medium, 500 ml B27 supplement,

62.5 ml L-glutamine, 125 ml gentamicin; all from Invitrogen Inc.)

or in pH-balanced medium containing 100 mM glutamic acid

(Sigma-Aldrich UK). After 3 days, the cells were fixed with 4%

paraformaldehyde/0.1 M PBS and labelled with an anti-bIII

tubulin antibody (1:2000, Promega, Southampton, UK). The

number of labelled cells in 10 fields of view per coverslip (4

replicate coverslips per N), using a 206 objective, was counted,

and averaged over 4 coverslips for each sample. Cells were

counted and the percentage of surviving cells determined by

comparing cell counts between glutamate-treated and untreated

control groups. An unpaired Student’s t-test was used to compare

retinal ganglion cell survival between P301S and C57/Bl6

cultures; a p value of less than 0.05 was considered significant.

CTB binding to GM1 ganglioside receptor in retina and
brain tissue

Sections of fixed retina (14 mm) and superior colliculus (30 mm)

were obtained from 3 month old P301S and C57/Bl6 mice.

Retinal sections were immunohistochemically labelled with a

mouse monoclonal anti-bIII tubulin antibody (1:2000; Promega

UK, Southampton, UK), and brain sections immunohistochem-

ically labelled with a mouse monoclonal anti-vGluT2 antibody

(Abcam Plc, Cambridge, UK). An Alexa Fluor-488 conjugated

goat anti-mouse secondary antibody (1:1000, Invitrogen Inc.) was

used to detect the primary antibody, and sections were exposed to

Alexa Fluor-555 conjugated CTB protein (5 mg/ml; Invitrogen

Inc) to visualise GM1 receptor binding. The retinal sections were

imaged using laser scanning confocal microscopy (TCS-SPE,

Leica Inc., Wetzlar, Germany), and brain sections were imaged

using epifluorescent microscopy (DM6000 microscope; Leica Inc.).

Quantification of the axonal transport of cholera toxin B
Optic nerves of perfused mice were dissected between the posterior

globe and the optic chiasm, post-fixed overnight at 4uC, washed in

PBS and cryo-preserved by overnight immersion in 30% sucrose at

4uC. Following embedding in OCT, 14 mm-thick longitudinal

sections were cut using a cryostat and mounted onto microscope

slides. They were immunohistochemically labelled for bIII tubulin

(1:2000, Promega), immunohistochemical visualisation of CTB was

not required as the fluorophore was directly conjugated to the CTB

protein. Analyses were carried out blind with respect to treatment

groups. Optic nerve sections were visualised under epifluorescent

illumination on a single Leica DM6000 microscope using a 106
objective and contiguous images along the length of each nerve

captured using LAS AF software (Leica Inc.) and identical camera

settings. Mean fluorescence intensity was measured across the width

of each nerve at 100 mm intervals along its length (Figure 1B) and

plotted as a line graph against distance (along the nerve), and the area

under the curve (AUC) calculated using Prism software (GraphPad,

La Jolla, USA). The AUC values were averaged across each

experimental group and an unpaired Student’s t-test used for

statistical comparison of CTB transport; p,0.05 was considered

significant. Fluorescence intensity was also measured along the length

of a single optic nerve from an untreated right eye in each

Figure 2. Expression of human tau in the optic nerve of mice
transgenic for human mutant P301S tau. (A–C), Staining for
human tau (A, green) and bIII tubulin (B, red) showed co-localisation in
the axons of the optic nerve (C, overlay image of A and B; example from
1 month old mouse). (D–F), Staining for tau phosphorylated at S202/
T205 (D, green) and bIII tubulin (E, red) showed co-localisation in the
axons of the optic nerve (F, overlay image of D and E; example from 5
month old mouse). Arrows indicate examples of co-localisation. Scale
bar, 20 mm.
doi:10.1371/journal.pone.0034724.g002

Figure 3. Binding of cholera toxin B (CTB) protein to GM1
receptor in P301S tissue. Fixed retinal (A–B) and brain (C–F) tissue
was exposed to fluorescently tagged CTB (red) in order to visualise GM1
receptor binding in both C57/Bl6 control tissue (A, C–D) and P301S
tissue (B, E–F). CTB binding was observed in RGCs within the retina (A–
B), counterstained for the marker bIII tubulin (green; arrows indicate co-
localisation), and punctate staining within the inner retina was also
seen. Nuclei were counterstained with DAPI (blue). No difference in the
pattern of CTB binding to the GM1 receptor in the retina was found
between control (A) and P301S (B) tissue. Furthermore, no difference in
the pattern of CTB binding to the GM1 receptor in the superior
colliculus (outlined) of the brain was observed between control (D) and
P301S (F) tissue. The RGC axon terminals in the superior colliculus were
counterstained for the marker vGluT2 (vesicular glutamate transporter
2; green) in both control (C) and P301S (E) tissue. Scale bar, 25 mm A–B,
500 mm C–F.
doi:10.1371/journal.pone.0034724.g003

Axonal Transport Deficits in P301S Mice
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Figure 4. Anterograde axonal transport is reduced in optic nerve of mice transgenic for human mutant P301S tau mice. Fluorescent
cholera toxin B was injected unilaterally into the vitreous and the amount transported in an anterograde direction measured in 5-month-old (A), 3-
month-old (C) and 1-month-old (E) P301S tau transgenic and C57/Bl6 control mice. Fluorescence intensity appeared lower in transgenic mice at all
ages, compared to controls. In optic nerves not exposed to cholera toxin B (negative control), only background fluorescence was measured (A,C,E).
Statistical analysis of the area under the fluorescence intensity curve for each individual showed a significant reduction of anterograde axonal

Axonal Transport Deficits in P301S Mice
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anterograde transport experiment to confirm background fluores-

cence was well below that detected in CTB-treated optic nerves.

Tau immunohistochemistry
Optic nerve sections were immunohistochemically double-

labelled with a rabbit polyclonal anti-bIII tubulin antibody

(1:1000; Covance, Harrogate, UK), and either mouse monoclonal

antibody HT7 (1:500; Pierce Protein Research Products, Thermo

Fisher Scientific, Cramlington, UK) or phosphorylation-depen-

dent mouse monoclonal anti-tau antibody AT8 (1:1000; Source

Bioscience Autogen, Calne, UK). The secondary antibodies were

Alexa Fluor-647 conjugated goat anti-rabbit antibody (1:1000,

Invitrogen Inc.) and Alexa Fluor-488 conjugated goat anti-mouse

antibody (1:1000, Invitrogen Inc.). The sections were imaged using

laser scanning confocal microscopy (TCS-SPE, Leica Inc.).

Results

Expression of hyperphosphorylated human mutant
P301S tau in optic nerve

We have shown previously that the P301S tau transgene is

expressed by retinal ganglion cells (RGCs), under the Thy1

promotor, within the inner retina and nerve fibre layer [17].

Furthermore, it was demonstrated that expression of this transgene

transport in optic nerves from P301S tau transgenic mice at 5 months (B) and at 3 months (D), but not at 1 month (F). Data are presented as
mean6SEM.
doi:10.1371/journal.pone.0034724.g004

Figure 5. Retrograde axonal transport is reduced in optic nerve of mice transgenic for human mutant P301S tau. Fluorescent cholera
toxin B was injected bilaterally into the superior colliculus and the amount transported measured in 5-month-old (A) and 3-month-old (C) P301S tau
transgenic and C57/Bl6 control mice. Fluorescence intensity was lower along the length of the optic nerve in transgenic mice at all ages, compared to
C57/Bl6 controls. Statistical analysis of the area under the fluorescence intensity curve for each individual showed a significant reduction in retrograde
axonal transport in optic nerves from P301S tau transgenic mice at 5 months (B) and at 3 months (D), compared to controls. Data are presented as
mean6SEM.
doi:10.1371/journal.pone.0034724.g005

Axonal Transport Deficits in P301S Mice
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led to the accumulation and aggregation of hyperphosphorylated

tau within RGC axons in the retina of these mice by the age of 2

months. In the current project, we extended these findings by

probing the relevance of RGC axonal expression of mutant

human tau in the optic nerve of P301S tau transgenic mice. We

confirmed human tau was present in axons of retinal ganglion

cells, as reflected by the co-labelling with antibodies HT7 (human

tau specific antibody) and bIII tubulin (RGC marker; Figure 2A–

C) in the optic nerve from at least 1 month of age. Double-

labelling with anti-tau antibody AT8 and the anti-bIII-tubulin

antibody established the presence of abundant hyperphosphory-

lated tau in RGC axons at both 3 and 5 months of age (Figure 2D–

F), while the AT8 staining was lower at 1 month of age, consistent

with our earlier study.

Binding of cholera toxin B (CTB) protein to GM1 receptor
in P301S tissue

Anterograde and retrograde transport of cholera toxin B (CTB)

protein was used as a tool to assess RGC axonal transport. Binding

of CTB to its receptor, the GM1 ganglioside receptor, on RGCs in

both the retina and brain was examined to determine whether

differences in receptor expression were apparent between P301S

transgenics and controls. No difference in CTB binding to RGC

somas, counterstained for the marker bIII tubulin (Figure 3A, B),

or RGC terminals, counterstained for vGluT2 expression

(Figure 3C–F), was observed between P301S and control tissue.

Reduction of anterograde axonal transport in optic nerve
from human mutant P301S tau transgenic mice

Fluorescently tagged CTB was administered intravitreally and

anterograde axonal transport in the optic nerve investigated 24 h

later. Transgenic mice aged 5 months, 3 months and 1 month

were used. Measurement of CTB fluorescence intensity showed

that anterograde axonal transport was significantly impaired in

transgenic animals aged 5 months (Figure 4A,B) and 3 months

(Figure 4C,D), compared to controls. No significant impairment

was detected in transgenic mice at 1 month of age (Figure 4E,F).

The average fluorescence intensity along the untreated optic nerve

showed that all experimental measurements were above back-

ground (Figure 4A,C,E).

Reduction of retrograde axonal transport in optic nerve
from human mutant P301S tau transgenic mice

Fluorescently tagged CTB was injected into the superior

colliculus and retrograde axonal transport in the optic nerve

investigated 72 h later. Transgenic mice aged 5 months and 3

months were used; 1 month old animals were not used as their

small size prevented accurate injection into the superior colliculus.

Measurement of CTB fluorescence intensity showed that retro-

grade axonal transport was significantly impaired in transgenic

mice aged 5 months (Figure 5A,B) and 3 months (Figure 5C,D),

compared to controls.

Increased susceptibility to excitotoxic injury of mice
transgenic for human mutant P301S tau

To investigate the sensitivity of RGCs to injury, we exposed the

retinas of wild-type and transgenic mice to a mild excitotoxic

injury via intravitreal injection of 2 nmol NMDA plus 5 nmol

glycine, as described [20]. One week after injection, the number of

RGCs was reduced in the retinas of both human mutant P301S

tau transgenic and C57/Bl6 control mice at 1, 3 and 5 months of

age (Figure 6), however, while no difference in RGC loss was

observed between 1 month old transgenic and control mice,

significantly more RGCs died after mild excitotoxic injury in

transgenic compared to control retinas at both 3 and 5 months of

age (Figure 6E). In contrast, RGCs cultured from dissociated 5

month old P301S retinas, which disconnects them from their

dependence upon retrograde neurotrophic supply, were no more

susceptible to glutamate-induced death compared to RGCs

isolated from C57/Bl6 retinas (percentage survival bIII tubulin+

cells in toxin-treated cultures compared to untreated cultures:

P301S 76.2264.83% compared to C57/Bl6 63.0362.65%,

mean6SEM, p.0.05, n = 4).

Discussion

Hyperphosphorylation and aggregation of tau were associated in

vivo with reduced axonal transport, both anterograde and

retrograde, in the optic nerve of mice from a line transgenic for

human mutant P301S tau. Axonal transport was assessed by

Figure 6. Reduced axonal transport in optic nerve of mice
transgenic for human mutant P301S tau increases neuronal
susceptibility to injury. Retinal ganglion cell (RGC) survival was
quantified following a mild unilateral excitotoxic injury of the left eye
(LE) by counting NeuN-positive nuclei in the RGC layer of the whole-
mounted retina of 1, 3 and 5 month old mice (A–D). Percentage RGC
loss was calculated by comparing the number of surviving RGCs in
injured retinas to that of the uninjured right eye (RE). Representative
images of NeuN-positive nuclei in injured P301S tau transgenic (A) and
C57/Bl6 (C) retinas from 5 month old animals, compared to uninjured
contralateral retinas (B and D), are shown as an example. Statistical
analysis revealed a significant increase in RGC death following mild
excitotoxic injury in P301S tau transgenic retinas, compared to C57/Bl6
control retinas (E), at both 3 months and 5 months of age; however no
difference in RGC excitotoxic death was found at 1 month of age
between control and transgenic retinas. N-methyl-D-aspartic acid
(NMDA) was used as the excitotoxin. Scale bar, 100 mm.
doi:10.1371/journal.pone.0034724.g006

Axonal Transport Deficits in P301S Mice
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measuring the distance travelled over time by fluorescently-tagged

CTB. Impairment of axonal transport in transgenic P301S tau

mice impacted negatively on the ability of RGCs to withstand a

mild excitotoxic injury, resulting in enhanced nerve cell death. In

comparison, when RGCs were dissociated and cultured in vitro,

where cell survival was disassociated from reliance upon axonal

transport, no difference in RGC survival was observed. In previous

work in retinal explants of P301S tau transgenic mice [17], we

failed to detect a reduction in retrograde axonal transport, possibly

because this work was done in retinal explants where RGCs are

axotomised.

In normal brain, the binding of tau to microtubules could

regulate axonal transport. Tau has been reported to interfere with

the binding of motor proteins to microtubules [21] and a tau

gradient along the axon has been described, with the highest levels

close to the synapse [22]. However, the effects of ablation of tau

and increased tau expression on axonal transport have demon-

strated that the rates of slow and fast transport along optic nerve

axons in vivo are not significantly affected by the modulation of tau

levels [23]. In squid axoplasm, where it was only weakly

phosphorylated , monomeric tau did not affect axonal transport,

even when present at 20-times its normal level [24]. Furthermore,

the rates of axonal transport of human wild-type and mutant tau

were similar in cultured cortical neurons [25]. It follows that the

reduction of axonal transport described here was probably not due

to the overexpression of monomeric human mutant tau, but

resulted from tau hyperphosphorylation and aggregation. A

similar conclusion was reached in studies of axonal transport in

ventral roots of mice transgenic for tau with mutation R406W [9]

and in dopaminergic substantia nigra neurons of mice transgenic

for tau with mutation K369I [10]. Physiological phosphorylation

of tau, as such, is probably not detrimental, since it occurs

normally during foetal development [26] and hibernation [27].

However, the pathological hyperphosphorylation characteristic of

human neurodegenerative diseases differs from that observed in

foetal brain and during hibernation and may result in some toxic

effects [1]. In support, overexpression of wild-type human tau in

mouse neurons leads to some tau and impairment of axonal

transport, in the absence of tau filament formation and significant

neurodegeneration [28–30]. Aggregation of tau, in contrast, is

likely to cause more extensive toxicity [1]. This is consistent with

our finding that axonal transport was not impaired in 1 month old

transgenic mice (Figure 4E, F), where less soluble tau was stained

by the AT8 phosphorylation dependent anti-tau antibody in the

RGC axons [17]. Impairment of axonal transport may result from

the space-occupying nature of tau aggregates. In addition, more

specific mechanisms may also be at work. We have previously

shown that in the mouse line transgenic for human mutant P301S

tau the dynactin complex is redistributed and exhibits a reduced

interaction with microtubules [11]. It has also been reported that

filamentous tau inhibits anterograde axonal transport by activating

protein phosphatase 1 and glycogen synthase kinase-3, following

increased exposure of amino acids 2–18 of tau, which comprise a

phosphatase-activating domain [31,32].

Reduced axonal transport may contribute to neurodegeneration

by putting nerve cells under stress, limiting their ability to

withstand injury. Thus, a mild excitotoxic insult, which kills fewer

than 20% of RGCs in 3–5 month old control mice, killed 40–50%

of RGCs in age-matched human P301S tau mice. Hyperexcit-

ability of vulnerable nerve cells has been described as an early

change along the path to neurodegeneration in many experimen-

tal animal models [33]. When survival was uncoupled from

retrograde neurotrophic support by culturing dissociated RGCs in

vitro (see Results for data values), or when axonal transport was not

differentially affected (as in 1 month old animals; Figure 6E),

excitotoxic injury equally affected the survival of wild-type and

transgenic RGCs.

Impairment of axonal transport may be particularly deleterious

for neurons such as RGCs, which rely heavily on retrograde

trophic support. Interruption of retrograde axonal transport of

target-derived BDNF and its receptor TrkB has been shown to

contribute to the loss of RGCs in glaucoma [13,14]. Pathological

tau species have been detected in glaucoma [34], raising the

possibility that dysfunction of tau may also be relevant in this

disease.
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