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We propose a new algorithm to predict the outcome of direct-current electric (DCE) cardioversion for atrial fibrillation (AF)
patients. AF is the most common cardiac arrhythmia and DCE cardioversion is a noninvasive treatment to end AF and return
the patient to sinus rhythm (SR). Unfortunately, there is a high risk of AF recurrence in persistent AF patients; hence clinically it is
important to predict the DCE outcome in order to avoid the procedure’s side effects. This study develops a feature extraction and
classification framework to predict AF recurrence patients from the underlying structure of atrial activity (AA). A multiresolution
signal decomposition technique, based on matching pursuit (MP), was used to project the AA over a dictionary of wavelets. Seven
novel features were derived from the decompositions and were employed in a quadratic discrimination analysis classification to
predict the success of post-DCE cardioversion in 40 patients with persistent AF.The proposed algorithm achieved 100% sensitivity
and 95% specificity, indicating that the proposed computational approach captures detailed structural information about the
underlying AA and could provide reliable information for effective management of AF.

1. Introduction

Atrial fibrillation (AF), the most common abnormal rhythm
of the heart, is associated with significant morbidity and
mortality and increases the risk of heart failure and stroke
[1]. AF is the disorganized propagation of electrical activity in
the atrium that prevents organized contractions. As a result,
the atrial depolarization wavefront, the P-wave, measured
during sinus rhythm (SR) devolves into a series of fibrillatory
waves in the surface electrocardiogram (ECG). AF is known
to be progressive in nature [2, 3]. The disease tends to
worsen over time and the resistance to therapy increases.
Paroxysmal AF is defined by self-terminating AF episodes
that last no longer than seven days. Persistent AF is defined by
AF episodes which lasts longer than seven days and typically
requires medical intervention to be terminated. Lastly, if AF
is sustained for over a year and all attempts to eliminate AF
fail, the AF is defined as Permanent AF. Given the progressive
nature of AF and potential risks of different AF therapies, it

is critical to identify if a given therapy is effective. This could
provide invaluable information for effective management of
AF.

There are a variety of treatment options for AF, includ-
ing both pharmacological and electrical cardioversion and
also surgical methods. Direct-current electric (DCE) car-
dioversion is one noninvasive treatment for AF that applies
controlled transthoracic electrical shocks synchronized to
the R-wave of the patient [1] in order to end AF and
return the patient to SR. The DCE cardioversion treatment
may be either immediately unsuccessful or there may be
a recurrence of AF in the following months, which means
that AF cannot be terminated using the DCE cardioversion
therapy. It was reported that this procedure is successful
in around 80–100% of the patients; however, only 20–40%
maintain SR within one year after the therapy [4]. Hence, a
reliable test that could accurately predict the likelihood of SR
maintenance after DCE cardioversion is important in order
to weigh the benefits versus potential risks such as postshock
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Table 1: Clinical characteristics of the study population with respect to rhythm at follow-up.

Variable AF-Free AF-Relapse 𝑃 value
Age 68 ± 7 69 ± 7 N.S.
Male 16 17 N.S.
AF duration 128 ± 94 210 ± 94 N.S.
Other heart diseases

Hypertension 6 7 N.S.
Ischemic heart disease 5 2 N.S.
Congestive heart failure 1 6 0.002
Valvular disease 1 3 0.04
Left atrial diameter 49 ± 6 51 ± 6 N.S.

Cardioactive drugs
𝛽-blocker 12 11 N.S.
Sotalol 3 3 N.S.
Class III antiarrhythmic agent 1 1 N.S.
Digitalis 2 7 0.05
Calcium channel blocker 3 5 N.S.

bradycardia, malignant ventricular arrhythmias, and atrial
thromboembolism [5].Therefore, the objective of the present
work is to develop a novel computational approach to analyze
the electrocardiogram of AF patients before application of
DCE cardioversion and predict the success of the therapy.
Such a predictor could provide an important computer-aided
clinical decision support system for therapy management of
AF patients.

Over the past decade, several studies have attempted
clinical and electrophysiological parameters to predict SR
maintenance after DCE cardioversion of AF [6–11]. A central
notion in AF therapy management is that irregularity of
fibrillatory wave signals reflects the severity of the disease in
an individual.Thus, several studies measured organization of
atrial activity (AA) from the surface ECG as a measure of SR
maintenance. Some of these algorithms include fibrillatory
rate [6, 12, 13], harmonic decay [6], and entropy [14, 15].
However, none of the existing methods has been used in the
routine clinical AF therapy management [16]. In the present
study, we investigate AF organization beyond what has been
performed in literature so far. Our method studies both the
morphology and frequency of the fibrillatory waves during
AF in an attempt to provide a strong and yet meaningful
predictor for sinus rhythm maintenance after electric car-
dioversion. We apply a signal decomposition technique to
examine the structure of AA at different decomposition levels
for the purpose of prediction of the outcome of the DCE
cardioversion in persistent AF.

A preprocessing technique is applied to extract the AA
from the ECG. The matching pursuit (MP) technique [17] is
used to decompose the AA signal into multiresolution time-
frequency (TF) decompositions. The MP decomposition
consists of a combination of wavelet atoms with two wavelet
types (i.e., Coiflet1 and Symlet2) and 6 scales (𝑆

0
to 𝑆
5
). We

investigate the type and scale of the wavelet types and scales
that most accurately capture the structural changes relevant
to SR maintenance and propose seven new MP features.
Using a quadratic discriminant analysis (QDA) classification

technique and leave-one-out cross validation, we evaluate
the developed MP features on a database containing ECG
from persistent patients who underwent DCE cardioversion.
Details of the algorithm are outlined in Section 2; a validation
of the features against clinical data and discussion is provided
in Section 3. The paper is concluded in Section 4.

2. Methods

The proposed method consists of three stages: (i) prepro-
cessing of the ECG signal, (ii) feature extraction, and (iii)
classification and validation of the extracted features against
clinical outcome. Figure 1 depicts the overall outline of the
proposed method.

2.1. ECG Database. The ECG data [18] was obtained from
40 persistent AF patients who had a successful external DCE
cardioversion therapy. The study was approved by the local
ethics committee of the enrolling organization and complied
with the Declaration of Helsinki. Prior to cardioversion, a
10-minute 12-lead ECG (𝑓

𝑠
= 1 kHz) was recorded for each

patient. Twenty patients hadmaintained SR (AF-Free) after 2-
week follow-up and 20 had a relapse of AF (AF-Relapse).The
clinical characteristics of the patients, including medication
and AF history, are given in Table 1. The proposed analysis
was based on a single lead. Hence, we selected LeadV1, which
has shown to provide the best atrial signal [19].The proposed
algorithm was applied on a 10-second long ECG signal,
which was selected from the 10-minute ECG as explained in
Section 2.2.

2.2. Preprocessing. The preprocessing stage is performed in
three steps as follows.

Noise and Baseline Wander Removal. A bandpass filter with
cutoff frequencies of 0.01Hz and 50Hz was used to remove
the noise and baseline fluctuations in the ECG [20].
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Figure 1: Overall outline of the study. Standard supervised learning approach is applied consisting of a feature extraction step followed by a
classification step. Leave-one-out cross validation is used to evaluate the predictive power of our technique.

Segment Selection. Following the baseline removal step, the
segments with a consistent QRST morphology are identified.
In case of AF, it is common that the ECG contains more
than one QRST morphology, which can increase the QRST
residuals in the atrial activity extraction step and dilute the
quality of AA for the further analysis. Hence in this step
we identify the ECG segments that include steady QRST
complexes. First, R-wave fiducial markers are placed at points
of maximum absolute derivative on the QRST complexes.
We construct a QRST template by averaging all of the QRST
complexes in the ECG. We then compute the correlation
between the QRST template and each beat and identify the
segments with more than 90% correlation coefficient.

Atrial Activity Extraction. Several techniques have been used
to cancel the QRST complexes and obtain the AA from the
ECG [21, 22]. In this study, we employ the average beat
subtraction method [23] which has been widely used in
the literature. Using the QRST template that was computed
in the previous step, at each fiducial marker, we fit the
QRST template to the ECG and obtain the estimated QRST
template from the ECG. Then, we subtract the estimated
QRST template from the ECG to obtain the estimated AA
signal.We evaluate the QRST removal by computing kurtosis
as a measure of the AA estimation quality [24]. Finally, for
each recordwe select a 10-second long excerpt with the lowest
kurtosis. Figure 2 illustrates the selected segment for one of
the records.

2.3. Feature Extraction. MP decomposition is applied to the
extracted AA signal and the MP features are extracted from
the MP expansion coefficients.

Matching Pursuit Decomposition. MP is an iterative signal
decomposition technique that expresses a signal 𝑥(𝑡) as a lin-
ear combination of functions selected from an overcomplete
dictionary of TF basis functions [17]. The algorithm has been
successful in creating high-resolution TF representations of
biomedical signals [25–27]. In this study, we apply the MP
algorithm to the AA signal obtained from the preprocessing
step. Consider

𝑥 (𝑡) =

𝑀

∑

𝑚=1

𝑏
𝑚
𝐴
(𝑊
𝑚
,𝑆
𝑚
,𝑇
𝑀
)
(𝑡) + 𝑅

𝑀

𝑥
. (1)

In (1), 𝑥(𝑡) represents AA signal and 𝐴
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𝑚
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𝑚
,𝑇
𝑀
)
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Figure 2: Illustrative example of an ECG waveform, the estimated
QRST complex, and the extracted AA signal with kortusis values of
10, 13, and −0.45, respectively.
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is the residue of 𝑥(𝑡) after𝑀 iterations.
In (1), the AA signal 𝑥(𝑡) is projected onto an overcomplete
dictionary of TF functions with a combination of different
wavelet types and scales. At each iteration, the best correlated
TF function is selected from the overcomplete dictionary by
finding the maximum inner product of the current residue
with each of the atoms in the dictionary (|⟨𝑅𝑀

𝑥
, 𝐴
(𝑊
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,𝑆
𝑚
,𝑇
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⟩|).

In the next iteration the residue is decomposed according
to the same rules. After 𝑀 iterations, the AA signal 𝑥(𝑡) is
expressed in the form of (1) where the first term on the right-
hand side represents the decomposition of the original signal
by the selected TF functions, and the second term is the
residue at iteration𝑀. For𝑀 large enough, it can be observed
that the residue in (1) becomes negligibly small.

There are three ways of stopping the iterative process
of MP. The iterations may proceed until the energy of
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Figure 3: (a) Plots showing the behavior of the MP coefficients as a function of iteration number. This representation was used to find an
appropriate number of iterations in our MP analysis.𝑀 was set equal to the average number of iterations required for the coefficients to
reach less than 5% of their initial value. (b) The 𝑃 values represent the statistical significance of the normalized expansion coefficient at each
iteration. The vertical dashed lines mark the significance thresholds of 0.05, 0.01, and 0.005.

the residue is less than a threshold, the value of the most
recent expansion coefficient is less than a threshold, or the
number of iterations reaches a preassigned maximum. In
this study, we used a combination of the last two stopping
methods and determined a fixed iteration number based on
the average number of iterations required for the expansion
coefficients to reach less than 5% of their initial value. Based
on this analysis, we found that after𝑀= 1,000 iterations, there
is a negligible change in the expansion coefficients. Hence,
we used 𝑀 = 1,000 as the fixed stopping criterion. A plot
of the expansion coefficients for an AF-Free and AF-Relapse
example is shown in Figure 3(a).

MP Dictionary. Two different wavelet types at six different
scales (𝑆

0
to 𝑆
5
) are used in this study: Coiflet1 (Coif1)

and Symlet2 (Sym2). We build a MP dictionary by pairing
the two types of wavelets (i.e., 𝑊

1
and 𝑊

2
). Then the MP

decomposition projects each AA signal over the combined
MP dictionary. We depict an example of AF-Free and AF-
Relapse signal along with the signal decompositions in
Figures 4(a) and 4(b), respectively. The plots on the left-
hand side show the reconstructed signals by combining the
components corresponding to Coif1 𝑆

0
and the right-hand

side plots show the sum of the reconstructed signals related
to MPFCoif1,𝑆

3

, MPFCoif1,𝑆
4

, MPFSym2,𝑆
3

, and MPFSym2,𝑆
4

.

MP Features. We performed the MP on each AA signal
and obtained the decomposed wavelets and scales given by
𝐴
𝑊
𝑚
,𝑆
𝑚
,𝑇
𝑚

, 𝑚 = 1, . . . ,𝑀. Thirteen MP features are extracted
for each patient as explained in this section. However, only
seven of these features contained a significant differentiation
between the AF-Relapse and AF-Free data and were used in
the final decision making algorithm.

The first MP feature was based on the expansion coeffi-
cient at𝑀 = 1,000 iterations. As can be seen in Figure 3(a),
we realized that AF-Free cases present a faster decay rate
compared to AF-Relapse cases. Such a behavior was expected

as it can be hypothesized that the AF-Free cases present a
more organized AA and are decomposed faster by the MP
wavelets [28]. The AA signals from the AF-Relapse data
containmore disorganized and incoherent structure and have
a slower decay rate. Thus, we use the normalized expansion
coefficient (i.e., MPFResidue = 𝑏𝑀/𝑏1) at 𝑀 = 1,000 iteration
as the MP feature representing the decomposition decay rate.
The logarithm of the normalized coefficient expansion is
taken to further spread out the data points. We performed
an exploratory statistical test to investigate if the expansion
coefficient at a smaller number of iterations (i.e., 𝑏

𝑚
/𝑏
1
, where

𝑚 < 𝑀) was a more appropriate choice for the quantification
of AA organization. Using the Mann-Whitney 𝑈 test, we
calculated the𝑃 value of the normalized coefficient expansion
for 𝑚 = 1 to 𝑚 = 1,000. As can be seen in Figure 3(b),
the 𝑃 value decreases as the iteration number increases. Any
normalized expansion coefficient (𝑏

𝑚
/𝑏
1
) with 𝑚 > 851 can

achieve a significant 𝑃 value of <0.005.
The other twelve MP features are extracted based on the

decomposition results as follows. We build two matrices for
each wavelet type (𝑊

1
and𝑊

2
) in a given dictionary:𝑂

𝑊
1

and
𝑂
𝑊
2

. These matrices which are called the occupancymatrices
are constructed as follows:

𝑂
𝑊
1

(𝑖, 𝑗) =

{

{

{

1 if 𝑊
𝑚
= 𝑊
1

0 o.w.,

𝑂
𝑊
2

(𝑖, 𝑗) =

{

{

{

1 if 𝑊
𝑚
= 𝑊
2

0 o.w.,

for 𝑚 = 1, . . . ,𝑀,

(2)

where𝑊
𝑚
represents the wavelet type with scale and tempo-

ral location of 𝑆
𝑚
and 𝑇

𝑚
, respectively, 𝑖 = {0, . . . , 5} is the

sacle value of 𝑆
𝑚
, and 𝑗 corresponds to the temporal location

𝑇
𝑚
. A graphical representation of this process is shown in
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Figure 4: The reconstructed signals by MPFCoif1,𝑆
0

and the combined reconstructed signals by MPFCoif1,𝑆
3

, MPFCoif1,𝑆
4

, MPFSym2,𝑆
3

, and
MPFSym2,𝑆

4

are displayed for an AF-Free (a) and AF-Relapse (b) case.

Figures 5 and 6 where two occupancy matrices of 𝑂
𝑊
1

and
𝑂
𝑊
2

are plotted for an example of AF-Free and an example
of AF-Relapse, respectively. The plots display the analysis
results of only 0.5 seconds of the AA data for visualization
purposes.Thefirst six rows show the probability of occupancy
for Coif1 wavelets for scales 𝑆

0
to 𝑆
5
, and the next six rows

show this information for the Sym2wavelets. In this plot, each
black circle implies the presence of a decomposition at the
given time and scale. Twelve features are extracted from each
dictionary by summing over time as follows:

MPF
𝑊
1,𝑆
𝑖

= ∑

𝑗

𝑂
𝑊
1

(𝑖, 𝑗) ,

MPF
𝑊
2,𝑆
𝑖

= ∑

𝑗

𝑂
𝑊
2

(𝑖, 𝑗) ,

for 𝑖 = 0, . . . , 5.

(3)

In (3), we obtain the features as the total presence of a given
wavelet type and scale in an AA signal.

MP Feature Selection. The MP features proposed in this
study were evaluated using an exploratory statistical analysis.
The purpose was to ensure that any subsequent learning
technique we applied to the data would not be burdened by

many irrelevant degrees of freedom. Thirteen MP features
are extracted for each AA signal. We select the MP features
that show a statistically significant correlation with the
success of electric cardioversion. The statistical significance
is determined for each MP feature using the Mann-Whitney
𝑈 test, which is a nonparametric method for cases where the
probability distribution of the data is not normal. This test
is used in this study, because the MP features do not exhibit
a Gaussian probability distribution. The Mann-Whitney 𝑈
test results showed a statistical significance for only seven
MP features. The values of these significant features are
presented in Figure 7. The logarithm of the decay MP
feature was taken to further spread out the data points.
Because this feature had a different range than the other six
features, it was shown in a separate plot. A total of seven
MP features that are selected here are used in the classifica-
tion stage: {MPFCoif1,𝑆

0

,MPFCoif1,𝑆
3

,MPFCoif1,𝑆
4

,MPFSym2,𝑆
2

,
MPFSym2,𝑆

3

,MPFSym2,𝑆
4

,MPFResidue}.

2.4. Classification. A label of “0” or “1” corresponding to
the AF-Free and AF-Relapse cases, respectively, was attached
to each of the feature vectors derived from all of the AA
signals. The learning algorithm chosen for this study uses
the quadratic discriminant analysis (QDA) which separates
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the AF-Relapse and AF-Free feature vectors by a quadratic
surface. To evaluate the classification performance, we used
a leave-one-out cross validation procedure where the data
of one patient was withheld in each trial. Hence, the clas-
sification procedure is repeated in 40 trials corresponding
to each of the patients and the training sets consist of the
feature vectors from the entire database with the exception
of the single patient withheld. The feature vectors from
the patient under study are the test data. At every trial,
the posterior probabilities of the left-out data correspond-
ing to the AF-Free and AF-Relapse classes are recorded.
A final receiver operating curve (ROC) is obtained using

the collected posterior probabilities after all the 40 trials are
completed.

3. Results

The proposed feature extraction and classification algorithm
was applied to the dataset described in Section 2.1. The ROC
of the QDA and leave-one-out cross validation is shown in
Figure 8. According to this analysis, area under the curve
(AUC) is 0.97, which is slightly higher than AUC of the
linear discriminant analysis (LDA) method, which is 0.94.
The best sensitivity and specificity values are 100% (20 out
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of 20) and 95% (19 out of 20), respectively. Except one case
in the AF-Free class, all the data are perfectly classified using
the novel features that are proposed in this paper.

3.1. Noise and QRST Residual. The preprocessing for the
extraction of the AA signal is based on the average beat
subtraction where the segments with a single morphology
and the least QRST residuals are selected for the further
analysis. It is common amongAF patients that the ECG signal
contains more than a single QRST morphology, which can

result in extensive amount of QRST residue in the estimated
AA signal. Another common problem is the changes in the
QRST due to respiration and mismatches in the alignment
of the QRST template with each QRST complex. In order
to avoid computational artifact in the AA signal, we employ
a correlation-based analysis to only consider the data with
insignificant variability in the QRST complex. In our dataset,
only 4 records consisted of a single morphology (i.e., no
beat with the correlation of less than 90% with the QRST
template). The remaining records had 32 ± 30 (8.5% ± 7.6%)
beats that showed a correlation coefficient of less than 90%
with the QRST template. In total, 4.6 ± 2.0 ECG segments
(66 ± 42 seconds long) were selected for the AA extraction.
Kurtosis was computed for each segment and the 10-second
long ECG that showed the least kurtosis value was selected
from each record. The average kurtosis value for the selected
segments was−0.80±1.01.We repeated the feature extraction
and classification algorithm on randomly selected segments
from each record (i.e., there was no constraint on the QRST
correlation and kurtosis). The performance of the algorithm
significantly dropped, which implies that selecting the noise
and artifact-free segments is essential for the successful
analysis of AA signals.

3.2. Relationship ofWavelet Type andCardioversionOutcomes.
Several observations can bemade from the statistical analysis
performed to select the significant MP features. Scale 0
(𝑆
0
) of the Coiflet1 wavelet and Scale 2 (𝑆

2
) of the Symlet2

wavelet model (i.e., decompose) the activations in the AF-
Free signals. This behavior can be seen in Figure 7 which
shows the elevated activities ofMPFCoif1,𝑆

0

andMPFSym2,𝑆
2

for
theAF-Free data compared to theAF-Relapse data. It can also
be observed from the right-hand side plots in Figure 4 that
the AF-Relapse signal contains more elevated activations in
the higher scales (i.e., 𝑆

3
and 𝑆

4
) compared to the AF-Free

signal. This can also be seen in Figure 7 where AF-Relapse
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Table 2: Comparison of signal processing methods.

Method Study size Significance Sensitivity Specificity
P-wave duration 1997 [10] 35 0.001 73% 71%
Heart rate variability 2001 [29] 93 — 76% 90%
Fibrillatory rate 2003 [30] 44 0.021 — —
Clustering of RR intervals 2004 [31] 66 0.034 — —
P-wave duration 2005 [32] 118 0.0001 72% 77%
P-wave duration 2006 [8] 122493 0.02 90% 21%
Fibrillatory rate 2006 [13] 175 0.0001 79% 80%
Fibrillatory rate 2006 [6] 54 0.002 — —
Harmonic decay 2006 [6] 54 0.0004 92% 47%
Sample entropy 2011 [14] 66 0.02 — —
Wavelet transform 2007 [33] 30 — 100% 89%
P-wave dispersion 2011 [9] 26 0.001 86% 95%
Wavelet sample entropy 2008 [34] 40 — 95% 93%
Proposed MP-based method 2014 40 0.005 100% 95%

data presents a higher activity at MPFCoif1,𝑆
3

, MPFCoif1,𝑆
4

,
MPFSym2,𝑆

3

, andMPFSym2,𝑆
4

. In addition, comparing Figures 5
and 6 one can see that the occupancy matrix and distribution
of the AF-Free signal are more concentrated at the lower
scales while the AF-Relapse signal demonstrates a wider
distribution. Hence, our observation is aligned with the liter-
ature [2, 35, 36] supporting that worsening AF is associated
with a more disorganized atrial signal in the surface ECG.
Our analysis suggests that the elevated activation of the
higher scale wavelets in theAF-Relapse casesmay be used as a
predictor of disorganization and disturbances in AA signals.

3.3. ComparisonwithOther Related Studies forAFProgression.
Table 2 lists results from a variety of previous studies pro-
posed for the successful prediction ofDCE cardioversion. It is
worth mentioning that the results in this table were obtained
using different datasets and the patient population used is
important in explaining the differences among different stud-
ies. However, one may conclude that the proposed method
provides a comparable if not better predictive capability
compared to the other algorithms.

We assessed the performance of the atrial frequency rate
(AFR) on our dataset as an important surface ECG statistic
obtained during fibrillation. Previous studies, such as [13],
show that AFR is correlated with endocardial measurements
of cycle length. Moreover, as a measure of AA organization,
AFR is significantly associated with risk of recurrence after
therapy. Elevated AFR is generally understood to indicate a
worsening of AF, perhaps associated with the progression of
the disease via electrical remodeling [37].We applied theAFR
method to our dataset and found that the AFR was elevated
in patients who had a recurrence of AF at follow-up (𝑃 =
0.012) and resulted in 58% and 75% sensitivity and specificity.
Therefore, our analysis supported the significance of AFR
in predicting the successful DCE cardioversion; however,
as it is evident from these results we need to combine the
AFR with some additional features in order to provide a
successful aggregate score. For example, in Figure 4 the AFR

did not find a significant difference between the AF-Free and
AF-Relapse signals with the calculated AFR of 6.5Hz and
6.4Hz, respectively; however, the proposed multiresolution-
based technique successfully differentiated the two cases.
This result may be explained by the difference between the
structures of the two methods. The proposed technique
provides a distribution of the organization at different time
and frequency scales while AFR is bounded by the time
and frequency resolution of the Fourier Transform and can
only provide the information about the overall frequency
content over a given length of the signal. The performance
of the proposed algorithm indicates that both the wavelet
type and scale are important in predicting the successful
postcardioversion patients. However, a larger population is
required to further assess the success of the proposed MP-
based analysis in a future study.

4. Conclusion

In this study, we proposed a novel analysis for the structure of
the atrial activity to predict the success of DCE cardioversion
AF therapy after 1 month following the therapy. We devel-
oped novel features from MP decomposition, performed a
statistical evaluation, and selected 7 significant MP features.
The extracted MP features were used in a quadratic dis-
criminant analysis-based classification to predict the out-
come of DCE cardioversion in our database. A leave-one-
out evaluation demonstrated that our proposed algorithm
provides a promising noninvasive indicator of the outcome
with 100% and 95% sensitivity and specificity, respectively.
Given the significant outcome, it may be concluded that
our multiresolution-based signal decomposition technique
yields novel insights into organization of the atrial activations
that could improve the prediction of the successful post-
cardioversion patients. Further studies on wider databases
could determine the reliability of the proposed computa-
tional approach as a new computer-aided clinical decision
support system that could successfully predict the outcome of
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DCE cardioversion and may potentially guide the care of AF
patients.
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