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In this paper we solve the field equations for Scale covariant theory of gravitation which was introduced by 
Caunato et al. [1], for Bianchi V line element in the presence of perfect fluid medium. Here the deceleration 
parameter is considered to be time dependent which gives the average scale factor 𝑎(𝑡) = [sinh(𝛽𝑡)]1∕𝑛, where 𝑛 and 
𝛽 are positive constants. This value of average scale factor is the key expression for solving the field equations. 
Using the recent observational value of 𝑞0 = −0.52+0.08−0.04 and 𝐻0 = 69.2 ± 1.2 derived from BAO/CMB and H(z) 
data by Santos et al. (2016) [46], we have evaluated three different pairs of (𝑛, 𝛽). We observe that the model 
represents a phase transition from early deceleration to a present accelerating phase for a particular choice of the 
pair (𝑛 = 2, 𝛽 = 92.75). Applying some recently developed diagnostic tools like jerk parameter and statefinders, 
we find that the derived model is exactly in accordance with standard ΛCDM model. Along with these, many 
physical, geometric and kinematic properties of the model are thoroughly studied and found consistent with 
recent observations.
1. Introduction

Canuto et al. [1, 2] in the year 1977, proposed the Scale covariant 
scalar tensor theory of gravitation. This is one of the finest gener-

alizations of Einstein general theory of gravitation. In the quest for 
generalizing the general theory of relativity by Einstein, there are vari-

ous approaches. A scalar gravitational field and non-gravitational field 
generate the metric in any scalar tensor theories. In a curved space-

time the non gravitational field generates the scalar gravitational field 
through a wave equation. Scalar tensor theories have greater impor-

tance nowadays as it solve the problem of dark matter or the missing 
matter and several other problems which are hardly resolved by General 
Relativity theory [3, 4, 5, 6, 7, 8, 9, 10, 11]. The distinguish feature of 
Scale covariant theory is that the gravitational units are applied on Field 
equations and atomic units are used to measure physical quantities. For 
this to become possible a conformal transformation 𝑔𝑖𝑗 = 𝜙2(𝑥𝑘)𝑔𝑖𝑗 is 
used. Under this transformation, there is correspondence between the 
line element ̄𝑑𝑠2 = 𝑔𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 in gravitational units and 𝑑𝑠 = 𝜙−1(𝑥)𝑑�̄� in 
atomic units (Here quantities with bar denote gravitational units and 
without bar denotes atomic units). The field equations in Scale co-

variant theory are invariant under scale transformations. Also, in this 
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theory, the variation of the gravitational constant 𝐺 is interpreted nat-

urally [12, 13].

In Scale-covariant theory, the gauge function 𝜙 in its most general for-

mulation may be assumed a function of all space-time coordinates, but 
in most of the studies and in our study also, it is assumed as a function 
of time only.

During the last twenty years, the study of cosmology has been 
revolutionized due to observed astronomical phenomena. These ob-

servations indicate two important features of the universe. They are, 
(i) anisotropy at the early stage and (ii) accelerated expansion at the 
present epoch. The SNe Ia measurements [14, 15, 16, 17, 18, 19, 20, 
21, 22, 23] provide an evidence not only for accelerating expansion of 
the universe at present, but also for the phase transition from past decel-

eration to present acceleration. The High-Z Supernova Search (HZSNS) 
also indicates the transition redshift 𝑧𝑡 = 0.46 ± 0.13 at (1, 𝜎) c.l. [24]

which has been modified to 𝑧𝑡 = 0.43 ± 0.07 at (1, 𝜎) c.l. [25]. From Su-

pernova Legacy Survey (SNLS) [26] and Davis et al. [27], the transition 
redshift 𝑧𝑡 ≈ 0.6((1, 𝜎)). So, the Deceleration Parameter (DP), which is 
the measure of the rate of expansion may not be a constant, but time 
dependent. In fact, it must show a signature flipping from positive to 
negative [15, 28, 29].
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The Scale covariant theory in different contexts have been studied 
by many researchers [30, 31, 32, 33, 34, 35] from time to time.

2. Basic equations

In Scale covariant theory, the field equations are written as follows:

𝑅𝑖𝑗 −
1
2
𝑔𝑖𝑗𝑅+ 𝑓𝑖𝑗 (𝜙) = −8𝜋𝐺𝑇𝑖𝑗 +Λ(𝜙)𝑔𝑖𝑗 (1)

𝜙2𝑓;𝑖𝑗 = 2𝜙𝜙;𝑖𝑗 − 4𝜙,𝑖𝜙,𝑗 − 𝑔𝑖𝑗 (𝜙𝜙
;𝑖
;𝑖 −𝜙,𝑖𝜙,𝑖). (2)

Here all the terms have their usual meaning. The space-time metric in 
Bianchi V is given by

𝑑𝑠2 = 𝑑𝑡2 − 𝑎1
2𝑑𝑥2 − 𝑒2𝑚𝑥[𝑎22𝑑𝑦2 + 𝑎3

2𝑑𝑧2] (3)

where 𝑎1, 𝑎2, 𝑎3 are time dependent and 𝑚 is taken as an arbitrary 
constant. The expression for an energy momentum tensor 𝑇𝑖𝑗 in perfect 
fluid medium is given by

𝑇𝑖𝑗 = (𝜌+ 𝑝)𝑢𝑖𝑢𝑗 − 𝑝𝑔𝑖𝑗 (4)

where 𝜌, 𝑝 and 𝑢𝑖 are energy-density, the pressure and four dimensional 
velocity vector respectively. This velocity vector follows the relation 
𝑢𝑖𝑢𝑗 = 1. The following non linear differential equations can be obtained 
by translation above equations together as follows:
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2
𝑎1
𝑎1

−
𝑎2
𝑎2

−
𝑎3
𝑎3

= 0. (9)

The continuity equation 𝑇 𝑖
𝑗;𝑖𝑢

𝑗 = 0 reads,

�̇�+ (𝜌+ 𝑝) �̇�
𝑉

+ 𝜌

(
�̇�

𝜙
+ �̇�

𝐺

)
+ 3𝑝 �̇�

𝜙
= 0. (10)

From Eq. (9), we have

𝑎1
2 = 𝑎2𝑎3. (11)

The following set of equations can be obtained by combining the 
above equations (5), (6), (7) and (8) by following the approach of dif-

ferent researchers [36, 37, 38, 39, 40, 41].

𝑎2
𝑎1

= 𝑘1 exp
(
𝓁1 ∫

𝑑𝑡

𝑎3𝜙2

)
(12)

𝑎3
𝑎2

= 𝑘2 exp
(
𝓁2 ∫

𝑑𝑡

𝑎3𝜙2

)
(13)

𝑎3
𝑎1

= 𝑘3 exp
(
𝓁3 ∫

𝑑𝑡

𝑎3𝜙2

)
(14)

where 𝑎𝑘1, 𝑘2, 𝑘3 and 𝓁1, 𝓁2, 𝓁3 are constants. With further calculations, 
the quadrature solution of the metric functions 𝑎1, 𝑎2 and 𝑎3 are given 
as follows:

𝑎1(𝑡) = 𝑐1𝑎 exp
(
𝑀1 ∫

𝑑𝑡

𝑎3𝜙2

)
(15)

𝑎2(𝑡) = 𝑐2𝑎 exp
(
𝑀2 ∫

𝑑𝑡

𝑎3𝜙2

)
(16)

𝑎3(𝑡) = 𝑐3𝑎 exp
(
𝑀3 ∫

𝑑𝑡
3 2

)
(17)
𝑎 𝜙

2

with 𝑐1 = 3
√

(𝑘21𝑘2)
−1, 𝑐2 = 3

√
𝑘1𝑘

−1
2 , 𝑐3 = 3

√
𝑘1𝑘

2
2 and 𝑀1 = − 1

3 (2𝓁1 + 𝓁2), 
𝑀2 = − 1

3 (𝓁2 − 𝓁1), 𝑀3 =
1
3 (𝓁1 + 𝓁2).

Also, we have

𝑀1 +𝑀2 +𝑀3 = 0 and 𝑐1𝑐2𝑐3 = 1. (18)

Substituting equation (11) into equations (12), (13) and (14), we have 
𝑀1 = 0, 𝑀2 = −𝑀3 = ℎ (say) and 𝑐1 = 1, 𝑐2 = 𝑐−13 = 𝑑 (say). Substituting 
these results into equations (15), (16) and (17), we obtain

𝑎1(𝑡) = 𝑎 (19)

𝑎2(𝑡) = 𝑑.𝑎. exp
(
ℎ∫

𝑑𝑡

𝑎3𝜙2

)
(20)

𝑎3(𝑡) =
1
𝑑
.𝑎. exp

(
−ℎ∫

𝑑𝑡

𝑎3𝜙2

)
. (21)

In view of the line element equation (3), the important parameters 
such as Volume 𝑉 , Average scale factor 𝑎, Expansion scalar 𝜃, Shear 
scalar 𝜎2, and Hubble parameter 𝐻 can be written as follows:

𝑉 = 𝑎1𝑎2𝑎3 (22)

𝑎 = (𝑎1𝑎2𝑎3)1∕3 (23)

𝜃 = 𝑢𝜇;𝜇 =
𝑎1
𝑎1

+
𝑎2
𝑎2

+
𝑎3
𝑎3

(24)

𝜎2 = 1
2
𝜎𝜇𝜈𝜎

𝜇𝜈 = 1
2

[(
𝑎1
𝑎1

)2
+
(
𝑎3
𝑎2

)2
+
(
𝑎3
𝑎3

)2
]
− 𝜃2

6
(25)

𝐻 = �̇�

𝑎
= 1

3
(
𝐻1 +𝐻2 +𝐻3

)
. (26)

The anisotropy parameter is given by the following relationship as:

𝐴𝑚 = 1
3

3∑
𝑖=1

(
Δ𝐻𝑖

𝐻

)2
(27)

where Δ𝐻𝑖 =𝐻𝑖 −𝐻 , (𝑖 = 1, 2, 3).
Using equations (5), (6), (7) and (8), the expressions for 𝜌 and 𝑝 can be 
obtained as,

8𝜋𝐺𝜌 = 3𝐻2 − 𝜎2 − 3𝑚2

𝑎1
2 − �̈�

𝜙
+ 3

(
�̇�

𝜙

)2
+ 3𝐻 �̇�

𝜙
(28)

8𝜋𝐺𝑝 =𝐻2(2𝑞 − 1) − 𝜎2 + 𝑚2

𝑎1
2 − �̈�

𝜙
+
(
�̇�

𝜙

)2
−𝐻

�̇�

𝜙
. (29)

3. Exact solutions of the field equations and other calculations

In the above section, the quadrature solutions for scale factors 𝐴, 𝐵
and 𝐶 are obtained with average scale factor 𝑎 and gauge function 𝜙 as 
unknown integrand. To find the exact solutions we need the appropriate 
expressions for these terms.

As discussed earlier, the universe is undergoing an accelerated ex-

pansion which was decelerating in past. So, we can not accept a con-

stant DP. The DP 𝑞 is defined as:

𝑞 = −𝑎�̈�
�̇�2
. (30)

The above equation (30) can be transformed to

�̈�

𝑎
+ 𝑞

�̇�2

𝑎2
= 0. (31)

As the average scale factor 𝑎 is time dependent and if we assume that 
there is one to one correspondence between 𝑡 and 𝑎, we can further 
assume the following relationship

𝑞 = 𝑞(𝑡) = 𝑞(𝑎(𝑡)). (32)

As 𝑡 and 𝑎 are increasing function, there is possibility of cosmological 
bounce or turnaround. The above idea is valid if there is no such cosmo-

logical bounce or turnaround. From equations (31) and (32), we obtain
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∫ 𝑒
∫ 𝑞

𝑎
𝑑𝑎
𝑑𝑎 = 𝑡+ 𝑞0 (33)

where 𝑞0 is an integrating constant. Without any loss of generality, we 
choose ∫ 𝑞

𝑎
𝑑𝑎 in the following manner so that the above equation (33)

can be integrable,

∫
𝑞

𝑎
𝑑𝑎= ln𝑓 (𝑎). (34)

The above equation doesn’t violate the nature of generality of solutions. 
Hence from equations (33) and (34), we get

∫ 𝑓 (𝑎)𝑑𝑎 = 𝑡+ 𝑞0. (35)

For the physically viable solution to be consistent with observations, we 
assume 𝑓 (𝑎) in the above equation as follows:

𝑓 (𝑎) = 1
𝛽
.

𝑛𝑎𝑛−1√
1 + (𝑎𝑛)2

(36)

where 𝛽 and 𝑛 are arbitrary constant and a positive constant respec-

tively. Now integrating equation (35) by taking the value of 𝑓 (𝑎) from 
equation (36), we get average scale factor 𝑎 as

𝑎(𝑡) = [sinh (𝛽𝑡)]
1
𝑛 . (37)

The above approach for a time dependent DP is used in many studies 
[42, 43, 44, 45].

From equation (37), the time varying deceleration parameter comes out 
to be

𝑞(𝑡) = −𝑎�̈�
�̇�2

= 𝑛.[𝑠𝑒𝑐ℎ(𝛽𝑡)]2 − 1 = 𝑛[1 − (tanh(𝛽𝑡))2] − 1. (38)

We observe from the above equation that 𝑞 > 0 for 𝑡 < 1
𝛽
tanh−1(1 − 1

𝑛
)1∕2, 

and 𝑞 < 0 for 𝑡 > 1
𝛽
tanh−1(1 − 1

𝑛
)1∕2.

Also, using the relation

𝑎 =
𝑎0

(1 + 𝑧)
(39)

we get the relation between DP 𝑞 and redshift 𝑧 as

𝑞(𝑧) = 𝑛

( 𝑎0
1+𝑧 )

2𝑛 − 1
− 1. (40)

Next, as far as gauge function is concerned, it is also assumed to be time 
dependent. Here we take the following relationship between the gauge 
function 𝜙 and average scale factor 𝑎 as

𝜙 = 𝜙0𝑎
𝛼 = 𝜙0[sinh(𝛽𝑡)]𝛼∕𝑛 (41)

where 𝛼 is any constant and 𝜙0 is an arbitrary constant (See ref. [45]).

Substituting the values of 𝑎 and 𝜙 from equations (37) and (41) into 
equations (19), (20) and (21) and integrating to get the exact solutions 
for 𝑎1, 𝑎2 and 𝑎3 as,

𝑎1 = [sinh(𝛽𝑡)]1∕𝑛 (42)

𝑎2 = 𝑑 [sinh(𝛽𝑡)]1∕𝑛 exp
[
(−1)

2𝛼+𝑛+3
2𝑛 𝑚0 cosh(𝛽𝑡)𝐾(𝑡)

]
(43)

𝑎3 =
1
𝑑
[sinh(𝛽𝑡)]1∕𝑛 exp

[
(−1)

2𝛼+3𝑛+3
2𝑛 𝑚0 cosh(𝛽𝑡)𝐾(𝑡)

]
(44)

provided 𝛽 ≠ 0. Here 𝑚0 = 2ℎ∕𝛽𝜙0 and 𝐾(𝑡) =𝐾

(
1
2 ,

2𝛼+𝑛+3
𝑛

; 32 ; cosh
2(𝛽𝑡)

)
.

The solution for expansion scalar and shear scalar can be obtained 
as

𝜃 = 3𝛽
𝑛

coth(𝛽𝑡). (45)

𝜎2 =

(
ℎ

3+2𝛼

)2

. (46)
[sinh(𝛽𝑡)] 𝑛

3

The parameters 𝐻1 =
̇𝑎1
𝑎1

, 𝐻2 =
̇𝑎2
𝑎2

and 𝐻3 =
̇𝑎3
𝑎3

which are directional 
Hubble parameters, can be given as

𝐻1 =
𝛽

𝑛
coth(𝛽𝑡), 𝐻2 =

𝛽

𝑛
coth(𝛽𝑡) + ℎ

[sinh(𝛽𝑡)]
3+2𝛼
𝑛

,

𝐻3 =
𝛽

𝑛
coth(𝛽𝑡) − ℎ

[sinh(𝛽𝑡)]
3+2𝛼
𝑛

. (47)

The parameters 𝐻 and 𝑉 are calculated as

𝐻 = 𝛽

𝑛
. coth(𝛽𝑡). (48)

𝑉 = sinh3∕𝑛(𝛽𝑡). (49)

The Anisotropy parameter 𝐴𝑚 can be obtained as

𝐴𝑚 = 2
3

(
𝑛ℎ

𝛽 coth(𝛽𝑡) [sinh(𝛽𝑡)]
3+2𝛼
𝑛

)2

. (50)

The energy density 𝜌 can be calculated as

𝜌 = 𝛽2

𝑛2

[
3(𝛼 + 1) + 2𝛼2

]
coth2(𝛽𝑡) −

(
ℎ

[sinh(𝛽𝑡)]
3+2𝛼
𝑛

)2

− 3𝑚2

[sinh(𝛽𝑡)]2∕𝑛

+ 𝛼𝛽2

𝑛[sinh(𝛽𝑡)]2
(51)

𝑝 = (2 + 𝛼)𝛽2

𝑛[sinh(𝛽𝑡)]2
+ 𝑚2

[sinh(𝛽𝑡)]2∕𝑛
− (3 + 𝛼)𝛽2

𝑛2
coth2(𝛽𝑡)

−

(
ℎ

[sinh(𝛽𝑡)]
3+2𝛼
𝑛

)2

(52)

4. Results and discussions

Here we study the behavior of various physical and kinematic 
parameters obtained above. Using the recent observational value of 
𝑞0 = −0.52+0.08−0.04 and 𝐻0 = 69.2 ± 1.2 derived from BAO/CMB and H(z) 
data [46], we have evaluated three different pairs of (𝑛, 𝛽) for plotting 
the graphs. We have used 𝛼 = 2, ℎ = 1 for plotting. The above results are 
discussed in the following subsections.

4.1. Deceleration parameter

The variation of the average scale factor 𝑎 can clearly be seen in 
Fig. 1. The behavior of 𝑎 can clearly be analyzed with the following 
figures.

Fig. 1(a) represents the time dependent deceleration parameter (𝑞)
for three different pairs (𝑛, 𝛽). We observe that for (𝑛 = 2, 𝛽 = 92.75) there 
is a phase transition from decelerating expansion (𝑞 > 0) of the uni-

verse in the past to accelerating expansion (𝑞 < 0) at present. This fact 
is highly supported by Type Ia supernova and CMB data [14, 15, 16, 
17, 18, 19, 20, 21, 22, 23]. For this pair of (𝑛 = 2, 𝛽 = 92.75) the present 
value of the DP is calculated as −0.54. The recent observational data 
supports this value of 𝑞. Fig. 1(b) shows the variation of DP versus red-

shift 𝑧 for two pairs of (𝑛, 𝑎0). It also shows the transient nature of the 
DP for (𝑛 = 2, 𝑎0 = 1.5). The phase transition from decelerating (𝑞 > 0) 
to accelerating (𝑞 < 0) universe took place at 𝑧 ≈ 0.50. SNe type Ia mea-

surements provide the direct empirical proof of the phase transition 
from the past deceleration to present acceleration. Recent acceleration 
(𝑧 < 0.5) and past deceleration (𝑧 > 0.5) were clearly favored by the SNe 
data which is established in the preliminary observations. In 2004, the 
value of 𝑧𝑡 = 0.46 ±0.13 at (1 𝜎) c.l. [24] was obtained which was further 
modified to 𝑧𝑡 = 0.43 ± 0.07 at (1 𝜎) c.l. [25] in 2007. This data was pro-

vided by the High-z Supernova Search (HZSNS) team. More recently, 
Santos et al. [46] using SN Ia + BAO/CMB(Planck) + H(z) data, in-

cluding the 68% and 95% confidence intervals, have obtained 𝑧𝑡 in the 
range 0.66–0.70. So the recent observations also support our results [24, 
25, 26, 27, 28, 29, 46].
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Fig. 1. (a) The graph of deceleration parameter 𝑞 versus cosmic time 𝑡. (b) The graph of deceleration parameter 𝑞 versus redshift 𝑧.
4.2. Jerk parameter

The expansion of the universe is verified by Hubble parameter 
𝐻(𝑡) = �̇�

𝑎
. The modern cosmology starts with this concept of expanding 

universe. The measurement of the contemporary deceleration parame-

ter 𝑞0 where 𝑞(𝑡) = − 𝑎�̈�

�̇�2
is an important parameter in the pursuit of ob-

servational cosmology in recent times. Considering the third derivative 
of 𝑎 is useful as the universe was once decelerating is now accelerating. 
A dimensionless third derivative of the scale factor 𝑎(𝑡) with respect to 
cosmic time 𝑡 is jerk parameter 𝑗 which measures the jerk and is given 
as follows [47]:

𝑗 = 𝑎𝑎2

�̇�3
(53)

An alternative and a convenient method to describe cosmological mod-

els close to concordance ΛCDM model is provided by the use of jerk pa-

rameter which is clearly described by Blandford et al. [47] and Rapetti 
et al. [48]. For the ΛCDM model, the value of 𝑗 is always unity. This 
is a remarkable feature of 𝑗. A non-ΛCDM model occurs if there is any 
deviation from the value of 𝑗 = 1. This is similar as deviations from the 
equation of state (EoS) parameter 𝜔 = −1 do in more standard dynami-

cal approaches. In our model, the jerk parameter 𝑗 is obtained as

𝑗 = 1 + (2𝑛2 − 3𝑛)(𝑠𝑒𝑐ℎ(𝛽𝑡))2 (54)

From Fig. 2, it is observed that, at the early time 𝑗 assumes a positive 
value greater than 1, which shows that our model violates the stan-

dard ΛCDM model at the early stage, but at the late time 𝑗 approaches 
to 1 i.e. our model approaches to ΛCDM model. Finally, we conclude 
from all current cosmological observations that the jerk of the universe 
equals one [49].

4.3. Statefinder diagnosis

The properties of dark energy in a model can be characterized by the 
Statefinder which is a geometrical diagnostic. This can be done in an in-

dependent manner. A pair of dimensionless parameters (𝑟, 𝑠) constitutes 
the Statefinder. These parameters are defined as follows:

𝑟 = 𝑎

𝑎𝐻2 , 𝑠 = 𝑟− 1
3(𝑞 − 1

2 )
(55)

This pair (𝑟, 𝑠) are widely used to check the viability of a variety of dark 
energy (DE) models. This diagnostic tool is independent of dark energy 
density which is an important feature of the Statefinder diagnostic. In 
𝑟 −𝑠 plane, the region of phantom and quintessence DE eras is described 
4

Fig. 2. The plot of jerk parameter 𝑗 versus cosmic time 𝑡 for 𝑛 = 2, 𝛽 = 92.75.

by 𝑠 greater than 0 and 𝑟 less than 1, (𝑟, 𝑠) = (1, 0) corresponds to ΛCDM 
limit, (𝑟, 𝑠) = (1, 1) represents CDM limit and 𝑠 is less than 0 and 𝑟 is 
greater than 1 indicates chaplygin gas [50, 51].

In our derived model, the parameters 𝑟 and 𝑠 are calculated as follows

𝑟 =
(
(cosh(𝛽𝑡))2 + 2𝑛2 − 3𝑛

(cosh(𝛽𝑡))2 − 1

)
.(tanh(𝛽𝑡))2,

𝑠 = −2
3

(
2𝑛2 − 3𝑛

3(cosh(𝛽𝑡))2 − 2𝑛

)
(56)

From above two equations, we find a relation between 𝑟 and 𝑠 as follows

𝑟 = −1
2
.

[
(4𝑛2 − 6𝑛𝑠− 6𝑛− 9𝑠)(18𝑛𝑠− 4𝑛− 21𝑠+ 6)

(4𝑛2 − 6𝑛𝑠− 6𝑛+ 9𝑠)(2𝑛− 3𝑠− 3)

]
(57)

Fig. 3 shows the graph of 𝑟 vs 𝑠 for 𝑛 = 2. We see that Statefinder param-

eters in most of the evolution history remains in the region (𝑠 > 0, 𝑟 ≤ 1), 
which corresponds to phantom and quintessence DE eras. It shows a vi-

olation in a very short region then again follow the same era. From 
Eq. (56) and its Fig. 3, we see that at 𝑠 → 0, 𝑟 → 1 which corresponds to 
ΛCDM model. So, our derived model resembles with ΛCDM model in 
most of the evolution history.

4.4. Anisotropy parameter

From eq. (50) and its corresponding Fig. 4, we observe that the 
anisotropic parameter is a positive decreasing function of time. At the 
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Fig. 3. The plot of statefinder parameters 𝑟 versus 𝑠.

Fig. 4. The plot of anisotropic parameter 𝐴𝑚 versus cosmic time 𝑡.

early phase of the universe our derived model is highly anisotropic, 
which attains isotropy in due course of time. At late time 𝐴𝑚 → 0, i.e. 
the desired isotropy of the universe is attained. Modern cosmology also 
supports that the early universe was highly anisotropic, which in due 
course of time attains isotropy, and at present the Universe is isotropic. 
This is also evident in our model. So our model is consistent with ob-

servations in this respect.

4.5. Energy density

From eq. (51) and its corresponding Fig. 5, we observe that the en-

ergy density of our derived model is a positive decreasing function of 
time. At the early phase of the universe it possesses singularity (𝜌 →∞), 
and this high energy density is responsible for the big-bang. It decreases 
sharply thereafter, which corresponds to the period of rapid expansion 
of the Universe. Then the rate of decrease becomes moderate, indicating 
that the rate of expansion becomes slower. At late time (i.e. as 𝑡 →∞) 
the energy density tends to zero, which shows that the universe is ex-

panding and will keep on expanding forever. So or model favors the 
expanding Universe.

4.6. Isotropic pressure

The isotropic pressure 𝑝 is calculated in Eq. (52). We have plotted it 
against 𝑡 in Fig. 6 for three pairs of (𝑛, 𝛽). All the three starts with highly 
negative pressure. For (𝑛 = 2, 𝛽 = 92.75), it acquires a high positive value 
and then starts decreasing. Also, 𝑝 → 0 as 𝑡 →∞. The negative pressure 
5

Fig. 5. The plot of energy density 𝜌 versus cosmic time 𝑡.

Fig. 6. The plot of isotropic pressure 𝑝 versus cosmic time 𝑡.

may be a possible cause of the accelerated expansion of the universe. 
The red (continuous) graph in Fig. 6 indicates that at the early phase 
the expansion is accelerated (𝑝 − ve), then it is decelerated (𝑝 + ve), 
while the other two curves may correspond to accelerated expansion 
for entire evolution history. Also, 𝑝 → 0 as 𝑡 →∞ for all the three cases. 
This also validate our expanding Universe model.

4.7. Other physical and geometric parameters

This model corresponds to big-bang singular model of the universe 
as the volume scalar is initially zero and it tends to infinity for the large 
time for 𝑡 →∞. This means that the universe is expanding continuously. 
The other parameters like 𝜃, 𝜎2, 𝐻 , 𝐻1, 𝐻2 and 𝐻3 are all infinity ini-

tially at 𝑡 = 0 and all these parameters will vanish for the late time as 
𝑡 →∞. This means that the model is inhomogeneous and anisotropic in 
early time of evolution and will become homogeneous and isotropic in 
due course of time, which shows consistency with most of the obser-

vational results. The gauge function has accelerating and decelerating 
nature. It will behave exactly like average scale factor as they are pro-

portional. The behavior of all the above parameters suggest that the 
model is exactly behaving like a singular model of the universe. That is 
the universe starts with singularity. There is a transition in the model 
from initial anisotropy to isotropy at present.
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Fig. 7. (a) Presentation of energy condition of 𝜌 + 𝑝 versus 𝑡 for different values of 𝑛 and 𝛽. (b) Presentation of energy condition of 𝜌 − 𝑝 versus 𝑡 for different values 
of 𝑛 and 𝛽. (c) Presentation of energy condition of 𝜌 + 3𝑝 versus 𝑡 for different values of 𝑛 and 𝛽.
4.8. Energy conditions

With the help of energy density 𝜌 and isotropic pressure 𝑝, there 
are two approaches to diagnose a cosmological model. The first is by 
finding equations of state 𝜔 = 𝑝

𝜌
. Depending on the values of 𝜔, the cos-

mological models can be classified as quintessence, standard Λ-CDM, 
phantom etc. This approach is basically used in dark energy models. In 
another approach, we test the energy conditions. The null energy con-

dition (NEC) and weak energy conditions (WEC) are given by (i) 𝜌 ≥ 0
and (ii) 𝜌 + 𝑝 ≥ 0, dominant energy conditions (DEC) are given by (iii) |𝑝| ≤ 𝜌 (i.e. 𝜌 − 𝑝 ≥ 0 and 𝜌 + 𝑝 ≥ 0). Whereas (iv) 𝜌 + 3𝑝 ≥ 0 is the strong 
energy condition (SEC). Based on Eqs. (51) and (52), the left hand side 
of energy conditions have been plotted in Figs. 7(a), 7(b) and 7(c). From 
these figures and Fig. 5, it is observed that (i) 𝜌 ≥ 0; (ii) 𝜌 + 𝑝 ≥ 0; (iii) 
𝜌 − 𝑝 ≥ 0, meaning that our model satisfies the null, weak as well as the 
dominant energy conditions. From Fig. 7(c) we observe that 𝜌 + 3𝑝 ≤ 0
at most of the time of evolution history, meaning that the strong energy 
condition is violated, which is acceptable for our model as our model 
resembles with the dark energy models which approaches to standard 
ΛCDM model.

5. Conclusion

Here we have obtained an exact solution for Scale Covariant theory 
in perfect fluid medium with Bianchi type-V as the line element. For 
finding the solution, we have used a well established time dependent 
deceleration parameter. The justification for the variable deceleration 
parameter is fully explained with several given references. By using this 
DP, we have obtained the average scale factor 𝑎(𝑡) = [sinh(𝛽𝑡)]1∕𝑛, where 
𝑛 and 𝛽 are positive constants. The model represents a transit model for 
the pair (𝑛 = 2, 𝛽 = 92.75), showing transition from early decelerating 
(𝑞 > 0) to the present accelerating (𝑞 < 0) universe. Since the model has 
finite singularity, this model represents a big bang singular model (𝑉 →
0 at 𝑡 → 0) of the universe. Our model resembles with ΛCDM model with 
jerk 𝑗 → 1 and statefinders (𝑟, 𝑠) → (1, 0). In addition, different physical, 
geometric and kinematic parameters have been obtained and studied. 
The results obtained are found to be in good agreement with recent 
observations and established theories.
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