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Abstract

Background

Liver fibrosis progresses rapidly in HIV-Hepatitis C virus (HCV) co-infected individuals par-

tially due to heightened inflammation. Immune markers targeting stages of fibrogenesis

could aid in prognosis of fibrosis.

Methods

A case-cohort study was nested in the prospective Canadian Co-infection Cohort (n =

1119). HCV RNA positive individuals without fibrosis, end-stage liver disease or chronic

Hepatitis B at baseline (n = 679) were eligible. A random subcohort (n = 236) was selected

from those eligible. Pro-fibrogenic markers and Interferon Lambda (IFNL) rs8099917 geno-

type were measured from first available sample in all fibrosis cases (APRI� 1.5 during fol-

low-up) and the subcohort. We used Cox proportional hazards and compared Model 1

(selected clinical predictors only) to Model 2 (Model 1 plus selected markers) for predicting

3-year risk of liver fibrosis using weighted Harrell’s C and Net Reclassification Improvement

indices.

Results

113 individuals developed significant liver fibrosis over 1300 person-years (8.63 per 100

person-years 95% CI: 7.08, 10.60). Model 1 (age, sex, current alcohol use, HIV RNA, base-

line APRI, HCV genotype) was nested in model 2, which also included IFNL genotype and

IL-8, sICAM-1, RANTES, hsCRP, and sCD14. The C indexes (95% CI) for model 1 vs.

model 2 were 0.720 (0.649, 0.791) and 0.756 (0.688, 0.825), respectively. Model 2 classified

risk more appropriately (overall net reclassification improvement, p<0.05).
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Conclusions

Including IFNL genotype and inflammatory markers IL-8, sICAM-1, RANTES, hs-CRP, and

sCD14 enabled better prediction of the 3-year risk of significant liver fibrosis over clinical

predictors alone. Whether this modest improvement in prediction justifies their additional

cost requires further cost-benefit analyses.

Introduction

Liver disease has become one of leading non-AIDS causes of death among HIV-infected indi-

viduals in the developed world, mainly due to co-infection with hepatitis C (HCV). While HIV

treatment improves outcomes in HCV co-infection [1, 2], compared to HCV mono-infected

individuals, liver fibrosis progression remains accelerated, leading to cirrhosis, hepatocellular

carcinoma or end-stage liver disease (ESLD) [3, 4]. Reasons for this acceleration include bio-

logical factors and possibly HIV therapy-related toxicity. HIV itself suppresses the immune

response to HCV [3, 5], triggering a cycle where inflammatory and fibrogenic cells continually

stimulate each other, distorting the hepatic architecture, eventually leading to fibrosis. Liver

fibrosis progression is thus caused by heightened inflammation rather than direct HCV

replication.

In Canada, the majority of the HIV-HCV co-infected population is made up of current or

former injection drug users for whom treatment access and adherence may be challenging.

While international clinical guidelines recognize that co-infected individuals should be priori-

tized for HCV treatment [6, 7], the high cost of treatment (between $50,000 and $120,000 for a

course of the new direct-acting antivirals or DAAs) in Canada [8, 9] has meant that reimburse-

ment by public and private payers has been restricted to those with advanced fibrosis (META-

VIR stage F2 and higher), based on liver biopsy and increasingly by transient elastography or

use of noninvasive indices such as aspartate aminotransferase (AST) to platelet ratio index

(APRI) and Fibrosis-4 (FIB-4) [10]. Given this restriction, earlier indicators of fibrosis could

be helpful in identifying persons at higher risk for liver disease progression in order to target

effective intervention and treatment strategies in a cost-effective manner.

The principal risk factors associated with fibrosis progression include alcohol intake (>50

g/day), infection with HCV genotype 3, male sex, excess weight, liver steatosis, presence of

metabolic syndrome and/or type II diabetes, host genetic factors such as single nucleotide

polymorphisms (SNPs) in the Interferon Lambda (IFNL) gene, hepatitis B co-infection, immu-

nodeficiency related to HIV or the use of immunosuppressant drugs, and HIV therapy inter-

ruption [11–15].

We hypothesized that the addition of genetic markers associated with fibrosis progression

and a panel of immune markers (summarized in S1 Table) representative of the underlying

inflammatory mechanisms would improve prediction of fibrosis risk beyond traditional clini-

cal risk factors alone and would thus be of value in optimal use of new and expensive HCV

therapies.

Methods

Source population

The Canadian Co-infection Cohort is an open prospective cohort of HIV-HCV co-infected

patients recruited from 18 centers across Canada[16]. It has been approved by the following:
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the community advisory committee of the CIHR-Canadian HIV Trials Network, the Biomedi-

cal B Research Ethics Board of the McGill University Health Centre (BMB-06-006t and BMC-

07-004), the UBC-Providence Health Care Research Ethics Board (H08-00474), the Institu-

tional Review Board Services, Regina Qu’Appelle Health Region Research Ethics Board (REB-

14-70), the Conjoint Health Research Ethics Board of the University of Calgary (20931), the

Nova Scotia Health Research Ethics Board (CDHA-RS2007-118), the Windsor Regional Hos-

pital Research Ethics Board (07-122-17), the Veritas Independent Review Board, the Hamilton

Integrated Research Ethics Board (06–397), the Comité d’éthique de la recherche du CHUM

(2003–1582, SL 03.008-BSP), the Comité d’éthique de la recherche du CHU de Québec-Uni-

versité Laval (C11-12-153), the Sunnybrook Health Sciences Centre Research Ethics Board

(252–2008), the Research Ethics Board of Health Sciences North (605), the University Health

Network Research Ethics Board (06-0629-BE), the Ottawa Health Science Network Research

Ethics Board (2007229-01H) and the Biomedical Research Ethics Board (12–178). Patient rec-

ords/information was anonymized and de-identified prior to analysis. All patients gave written

informed consent before undergoing an initial evaluation and were followed at study visits

every six months.

The CCC represents approximately 23% of the co-infected population under care. At every

study visit, socio-demographic and behavioural information was collected using validated

questionnaires, along with plasma, serum and peripheral blood mononuclear cells (PBMC).

For our study, we included data from 1119 patients collected up until July 2012.

To be included in the CCC, patients must be over 16 years or older, give informed consent,

be HIV infected (confirmed via ELISA with Western blot), and have HCV infection or evi-

dence of HCV exposure (HCV-antibody positive by ELISA with recombinant immunoblot

assay II (RIBA II) or enzyme immunoassay (EIA) or if serologically false negative, HCV–

RNA-positive).

Study population

For our study, HCV RNA-negative participants or those who had significant fibrosis

(APRI�1.5), end-stage liver disease or chronic Hepatitis B at study entry were excluded, as

were individuals on HCV treatment. HCV RNA was measured using qualitative tests (COBAS

AMPLICOR HCV Test, version 2.0, Roche Diagnostics, Hoffmann-La Roche Ltd, Laval, Can-

ada, lower limit of detection<50 IU ml-1) and was available at most visits. Presence of Hepati-

tis B surface antigen was used to determine Hepatitis B chronicity.

As immune and genetic markers were not measured during regular CCC visits, we used a

case cohort study design as an economical way to gather this information. From an eligible

study sample of n = 679 (Fig 1), a random subsample or “subcohort” was selected from the

population at entry, to provide comparison observations for each event of significant liver

fibrosis, occurring during study follow-up. Because the subcohort was a representation of the

full cohort, it also contained a few incident cases.

Outcome measure

Progression to significant liver fibrosis (METAVIR stage F2-F4) was defined by an APRI�1.5.

APRI is calculated as follows: [(AST/upper limit of normal)/platelet count (109 /L)] x 100. It

consists of routinely available and non-invasive measures that were available for almost every

visit. An APRI cutoff of 1.5 or higher has been validated against liver biopsies in our study pop-

ulation for detection of significant liver fibrosis (METAVIR stages F2-F4) with a sensitivity of

52%, specificity and positive predictive value (PPV) of over 99% and an AUC of 0.85 ± 0.06.

[17] Despite the lower sensitivity, APRI cutoffs of 1.5 and 2 have also been shown to be
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associated with cirrhosis, other adverse liver and clinical outcomes, and death in our study

cohort [18] as well as in others [19, 20].

Clinical predictors

All values were time-fixed at first available visit and distribution was evaluated in the subco-

hort and compared to the full eligible study sample to mimic how a predictive score would be

applied in practice. Predictors considered included age; sex; ethnicity; alcohol use; body mass

index (BMI); HIV viral load; CD4 count; and baseline APRI. Variables included in fibrotic

staging indexes from other studies such as total bilirubin [21, 22] or gamma-glutamyltransfer-

ase (GGT) [21–23] were also considered.

Markers of interest

Of interest to us was the genetic marker at IFNL SNP rs8099917, which has been linked with

elevated histological inflammatory activity [14, 24–28] as well as Natural Killer (NK) cell acti-

vation, resulting in cell death of infected liver cells and a pro-inflammatory environment [29,

30]. We chose the following immune markers based on their specific roles in liver fibrosis

development (S1 Table): the cytokines transforming growth factor beta 1 (TGF-β1) and tumor

Fig 1. Source and study population for developing a prognostic model for significant liver fibrosis. Abbreviations:

ESLD, end-stage liver disease; HCV, Hepatitis C virus.

https://doi.org/10.1371/journal.pone.0176282.g001
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necrosis factor alpha (TNF-α); the chemokines interleukin-8 (IL-8); monocyte chemotactic

protein-1 (MCP-1 or CCL2); macrophage inflammatory protein 1 (MIP1α or CCL3; MIP1β or

CCL4); Regulated upon Activation, Normal T cell Expressed and Secreted protein (RANTES

or CCL5); CXCL9; and CXCL11; endothelial activation markers soluble Intercellular Adhesion

Molecule 1 (sICAM-1) and soluble Vascular Cell Adhesion Molecule 1 (sVCAM-1); high-sen-

sitivity C-reactive protein (hsCRP); and soluble CD14 (sCD14), a marker of microbial translo-

cation [31, 32].

Immune markers were measured in patients with available samples from visit 1 or 2 from

all the cases and the subcohort (n = 171 from subcohort and 46 non-subcohort cases, Fig 1).

Frozen, never thawed plasma or serum samples were used. After thawing on ice, viral activity

was inactivated (with a 0.5% sample concentration of Triton X-100 and 30 minute incubation

at room temperature). Samples were aliquoted, refrozen and thawed on ice before running

with a commercial assay from Millipore on a MAGPIX instrument (Millipore Corporation,

Billerica MA) according to the manufacturer’s instructions. Samples were diluted according to

kit recommendations: 3-plex (RANTES, sICAM1, sVCAM1; TGF- β1, 2, 3), 6-plex (IL6, IL8,

MCP1, MIP1α, MIP1β, and TNFα) and 2-plex (CXCL9 and CXCL11). Standards were pre-

pared in the same background as samples.

Commercially available ELISA kits were used to measure plasma and serum levels of soluble

CD14 (sCD14, R&D Systems, Minneapolis, MN, USA) with dilutions of 1:300. High-sensitiv-

ity C-reactive protein (hsCRP) was tested based on manufacturer’s instructions, using immu-

noassay kits from Synchron LX 20 PRO (Beckman Coulter, Ontario, Canada). Hyaluronic

acid, another direct marker of fibrogenesis [33] that has been included in other fibrotic indexes

[22, 34] was also measured with a 1:30 dilution using the Hyaluronan Quantikine ELISA kit

(R&D Systems, Minneapolis, MN, USA).

To measure IFNL genotypes, never thawed plasma and serum samples were processed

using a real-time PCR assay developed by the Bay Area Genetic Lab (BAGL, Ontario, Canada),

as previously described [35].

Statistical analysis

Survival analysis. The subcohort (n = 236) was generated with a random sampling frac-

tion of 0.45 and included 54 cases. Cases that were not in the subcohort (n = 59) entered via

delayed entry. The time axis was follow-up time in study. Cox proportional hazards was used

for analysis, with robust variance and Barlow weights to account for the case cohort design

[36].

Descriptive analysis was conducted in the subcohort using box plots, histograms, correla-

tion matrices with Spearman’s correlation coefficient, scatter plots and Q-Q plots. Values of

the markers that were near the limits of detection were assigned the lowest detectable value.

Predictor selection and functional form. Predictors were selected based on their avail-

ability to physicians, strength of correlation with each other [37], magnitude of associations in

univariable analyses, ability to improve model fit as indicated by the Akaike Information Crite-

rion (AIC) and ability to maximize discrimination as measured by Harrell’s C [38]. For

immune markers, variables were also included in models if they captured a different stage of

the underlying etiology of fibrosis development or were linked to fibrogenesis in the literature.

Univariable and multivariable analyses were conducted on untransformed variables, as well

as after log-transformation or using median or quartile distributions of the immune markers.

Continuous variables were centered at their mean values. Log transformation was used for all

included continuous variables such as baseline APRI and immune markers IL-8, sICAM-1,

RANTES, hsCRP, and sCD14 but not for age, which was modeled as a restricted cubic spline

Prognostic model for fibrosis in co-infection
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with 3 knots at the 10th, 50th and 90th percentiles corresponding to ages 33, 44, and 54. HIV

viral load was dichotomized (undetectable or not at� 50 copies/ml), as were alcohol use (cur-

rently drinking or not); HCV genotype (3 vs. non-3, i.e. types 1, 2, and 4); and host IFNL geno-

type rs8099917 (TT vs. non-TT).

Proportional hazards were assessed using the using Stata command–stphtest, detail- which

uses scaled Schoenfeld residuals to check if proportional hazards holds globally and for

included predictors.

Predictive accuracy. Discrimination, calibration and changes in reclassification were

compared between Model 1 (selected clinical predictors only) and Model 2 (clinical predictors

from Model 1 plus selected genetic and immune markers) for predicting 3-year risk of signifi-

cant liver fibrosis.

Discrimination was measured with a weighted [39] Harrell’s C or concordance index using

Stata command–somersd- with robust jackknife estimator for standard errors [38]. A C-index

value of 1 indicates perfect discrimination, while 0.5 means no better than random guessing.

Calibration was assessed statistically (Hosmer-Lemeshow statistic and the Gronnesby and Bor-

gan (GB) test) [40], and graphically with the Stata command–stcoxgrp using imputed data [41].

Change in reclassification was measured by the net reclassification improvement (NRI)

summary index [42]. We calculated both the category-based and the continuous NRIs. For the

category-based NRI, we used 3 clinically relevant risk categories: low risk,< = 10%; medium

risk,>10–25%; and high risk,>25%. The categories were determined based on estimates of

mortality from liver disease in those with chronic HCV infection from published reports [43]

as well as opinions of knowledgeable hepatologists and clinicians. For the continuous NRI, no

categories were needed and any upward or downward movement in risk was considered,

regardless of magnitude.

The models were internally validated using bootstrapping. All analyses were conducted

using Stata 12.

Multiple imputation. Missingness for plasma samples and other variables was assumed

to be at random. Multiple Imputation by Chained Equations (MICE) was used on the full

cohort to account for all missing data, using all the predictors in the final models, all the

immune markers, as well as variables that were possibly related to the reasons for missingness.

We compared predictive accuracy after using unweighted Cox proportional hazards regres-

sion on the imputed full cohort data [44].

Results

The subcohort selected was representative of both the CCC and the eligible subpopulation

from which it was derived (Tables 1 and 2). A notable difference was in the median APRI

score at baseline, which was much higher in the CCC overall, likely due to the 276 prevalent

cases of significant liver fibrosis and end-stage liver disease (ESLD) that were excluded. The

majority of the study participants were white males with a median age of 44 years; half had

been infected with HCV for 18 years and almost half reported drinking alcohol (Table 1).

Most were receiving HIV antiretroviral therapy and had well-controlled HIV with good CD4

recovery (>350 cells/μl) and undetectable HIV viral load.

One hundred and thirteen individuals developed significant liver fibrosis over 1300 years of

risk for an event rate of 8.63 per 100 person-years (95% CI: 7.08, 10.60 per 100 py). Significant

liver fibrosis cases were much more likely to be female, currently drinking alcohol, infected

with HCV genotype 3 and carriers of the rs8099917 TT genotype (Table 2). Surprisingly, they

were also more likely to have undetectable levels of HIV RNA at first visit. As expected, even at

baseline, the median APRI value was higher among cases than those in the subcohort.

Prognostic model for fibrosis in co-infection
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Immune marker values were available for 74% of the individuals in the analytic sample. The

median values of the following immune markers were higher in cases than the subcohort: IL-8,

MIP1α, MIP1β, TNFα, CXCL9, sICAM-1 and sVCAM-1 (S2 Table, S1 Fig). The remaining

markers (RANTES, TGF-β1, MCP-1, CXCL11, sCD14 and hs-CRP) showed the opposite, that

is, were lower in cases than the subcohort. The genetic marker at IFNL rs8099917 was available

in 92% of the individuals included in the analysis. The pro-inflammatory TT genotype was

more common in cases than the subcohort (Table 2).

The final clinical predictors in Model 1 were sex, current alcohol use (yes or no), HIV viral

load (undetectable or not at� 50 copies), natural log-transformed baseline APRI, HCV geno-

type 3 and age (Table 2). Other factors like CD4 count or ethnicity did not improve predictive

ability and therefore were not included. Model 1 was nested in Model 2, which also included

the genetic marker IFNL rs8099917 and the following 5 log-transformed immune markers: IL-

8, sICAM-1, RANTES, hsCRP, and sCD14 (Table 2). While other combinations of markers

and predictors were tested, these markers were selected because they target different stages of

liver fibrosis development, are known risk factors for fibrosis, improved model fit or discrimi-

nation or displayed the strongest associations with the outcome in univariable analyses (S3

Table). Even in multivariable analysis, most of the selected markers had a stronger association

with the outcome than any of the clinical predictors with the exception of baseline APRI

(Table 3). The selected markers were also strongly correlated with the other markers that were

not included.

The bootstrapped Harrell’s C indexes differed between models 1 and 2, regardless of multi-

ple imputation (Table 2). The higher values for model 2 versus model 1 indicated that adding

the six markers improved the discrimination capacity beyond that of traditional clinical fac-

tors. Using only clinical risk factors indicated that there was a 73% probability that predicted

risk is higher for cases than non-cases. That probability rose to 76% using selected markers.

Table 1. Baseline characteristics of the source, study and analytic populations.

Characteristic CCC,

n = 1119

Eligible cohort,

n = 679

Subcohort,

n = 236

Cases outside subcohort, n = 59

Age at baseline, years 45 (39–50) 44 (39–49) 44 (39–49) 44 (39–49)

White 855 (77) 521 (77) 182 (78) 48 (81)

Female 291 (26) 187 (28) 70 (30) 20 (34)

Currently drinking alcohol 566 (51) 333 (49) 114 (48) 32 (54)

APRI 0.63 (0.38–1.24) 0.52 (0.36–0.78) 0.52 (0.36–0.81) 0.70 (0.47–0.97)

IFNL genotype rs8099917 TT 596 (65)a 333 (60)b 127 (60) 41 (70)

Receiving HIV therapy 903 (81) 538 (79) 191 (81) 46 (78)

Undetectable HIV viral load, (<50 copies/ml) 682 (61) 395 (59) 135 (59) 37 (65)

CD4 count, cells/μl 380 (249–550) 400 (270–568) 380 (250–540) 377 (230–540)

HCV duration, years 18 (11–26) 18 (10–25) 18 (11–26) 18 (12–24)

HCV genotype 3 166 (19)c 87 (16)d 30 (16)e 13 (26)f

Abbreviations: CCC, Canadian Co-infection Cohort; APRI, aspartate aminotransferase (AST) to platelet ratio index, calculated as follows: [(AST/upper

limit of normal)/platelet count (109 /L)] x 100; IFNL, Interferon Lambda; HCV, Hepatitis C virus. Presented as n(%) or Median (Interquartile Range).

a. IFNL genotype available in 917 individuals

b. IFNL genotype available in 551 individuals

c. HCV genotype data available in only 874 individuals

d. HCV genotype data available in only 549 individuals

e. HCV genotype data available in only 189 individuals

f. HCV genotype data available in only 50 individuals

https://doi.org/10.1371/journal.pone.0176282.t001
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Table 2. Multivariable results of Cox models analyzing the association of significant liver fibrosis [HR (95% CI)] before and after multiple

imputation.

COX MODEL RESULTS

[HR (95% CI)]

Before imputation After imputation

Included Predictorsa Model 1 Model 2 Model 1 Model 2

Female 1.11 (0.64, 1.94) 1.34 (0.54, 3.34) 1.25 (0.82, 1.90) 1.35 (0.82, 2.21)

Current alcohol use 1.25 (0.73, 2.12) 0.90 (0.46, 1.75) 1.31 (0.89, 1.92) 1.30 (0.85, 2.00)

HIV viral load i 1.43 (0.84, 2.44) 1.51 (0.78, 2.95) 1.17 (0.79, 1.74) 1.21 (0.80, 1.85)

Log Baseline APRI ii 3.43 (1.92, 6.12) 2.91 (1.54, 5.50) 3.19 (2.05, 4.96) 2.71 (1.72, 4.26)

Age 0.99 (0.92, 1.06) 1.00 (0.91, 1.11) 1.00 (0.95, 1.05) 0.99 (0.95, 1.04)

Age* 0.98 (0.91, 1.05) 0.94 (0.86, 1.04) 0.99 (0.93, 1.04) 0.99 (0.93, 1.05)

HCV genotype 3iii 1.37 (0.73, 2.57) 1.04 (0.44, 2.48) 1.34 (0.80, 2.25) 1.36 (0.79, 2.36)

rs8099917 TT iv — 2.12 (1.01, 4.46) — 1.39 (0.90, 2.16)

IL-8 v — 2.09 (1.44, 3.04) — 1.48 (1.08, 2.02)

sICAM-1 vi — 3.85 (1.70, 8.75) — 2.04 (1.05, 3.97)

RANTES vii — 0.58 (0.38, 0.88) — 0.83 (0.64, 1.07)

hsCRP viii — 0.95 (0.74, 1.23) — 0.95 (0.78, 1.16)

sCD14 ix — 0.36 (0.11, 1.19) — 0.56 (0.24, 1.30)

a. Included immune markers (IL-8, sICAM-1, RANTES, and hsCRP, and sCD14) are log-transformed and centered.

* Restricted cubic spline function in age

i. Missing in 3% cases and noncases

ii. Missing in 6% of cases and 5% of noncases

iii. Missing in 14% of cases and 22% of noncases

iv. Missing in 1% of cases and 13% of noncases

v. Missing in 24% of cases and 28% of noncases

vi. Missing in 24% of cases and 28% of noncases

vii. Missing in 24% of cases and 28% of noncases

viii. Missing in 24% of cases and 30% of noncases

ix. Missing in 24% of cases and 28% of noncases

Abbreviations: HR, hazard ratio; CI, confidence interval; APRI, aspartate aminotransferase (AST) to platelet ratio index, calculated as follows: [(AST/upper

limit of normal)/platelet count (109 /L)] x 100; HCV, Hepatitis C virus; IL-8, interleukin-8; sICAM-1, soluble intercellular adhesion molecule 1; RANTES,

Regulated upon Activation, Normal T cell Expressed and Secreted protein; hsCRP high-sensitivity C-reactive protein; sCD14, soluble CD14.

https://doi.org/10.1371/journal.pone.0176282.t002

Table 3. Predictive accuracy for 3-year risk of significant liver fibrosis using model 1 (clinical predictors only) and model 2 (Model 1+ Selected

Markers).

PREDICTIVE ACCURACY Before imputation After imputation

Model 1 Model 2 Model 1 Model 2

Discrimination:

Harrell’s C-index

(95% CI)

0.731

(0.647, 0.815)

0.819

(0.740, 0.899)

0.730

(0.670, 0.789)

0.762

(0.703, 0.820)

Calibration (p-values)a

Hosmer-Lemeshow 0.32 0.30 0.37 0.47

Gronnesby and Borgan (GB) test 0.76 0.59 0.47 0.88

a. Using quintiles of risk. Results similar with tertiles, as the number and threshold of cutpoints can affect statistical tests.

Model 1 included the following clinical predictors: sex, current alcohol use, HIV viral load, baseline APRI, HCV genotype 3 and age. Model 2 included Model

1 predictors and the following: genetic marker at IFNL rs8099917 and 5 immune markers IL-8, sICAM-1, RANTES, hsCRP, and sCD14.

https://doi.org/10.1371/journal.pone.0176282.t003
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Other clinical factors such as CD4 count or the remaining immune markers did not substan-

tially increase the C-index or improve model fit as measured by the AIC. Variables included in

indexes from other studies such as hyaluronic acid, total bilirubin, or GGT also did not

increase the C-index, improve calibration, or improve model fit.

Both models 1 and 2 were well-calibrated as measured by the Hosmer-Lemeshow test and

the GB test (p>0.05 in both tests, Table 2 and S2 Fig). This indicated that there were no signifi-

cant deviations by observed risk from subgroups of predicted risk estimates, regardless of

number or location of cutpoints. Risk stratification also appeared to improve with the inclu-

sion of the genetic and immune markers in model 2. The category-based NRI indicated that

the classification improved more in those not developing fibrosis (i.e. the non-events) than in

those with the outcome: 5.1% were correctly reclassified (i.e. moved to a higher risk category)

in those with events, while almost 21% of the non-events were correctly recategorized (i.e.

correctly moved to a lower risk category) (Table 4). The continuous NRI, on the other hand,

demonstrated improvement in both, with a greater movement among cases than non-cases

(Table 5).

Discussion

Our results demonstrate that specific immune markers improved ability to predict 3-year risk

of significant liver fibrosis over traditional clinical factors alone in a cohort representative of

HIV-HCV co-infected Canadians. While improvement in discrimination was modest, adding

immune markers improved risk classification. Since this is a population at high risk for accel-

erated liver fibrosis, there is a great need for better clinical prognosis and risk assessment; such

a prognostic tool may facilitate prioritizing expensive HCV treatment by improving identifica-

tion of those for whom it may be safely delayed.

We tested clinical predictors linked with fibrosis that were most likely to be available to cli-

nicians. The immune markers we screened, however, are not routinely collected at a clinical

setting and are not cheap to measure (for the 6 additional markers included in Model 2, costs

were approximately $110 for reagents alone). Nevertheless, the blood draw required for

Table 4. Net reclassification improvement (NRI) index for 3-year risk of significant liver fibrosis using model 1 (clinical predictors only) and model

2 (Model 1+ Selected Markers).

MODEL 2 Reclassified

MODEL 1 < = 10 >10–25 >25 Total N Higher Lower Net NRI

Developed fibrosis** < = 10 2 0 1 3

150>10–25 4 6 11 21 12 20.3% 9 15.2% 5.1

>25 1 4 30 35

Total 7 10 42 59** 26

No fibrosis < = 10 16 5 2 23

>10–25 24 10 11 45 18 19.8% 37 40.6% 20.9

>25 4 9 10 23

Total 44 24 23 91

Gray = movement to a lower risk category; Orange = movement to a higher risk category

**Without multiple imputation, only 59 cases had event times within 3 years and had complete information to be used in the analysis. Results were similar if

multiple imputation was used to complete information for 94 cases (not shown).

Model 1 included the following clinical predictors: sex, current alcohol use, HIV viral load, baseline APRI, HCV genotype 3 and age. Model 2 included Model

1 predictors and the following: genetic marker at IFNL rs8099917 and 5 immune markers IL-8, sICAM-1, RANTES, hsCRP, and sCD14.

https://doi.org/10.1371/journal.pone.0176282.t004
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immune marker measures is less invasive than a biopsy and does not require specialist

appointments or equipment and is far less expensive than current HCV treatment. Many of

the markers were correlated with hepatic levels[45] and with each other, so we selected those

most representative of different stages of fibrosis development, those with the strongest links

to fibrosis, and those most likely to improve discrimination.

Other than baseline APRI, many of the selected markers displayed stronger relationships

with fibrosis than any clinical predictor studied. In univariable and multivariable analysis,

both IL-8 and sICAM-1 acted profibrogenically, being linked with a higher rate of significant

fibrosis. These markers also appeared to behave in a dose-dependent manner when examined

at the median and quartile level. RANTES and hs-CRP, on the other hand, appeared protective

in univariable analysis (S3). We summarized other studies that could account for these trends

from an etiological perspective (S1 Table). However, as our purpose in modeling them was

solely for prediction, we cannot infer any causality from these associations.

Other factors, such as hyaluronic acid [22, 34], total bilirubin [21, 22], or GGT [21–23] have

been included in other fibrotic indexes but did not improve model fit or prognostic ability in

our study. In studies of the Hepascore and the SHASTA index [22, 34], these variables were

collected not for predicting risk but for diagnostic and staging purposes in individuals who

had already developed liver disease. As such, they were collected at the same time point as the

liver biopsy sample, which was used to determine the outcome (fibrosis or cirrhosis). In our

study, however, the markers were measured in disease-free individuals up to three years before

significant fibrosis set in, thus somewhat incorporating the stochastic nature of prognosis[46].

Using these chosen six markers improved our ability to discriminate between those who

develop significant liver fibrosis and those who do not, as indicated by the higher C-indexes in

model 2 versus model 1 and the wider separation of the Kaplan-Meier curves from the risk

score tertiles (Fig 2), though the improvement was minor and not statistically significant. Nev-

ertheless, discrimination by both models was similar to other comparable indexes such as the

prognostic score for prediction of ESLD in HIV-HCV co-infected individuals on cART (C-sta-

tistic = 0.73), which can be considered good and of some clinical utility [47]. Other prognostic

Table 5. Comparison of category-based and continuous net reclassification improvement (NRI)

indexes for 3-year risk of significant liver fibrosis using model 1 (clinical predictors only) and model 2

(Model 1+ Selected Markers).

Category-based

NRI (p-value)

Continuous

NRI (p-value)

Events 0.051 (0.51) 0.356 (0.006)

Nonevents 0.209 (0.010) 0.187 (0.075)

Overall 0.26 (0.02) 0.543 (0.001)

NRI can be defined as the sum of improvements in risk classification in events and non-events. It is

measured separately in those with the outcome and those without the outcome—the sum of differences in

proportions of individuals moving up minus the proportion moving down for those with the outcome, and the

proportion of individuals moving down minus the proportion moving up for those without the outcome.

NRIevents ¼
Number of events moving to higher risk category � Number of events moving to lower risk category

Total number of events

NRInonevents ¼
Number of nonevents moving to lower risk category � Number of nonevents moving to higher risk category

Total number of nonevents

NRIoverall = NRIevents + NRInonevents

https://doi.org/10.1371/journal.pone.0176282.t005
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indexes which predicted risk of mortality in cirrhotics (Child-Pugh score, MELD score) or in

HIV-infected individuals on cART (VACS Index) [48] had C-statistics around 0.80 or higher,

which are considered very good or excellent [49, 50].

While improvement in discrimination was modest, inclusion of immune markers im-

proved the net reclassification improvement index, as indicated by both category-based and

continuous NRI estimates. Results from the category-based NRI indicate that measuring the

markers in model 2 correctly reduced risk estimates in those who did not develop liver fibrosis.

While this does not enable identification of higher-risk individuals for treatment [51], it could

help identify patients for whom treatment might be safely deferred (up to 21% of individuals

who eventually did not develop fibrosis over 3 years). The continuous NRI, on the other hand,

indicated that model 2 improved ability to identify higher-risk individuals for treatment. How-

ever, these changes in predicted risk might not be clinically significant, as values of continuous

NRIs are often higher than their category-based counterparts [51]. When viewed together with

the Harrell’s C-index, the NRI seemed to support improved discrimination and risk classifica-

tion with inclusion of genetic and inflammation markers. These results, however, must be

interpreted with caution. Category-based NRIs are sensitive to the number of risk categories as

well as the chosen cutpoints [42], while continuous NRIs can have large values for even weak

markers [51]. A cost-benefit analysis that takes into account the expense of these markers as

well as the high cost of HCV treatment might be useful as a next step.

The strength of our study includes a large source population that is broadly representative

of Canadian co-infected patients, thus making our results directly generalizable and clinically

relevant. This is important as marker and disease prevalence or marker correlations with other

Fig 2. Tertiles of risk score against Kaplan-Meier estimates of risk of significant liver fibrosis. Blue = score tertile 1 (lowest risk); Red = score tertile

2; Green = score tertile 3 (highest risk).

• Model 1 included the following clinical predictors: sex, current alcohol use, HIV viral load, baseline APRI, HCV genotype 3 and age

• Model 2 included Model 1 predictors and the following: genetic marker at IFNL rs8099917 and 5 immune markers IL-8, sICAM-1,

RANTES, hsCRP, and sCD14

The wider separation of the Kaplan-Meier curves in Model 2 provides a visual representation of the improvement in discrimination with the addition of the

markers compared to Model 1. The risk score is constructed from the linear predictors of the Cox model. The linear predictor is a weighted sum of the vari-

ables in the final model, where the weights are the regression coefficients. (See also S4 Table).

https://doi.org/10.1371/journal.pone.0176282.g002
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known risk factors can all affect the estimates of the discriminatory capacity of a marker [52].

Inclusion of specific markers in model 2 appeared to provide higher discrimination than the

clinical predictors in model 1 whether multiple imputation was used or not. Finally, the list of

immune markers we tested target different stages of the underlying mechanism of fibrosis pro-

gression, enhancing our ability to capture the outcome at various stages of development.

The limitations of our study include having marker measures at only visit 1 or 2, so we are

unable to assess the predictive value of markers at other time points or measure the predictive

value of changes of marker levels. However, as we were interested in prognosis, using the first

available sample mirrors what would occur in clinical practice when a patient is first evaluated.

We also lacked the power to assess interaction or effect measure modification of markers in

different subgroups. Furthermore, missing samples in the subcohort and cases also reduced

power, which we addressed with multiple imputation. Weakened associations after imputation

can be caused by misspecification of the imputation model or if variables capturing the missing

mechanism are excluded [53]. However, our results did not change with different imputation

models. Since our primary goal was to assess the prognostic ability of specific markers, using

the full sample size gave us sufficient power to assess calibration and discrimination properly,

despite some potential misspecification. HCV duration, while informative, is hard to estimate

in a real-life clinical scenario and is only approximate in our study. We chose to use age instead

to capture some of the time element that HCV duration would have provided. Most of the

injection drug users in our study first started injecting around the same age, approximately 18

years before cohort entry. Our study modeled the markers specifically for prognostic assess-

ment precluding causal inferences. Finally, external validation in an independent dataset

should be performed before applying this model clinically. Data provided in S2 and S4 Tables

will be especially relevant to future external validation studies.

In conclusion, we found that in an HIV-HCV co-infected population, incorporating a

genetic marker from IFNL rs8099917 and the immune markers IL-8, sICAM-1, RANTES, hs-

CRP, and sCD14 allowed us to better predict the 3-year risk of significant liver fibrosis over

traditional clinical risk factors alone. While the improvement in discrimination was small, the

model with the markers also classified risk and fit better than the one without the markers. To

assess whether this improvement justifies the additional cost of measuring these markers in

the face of highly expensive HCV treatment requires further cost-benefit analyses.
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S1 Table. Summary of immune markers of interest.
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formed immune markers [HR (95% CI)].
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S4 Table. Estimated regression coefficients and standard errors for calculating risk score

[estimated beta (SE)] in final models 1 and 2.
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S1 Fig. Medians of log-transformed immune markers: Subcohort vs. cases outside
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intercellular adhesion molecule 1; sVCAM-1, soluble vascular cell adhesion molecule 1;

RANTES, Regulated upon Activation, Normal T cell Expressed and Secreted protein; sCD14,

soluble CD14; TNF-α, tumor necrosis factor alpha; MIP1β, macrophage inflammatory protein

1 beta; MCP-1, monocyte chemotactic protein-1; CXCL11, chemokine (C-X-C motif) ligand

11; CXCL9, chemokine (C-X-C motif) ligand 9; hsCRP high-sensitivity C-reactive protein;

MIP1α, macrophage inflammatory protein 1 alpha; IL-8, interleukin-8.

(TIF)

S2 Fig. Calibration with predicted survival curves and Kaplan-Meier estimates in model 1

(clinical predictors only) and Model 2 (Model 1 plus IFNL rs8099917 and 5 Selected

Immune Markers).

a) Left panel: Equal-sized Quintiles of 3-year Risk in Model 1 (top) vs. Model 2 (bottom)

Smooth lines represent predicted survival probabilities, and vertical capped lines denote

Kaplan–Meier estimates with 95% confidence intervals. Five prognosis groups are plotted:

the “Good” group (darkest lines) and the “Poor” group (palest lines) at the highest and low-

est risk categories, respectively, with the other 3 in between.

b) Right panel: 3 Unequal Risk Groups (Cut at the 25th and the 75th Percentiles of the Failure

Times)

Smooth lines represent predicted survival probabilities, and vertical capped lines denote

Kaplan–Meier estimates with 95% confidence intervals. Three prognosis groups are plotted:

the “Good” group (darkest lines), the “Intermediate” group (medium-dark lines), and the

“Poor” group (paler lines). Using unequal sized risk groups allows identification of individu-

als with the most extreme prognosis [41].

• Model 1 included the following clinical predictors: sex, current alcohol use, HIV viral load,

baseline APRI, HCV genotype 3 and age

• Model 2 included Model 1 predictors and the following: genetic marker at IFNL rs8099917

and 5 immune markers IL-8, sICAM-1, RANTES, hsCRP, and sCD14.

Abbreviations: IL-8, interleukin-8; sICAM-1, soluble intercellular adhesion molecule 1;

RANTES, Regulated upon Activation, Normal T cell Expressed and Secreted protein;

sCD14, soluble CD14; hsCRP high-sensitivity C-reactive protein.

(TIF)
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