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ABSTRACT

Aims/Introduction: Human islet polypeptide S20G mutation (hIAPPS20G) is associated with earlier onset type 2 diabetes and
increased amyloidogenicity and cytotoxicity in vitro vs wild-type hIAPP (hIAPPWT), suggesting that amyloidogenesis may be patho-
genic for type 2 diabetes. We compared the contributions of hIAPPS20G and hIAPPWT toward intra islet amyloid formation and
development of type 2 diabetes in a unique physiologic knock-in mouse model.
Materials and Methods: We replaced the mouse IAPP gene (M allele) with hIAPPWT (W allele) and hIAPPS20G (G allele) via homolo-
gous recombination and backbred transgenic mice against C57Bl/6 strain 5 generations to minimize genetic variation. Mice (3 month
old) were maintained on control (CD) or high fat diet (HFD) for 15 months and studied at 3 month intervals by oral glucose tolerance
testing (OGTT) and pancreas histology to assess glucose homeostastis, amyloidogeneisis, islet mass, b cell replication, and apoptosis.
Results: IAPP blood levels were indistinguishable in all mice. WW and GW mice maintained on both diets lacked intraislet amyloid
at all ages. On both diets relative to MM controls WW and GW mice exhibit glucose intolerance (P < 0.008) with no differences in
insulin secretion. However, GW mice secreted significantly more insulin (P < 0.03 that WW mice on both diets throughout the study.
By 12 months on the high fat diet all mice increased their b cell mass about 3-fold and were indistinguishable.
Conclusions: Physiologic expression of hIAPPWT and hIAPPS20G in C57Bl/6 mice produces mild glucose intolerance with inappropri-
ately normal insulin secretion that is independent of intraislet amyloid formation. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2011.
00166.x, 2012)
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INTRODUCTION
There has been renewed interest in the role of islet amyloidogene-
sis in the pathogenesis of type 2 diabetes.1,2 Pancreatic amyloid is
found in approximately 90% of type 2 diabetes patients3 with loss
of up to 50% of b cell mass.3 Studies in macaques4 and humans5,6

suggest that loss of b cell mass and islet amyloid accumulation
are interdependent. The major constituent of islet amyloid in
humans is derived from islet amyloid polypeptide (hIAPP).7

While hIAPP spontaneously forms fibrils in vitro, rodent IAPPs
do not.8 We demonstrated that expression of hIAPP in COS-1

cells results in the accumulation of large deposits of intracellular
amyloid and cell death by apoptosis.9

Asians with premature onset type 2 diabetes harbor a muta-
tion in the hIAPP gene (S20G), providing a causal link between
this gene and disease.10 The mutation is rare affecting 1.9–2.6%
of type 2 diabetics11,12 and 0.8% of non-diabetic control sub-
jects.11 We showed that hIAPPS20G is more cytotoxic than wild-
type hIAPP (hIAPPWT) when expressed in COS-1 cells and this
is correlated with the increased in vitro amyloidogenicity of this
peptide.13 While the mechanism of amyloid-associated cell death
is unknown, recent evidence indicates that oligomeric intermedi-
ates forming nonselective, ion-permeable channels in phospho-
lipid membranes,14–16 lead to cell death.

Studies of hIAPP expression in transgenic mice support the
hypothesis that islet amyloidogenesis plays a role in b cell loss.
Mice homozygous for the hIAPP gene express high levels of
hIAPP and develop diabetes mellitus.17 The islets of these mice
exhibit amorphous hIAPP deposits but lack amyloid. Treatment
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of hIAPP+/) mice with growth hormone and dexamethasone to
induce insulin resistance resulted in islet amyloidosis that pre-
ceded b cell dysfunction.18 Independent studies have demon-
strated extensive islet amyloid deposits in male transgenic mice
with approximately 50% of these animals becoming hyperglyce-
mic.19,20 When hIAPP+/) mice were crossed with agouti viable
yellow (Avy/a) mice that exhibit obesity and insulin-resistance,
hIAPP+/Avy males displayed fasting hyperglycemia at 90 days
and progressed to severe hyperglycemia within 1 year.21 These
animals exhibited 10- to 20-fold lower plasma and pancreatic
insulin levels, large islet amyloid deposits, and an 80% deficit in b
cell mass.22 Also, hIAPP transgenic rats develop diabetes within
5–10 months of age and exhibit a 60% deficit in b cell mass due
to increased b cell apoptosis.23 Recent studies have demonstrated
an up-regulation and nuclear localization of CHOP, sugges-
ting that endoplasmic reticulum (ER) stress-induced apoptosis
accounts for loss of b cell mass in hIAPP transgenic animals.24

In order to compare the relative contributions of hIAPPWT

and hIAPPS20G in a physiologic manner, we knocked-in the cor-
responding expression constructs for each of these genes into the
mouse (m) IAPP locus via homologous recombination. This
replaces the non-amyloidogenic mIAPP gene with the corre-

sponding human IAPP and places each of these inserted genes
under the control of the endogenous mIAPP promoter. This
approach ensures that the human genes will be expressed at
physiologic levels and avoids the confounding problems with
traditional transgenic animal experiments, including multiple
copy insertions that affect expression levels, integration of genes
near other transcriptional control elements that can adversely
influence expression, and/or random knock-out of genes that
affect phenotype.

MATERIALS AND METHODS
Transgenic Mice
All experiments with mice were approved by the Mayo Institu-
tional Animal Care and Use Committee. The complete des-
cription of vector construction, transformation of ES cells and
mice generation are provided in the supplemental data
(Appendix S1). The homozygous hIAPP wild-type knock-in
mice are designated WW (where W = the wild-type hIAPP
allele) and the homozygous S20G mutant hIAPP knock-in mice
are designated GG (where G = the S20G mutant hIAPP allele).
GW knock-in mice represent the heterozygous mice containing
a wild-type and S20G mutant hIAPP allele. The control mice

400

(a)

Marke
r

Brain
Heart

Lu
ng

Liv
er

Kidney

Spleen

Sto
mach

Duodenum

Small I
ntesti

ne

Colon
Muscl

e

Fa
t

Pancre
as

RT Contro
l

Genomic 
DNA

Mouse Insulin 1
Mouse β-Actin

Human IAPPWT (Exons 2, 3)
400

Si
ze

 (b
p) 300

300
200
200

(b)

(c) 30

10

5

0
MM GGWW MM GGWW

FemalesMales

15

20

C
irc

ul
at

in
g 

IA
PP

 (p
m

ol
/L

)

25

Figure 1 | Characterization of hIAPP expression in WW mice. (a) Distribution of hIAPPWT mRNA in various tissues from the W/W knock in mouse
via RT-PCR using IAPP (upper panel), insulin (middle panel) and b-actin (lower panel) primers. (b) Sequences of mouse IAPP, hIAPPWT, and hIAPPS20G

mRNAs derived from cDNA sequence of RT-PCR products of WW and GG mouse pancreas RNAs. Sequences within the boxed region represent the
sequences engineered into the mouse genomic IAPP locus. (c) Circulating levels of randomly selected wild-type and S20G mutant hIAPP and mIAPP
in MM, WW and GG mice that were maintained on control diet. The striped area represents the typical range of values from the literature.33–35 Error
bars represent S.D.
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designated MM (for mouse IAPP allele) were derived from the
matings of MW · MW and MG · MG heterozygotes. All mice
(MM, WW and GG) were backbred five generations against
C57Bl/6 mice to 96.9% congenicity to diminish potential con-
founding effects that can arise due to 129Sv/E chimaerism.25,26

Oral Glucose Tolerance Testing
Animals were fasted for 12 h and given 1 g/kg glucose via oral
gavage. Blood (30 lL) was obtained from the tail vein at 0, 5,
10, 15 and 30 min for glucose and insulin determinations. Blood
(5 lL) was obtained at 60 and 120 min for glucose determina-
tions. Insulin was determined using a mouse insulin ELISA
assay (Crystal Chem, Inc., Downers Grove, IL, USA). Glucose
was determined by glucometer (OneTouch Ultra, Lifescan,
Milpitas, CA, USA).

Dietary Regimes and Experimental Design
Male MM, WW and GW mice were divided into groups (48
animals/group) and fed either a control diet consisting of stan-
dard mouse chow (PicoLab Rodent Diet 20, Brentwood, MO,
USA), containing 4.5% fat or a high fat diet, consisting of
42% fat (TD.88137; Harlan Laboratories, Madison, WI, USA)
beginning at 3 months of age. At each time point (3, 9, 6, 12,
and 15 months) a minimum of four mice were killed and ana-
lyzed. GW mice were employed to reflect the genotype of
humans carrying a single copy of the mutated S20G hIAPP
allele. Animals were continued on this diet for a period of
15 months and were subjected to OGTT examination at
3 month intervals.

Pancreas Isolation and Tissue Fixation
Tissue samples were collected from four mice of each group at
3, 6, 9, 12, 15 and 18 months of age. Mice were anesthetized
with 2.0% isoflurane during harvesting to minimize degradation
of critical cellular components. The left lobe of the pancreas was
teased free of surrounding tissue and fat. The pancreas was
rapidly weighed, immediately fixed in 10% phosphate buffered
formalin, and embedded in paraffin. In some cases, the pancreas
was divided by transverse sectioning with half of the pancreas
being placed in Trumps solution for electron microscopy pro-
cessing and the other half fixed in 10% phosphate buffered
formalin and embedded in paraffin.

Immunohistochemistry
To evaluate b cell mass, b cell apoptosis, and b cell replication,
adjacent serial 5 lm sections were immunostained for insulin,
caspase-3, and Ki67, respectively. Insulin immunostaining was
achieved using polyclonal guinea pig anti-porcine insulin
(DAKO, Carpenteria, CA, USA). Anti-activated caspase-3 anti-
body (CP 229) detecting the large fragment (17/19 kDa) of acti-
vated caspase-3 was obtained from Biocare Medical (Concord,
CA, USA).27 The anti-Ki67 antibody (M7240) was obtained
from DAKO. Immunostaining was performed at the Mayo
TACMA core laboratories. Stained slides were then scanned

with a NanoZoomer Digital Pathology System (C9600) instru-
ment. In each case pancreata from four animals were obtained
and 3–4 sections separated by 200 lm were analyzed for each
animal, resulting in the assessment of a total of 100–300 islets
for each condition. The areas of all islets were measured in each
section and the results were reported as events/lm2 · 106.

Determination of b Cell Mass
Assessment of b cell mass at 6 and 12 months was determined by
measuring the relative cross sectional area of insulin-positive
tissue compared to the area of exocrine tissue. The percent islet
area was then multiplied by the weight of the pancreas.28 Five
5 lm sections of each pancreas obtained at 200 lm intervals were
stained for insulin and digital images captured as described above.
Islet and total pancreas areas were analyzed using WebSlide Brow-
ser 4.00 software (Bacus Laboratories, Lombard, IL, USA). Total b
cell mass was then determined by the equation: Massb cell =P

[(islet area/total pancreas area)]sections · pancreas weight (mg).

Sequence Analysis
Blood from randomly selected 6 month old male and female
mice was obtained by heart puncture for hIAPP analysis and
the pancreas resected for total RNA isolation (TRIzol; Invitro-
gen, Carlsbad, CA, USA). Circulating levels of IAPP were deter-
mined in blood samples using a human amylin ELISA
(Millipore, Billerica, MA, USA) assay kit. Total RNA was reverse
transcribed using AMV reverse transcriptase and the cDNAs
were sequenced.
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within parentheses represent the number of animals in each group.
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Congo Red and Thioflavin S staining
Thioflavin S staining was performed on 5 lm sections according
to the method of Hull et al.29 Congo Red staining was per-
formed according to the method of Puchtler et al.30

Statistical Analyses
All timed series data was subjected to repeated measures analysis
of variance (ANOVA). All other data was analyzed by ANOVA and
differences among groups were determined by post hoc Bonfer-
roni-Dunn t tests. Differences were deemed significant with

P < 0.05. Statistical analyses were performed using SAS software
(SunOS 9.1.3) (SAS Institute Inc., Cary, NC, USA).

RESULTS
Characterization of WW and GG-KI Mice
RNA from various tissues obtained from the WW mice were
analyzed by RT-PCR for the presence of hIAPP and mouse insu-
lin mRNA (Figure 1a). Human IAPPWT and mouse insulin were
detected only in the pancreas of WW mice. Identical results were
obtained with RT-PCR analyses of RNA from GG-KI mice
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(not shown). We verified the sequences of the human IAPPWT

and hIAPPS20G mRNAs via RT-PCR and cDNA sequencing in
the WW and GG mice (Figure 1b). These data confirm the
appropriate genotypic and tissue-specific expression patterns of
the WW and GG mice. Using an IAPP-specific ELISA, which
detects rat IAPP (identical to mouse IAPP) and both hIAPPWT

and hIAPPS20G equally well13, circulating hIAPP levels were
determined in 6 month old male and female animals in the fed
state (Figure 1c). No significant differences in circulating IAPP
levels were observed in the MM, WW and GG mice.

Effect of Diet on Glucose Homeostasis in WW and GW Mice
Male MM, WW and GW mice were maintained on either stan-
dard mouse chow or a high fat diet and followed for a period of
15 months. GW animals gained about 8% (P < 0.003) more
weight than either MM or WW mice throughout the period of
observation when maintained on control diet (Figure 2a and b).
When maintained on high fat diet WW mice were slightly, but
significantly smaller than either MM or GW mice (P < 0.0086)
(Figure 2a and b). The reasons for these differences in weight
gain among the WW and GW animals are unknown.

Figure 3a and b show glucose and insulin values, respectively,
from representative OGTT analyses for all animals on control
and high fat diet at 9 months. Figure 3c and d show the areas
under the glucose curves for mice on control and high fat diet,
respectively, and were compiled from the OGTT analyses over
the entire study period. WW and GW mice exhibit mild glucose
intolerance on both control (P <0.007) (Figure 3c) and high fat
diet (P < 0.004) (Figure 3d). This mild glucose intolerance man-
ifests early by 3–6 months of age and persists throughout the
study period. Figure 3e and f show the areas under the insulin
curves for mice on control and high fat diet, respectively and
were compiled from the OGTT analyses over the entire study
period. On both control and high fat diet there were no signifi-
cant differences in insulin secretion between MM and WW or
MM and GW mice. However, under both dietary regimes,
the WW mice did secrete significantly less insulin (15.5%,
P < 0.0297 on control diet and 31.2%, P < 0.0132 on high fat
diet) than the GW mice.

Figure 4a and b depict fasting blood glucose levels of mice
prior to administration of glucose at 3-month intervals through-
out the study period. No differences were observed in fasting
blood glucose levels for MM, WW and GW mice on the control
diet (Figure 4b). On the high fat diet both WW and GW mice
exhibited significantly elevated fasting blood glucose levels
(15–20%) compared to MM mice. For the WW mice on a high
fat diet the fasting blood glucose remained at about 200 mg/dL
between 3–15 months. However, fasting blood glucose levels
for both the MM and GW mice began to decline at about
9 months and decreased to approximately 150 mg/dL at
15 months of age, equivalent to the levels of 3-month-old ani-
mals. While the MM and GW mice adjust to the high fat diet
by lowering their fasting blood glucose level, the WW appear to
be less capable of responding.

Islet Histomorphometry
Figure 5 shows representative slides of insulin, activated cas-
pase-3 and Ki67 immunohistochemical staining that were used
for histomorphometric analysis of b cell mass,28 islet cell apop-
tosis,31 and islet cell replication,32 respectively (Figure 6). At
6 months on the high fat diet only the GW mice had signifi-
cantly elevated their b cell mass by 1.8-fold, whereas the MM
and WW mice displayed 1.5- and 1.1-fold increases in b cell
mass, respectively, that were not significant (Figure 6a). While
the data suggest there might have been a delay in acquiring
increased b cell mass in the WW mice at 6 months, and thus
inadequate compensation, by 12 months it had increased to the
same level as the MM control mice. Thus the MM, WW and
GW mice increased their b cell mass by 3.2-, 3.4-, and 1.8-fold,
respectively, after 12 months on a high fat diet (Figure 6a) and
did not differ, although the GW mice showed a trend for some-
what decreased b cell mass relative to MM and WW mice.

b cell replication and apoptosis in the pancreata of the MM,
WW and GW mice were assessed by immunostaining for the
Ki67 antigen and activated caspase-3 (Figure 6b and c). At
6 months there was increased replication in islets of MM, WW,
and GW mice maintained on high fat diet, but the increase was
only significant for the GW mice. The increased islet replication
in the GW mice was reflected in significantly increased b cell
mass at 6 months (Figure 6a). By 12 months no differences
were observed in islet replication of MM, WW or GW mice,
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although at this time the MM and WW animals had clearly
increased their b cell mass significantly (Figure 6a). No differ-
ences could be detected in the apoptotic rates of islet cells in the
MM or WW mice. However, islet apoptosis rates of the GW
mice on high fat diet at 6 months were significantly lower than
the MM or WW mice. Thus increased proliferation and
decreased apoptosis have likely contributed to the increased b
cell mass at 6 months for the GW animals on high fat diet. The
relative ratio of islet cell proliferation to apoptosis is shown in
Figure 6d. Only MM mice on control diets have islet prolifera-
tion-apoptosis ratios that approach unity. At 6 months on a
high fat diet all groups of mice exhibit markedly increased
proliferation, whereas at 12 months on a high fat diet all
groups exhibit markedly decreased proliferation and increased
apoptosis.

Islet tissue sections stained with Congo Red and thioflavin S
were negative for islet amyloid at all ages (3, 6, 9, 12 and
15 months). Separate tissue samples were prepared for electron
microscopy (EM) and stained by immunogold for either insulin,
hIAPP, or both, to identify islets. Examination of over 300 inde-
pendent EM images failed to reveal evidence for amyloid fibers
within islets.

DISCUSSION
We have previously demonstrated with in vitro experiments that
the mutant hIAPPS20G is more amyloidogenic and cytotoxic
than hIAPPWT when expressed in COS-1 cells.13 We have
hypothesized that the increased amyloidogenicity and cytotoxic-
ity of hIAPPS20G are interdependent pathogenic factors that
contribute to the early onset type 2 diabetes seen in some
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Figure 5 | Representative insulin (a, d, g), Ki67 (b, e, h) and activated caspase-3 (c, f, g) immunostaining. Arrows indicate positively stained nuclei.
Images are from MM (a–c), WW (d–f), and GW (g–i) mice maintained on high fat diet for 12 months.
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individuals that possess the hIAPP S20G mutation.13 In order to
directly test this hyposthesis in a physiologic model, we
knocked-in the hIAPPS20G and hIAPPWT genes into the mIAPP

locus, thereby replacing the mIAPP with the two human coun-
terparts. This model provides control of hIAPP gene copy num-
ber and insertion site, ensuring equivalent expression of WT
and S20G mutant hIAPPs via the endogenous mouse IAPP
promoter, which was directly demonstrated (Figure 1) and
shown to be comparable to previous reports.33–35 All mice have
been backbred five generations against C57Bl/6 mice to mini-
mize the confounding contributions of genetic chimaerism asso-
ciated with the generation of targeted gene replacement in
mice.25,26

Contrary to our expectations, intraislet amyloid was undetect-
able in either the WW or GW animals using traditional Congo
Red and Thioflavin S staining, and extensive analysis of electron
microscopic images of insulin and/or hIAPP immunogold-
labeled sections (not shown). This result contrasts with that of
Westermark et al.,36 who demonstrated islet amyloid formation
in hIAPP transgenic mice that were crossed with a mouse IAPP
(mIAPP) knock-out mouse to yield mice expressing hIAPP
without mIAPP. In this case the male hIAPP(+/+)/mIAPP()/))
mice developed amyloid sooner than hIAPP transgenic mice
retaining the mIAPP gene. We do not know what explains the
difference between these two models, although it may be related
to efficiency of hIAPP expression, since hIAPP is under the
direction of the more efficient rat insulin II promoter in the
transgenic hIAPP(+/+)/mIAPP()/)) animals. Alternatively, dif-
ferences in genetic background may contribute to amyloidogen-
esis in ways that are not yet understood. In this regard it is
noteworthy that mouse strain introduces marked differences in
the appearance of islet amyloid deposits among several hIAPP
transgenic models.1 Also in support of the concept that genetic
factors contribute to amyloidogenesis, we did observe amyloid
fibrils in our 15 month old 129Sv/E chimaeric founder animals.
Amyloid fibrils were observed within WW and GW founders
on both control and high fat diet as shown in the supplemental
data (Appendix S2). It is important to note that the penetrance
of the S20G mutation with premature onset type 2 diabetes is
low and appears to be restricted to a genetic background pre-
disposing to normal onset type 2 diabetes,10 although it is
unknown whether these genetic differences affect amyloidogene-
sis in these patients.

Despite the absence of amyloid within the knock-in mice,
both WW and GW mice exhibit mild glucose intolerance with-
out evidence of insulin insufficiency on both control and high
fat diets. Based on the fasting blood glucose data (Figure 4), the
WW mice appear to be somewhat more glucose intolerant up
to 15 months, while GW mice appear to be able to ameliorate
their glucose intolerance after 9 months. The WW mice secreted
significantly less insulin than GW mice, but not MM control
mice, and no differences in b cell mass was observed except that
at 6 months GW mice had significantly elevated b cell mass
(Figure 6a). The latter effect may help to explain the decreased
insulin secretion observed in WW mice compared to GW mice.
In addition, the decreased insulin secretion in WW vs GW
might be explained if the S20G mutation exhibited suppressed
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vated caspase-3 immunostaining (c) and ratio of Ki67 to caspase-3 (d).
Ki67 and caspase 3 staining was only assessed within islets. b cell
Mass = Insulin-Stained Islet Area/Total Tissue Area x Pancreas Weight.
b cell and tissue areas were assessed using WebSlide Browser Software
(Bacus Laboratories, Inc., Lombard, IL, USA). Data is from examination of
five tissue sections at 200 lm intervals for each of four mice in each
genotype and diet. Upper case letters represent the statistical classes
derived from ANOVA and post hoc Bonferonni-Dunn t tests. Groups with
unique letter designations are significantly different at the P < 0.05
level. For example, A is significantly different from B, but neither A or B
is different from AB.
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insulinostatic actions relative to wild-type hIAPP.37,38 All mice
compensated equally to the high fat diet by increasing their b
cell mass approximately 3-fold. This result contrasts to several
transgenic rodent models whereby over-expression of hIAPP
results in loss of b cell mass.22,23,39,40 These differences may be
the result of over-expression of hIAPP in the transgenic models
and/or due to differences in genetic background that may con-
tribute to amyloidogenesis.

After 6 months on high fat diet replication rates (Figure 6b)
and b cell mass (Figure 6a) were significantly elevated only in
GW animals. The rates of islet apoptosis did not differ signifi-
cantly among the MM and WW mice at 6 months and did not
differ by diet. However, the GW mice exhibited significantly
lower rates of islet apoptosis at 6 months compared to MM
mice on control and high fat diet, respectively (Figure 6c). This,
coupled with higher replication in the GW animals at 6 months,
may account for the significant gain in b cell mass in this group.
In addition, islet replication exceeded islet apoptosis at 6 months
(Figure 6d), indicating that at this time b cell mass appears to
be controlled largely at the level of replication. At 12 months
replication rates in all groups on the high fat diet had decreased
and were not different from animals on the control diet. More-
over, at 12 months islet apoptosis exceeded replication, suggest-
ing that the maximal b cell mass may have been achieved
before 12 months. While the shift in favor of apoptosis would
predictably lead to decreasing b cell mass as the mice continue
to age, this did not lead to abnormal control of fasting blood
glucose the MM and GW animals at 15 months (Figure 4).

In summary, both wild-type and mutant S20G hIAPP induce
glucose intolerance in mice when expressed at physiologic
levels under conditions that do not result in intraislet amyloid
deposition. These data suggest that that hIAPP is a factor that
contributes to the pre-diabetic condition, particularly glucose
intolerance. The hIAPP-induced glucose intolerance in the
absence of compensatory insulin secretion resembles diabetes in
humans. The reasons for lack of compensatory insulin secretion
remain unknown, but could be related to differences in physio-
logic actions of hIAPP or a b cell dysfunction. A major question
that is raised by the current studies is whether certain genetic
and/or environmental conditions exist that may enhance the
toxic potential of the amyloidogenic pathway.
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SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of this article:

Appendix S1 | Materials and Methods, providing detailed description of vector construction for the homologous replacement of the
mouse IAPP gene for the wild-type and S20G mutant hIAPP in mouse embryonic stem cells and subsequent generation of the
wild-type and S20G mutant hIAPP knock-in mice.
Appendix S2 | Intraislet amyloidogenesis in WW and GW chimaeric 129Sv/E founder mice at 15 months.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors.
Any queries (other than missing material) should be directed to the corresponding author for the article.
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