### ORIGINAL RESEARCH

### The demographic and treatment options for patients with large cell neuroendocrine carcinoma of the lung

Jianjun Gu<sup>1</sup> | Daohui Gong<sup>1</sup> | Yuxiu Wang<sup>2</sup> | Beiyuan Chi<sup>2</sup> | Jun Zhang<sup>1</sup> | Suwei Hu<sup>3,4</sup> | Lingfeng Min<sup>1</sup>

<sup>1</sup>Clinical Medical College of Yangzhou University, Department of Respiratory Medicine, Subei People's Hospital, Yangzhou, China

<sup>2</sup>Department of Respiratory Medicine, Subei People's Hospital, Dalian Medical University, Yangzhou, China

<sup>3</sup>The Affiliated Hospital of Yangzhou University, Yangzhou Women and Children Hospital, Yangzhou, China

<sup>4</sup>Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medicial School, Nanjing, China

### Correspondence

Lingfeng Min, Clinical Medical College of Yangzhou University, Department of Respiratory Medicine, Subei People's Hospital, Yangzhou 225001, Jiangsu, China.

Email: minlingfeng@126.com

### **Funding information**

National Natural Science Foundation of China, Grant/Award Number: 81870033, 81302016, 81302015

### **Abstract**

**Introduction:** Lung large cell neuroendocrine carcinoma (L-LCNEC) is a rare, aggressive tumor, for which the optimal treatment strategies for LCNEC have not yet been established. In order to explore how to improve the outcome of prognosis for patients with LCNEC, this study investigated the effect of different treatments based on the data obtained from the Surveillance, Epidemiology, and End Results (SEER) database.

**Methods:** A total of 2594 LCNEC cases with conditional information were extracted from SEER database. Propensity Score Matching (PSM) method was conducted to reduce possible bias between groups. One-way ANOVA was used to test the differences of characteristics between groups. Univariate and multivariate Cox proportional hazard models were applied to identify prognostic factors.

Results: Clinicopathologic characteristics including gender, age, TNM stage, T stage, N stage, and M stage were all identified as independent prognostic factors. Surgery benefited stage I, II, and III LCNEC patients' prognoses. The combination treatment that surgery combining with chemotherapy was the optimal treatment for stage I, II, and III LCENC patients. Compared with palliative treatment, stage IV patients obtained better prognoses with the treatment of radiation, chemotherapy, or chemoradiation. When comparing the effect of the three treatments (radiation, chemotherapy, and chemoradiation) in achieving better prognosis for stage IV patients, chemotherapy alone was better than the other treatments.

**Conclusion:** Surgery combining with chemotherapy was the optimal treatment for stage I, II, and III LCNEC patients; chemotherapy alone achieves more benefit than the other treatments for stage IV patients.

### KEYWORDS

chemotherapy, large cell neuroendocrine carcinoma, prognosis, radiation, surgery

Abbreviations: LCNEC, large cell neuroendocrine carcinoma; PSM, propensity score matching; SEER, Surveillance, Epidemiology, and End Results.

Jianjun Gu and Daohui Gong contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2019 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

### 1 | INTRODUCTION

Large cell neuroendocrine carcinoma (LCNEC) of the lung, accounting for 3% of all lung cancer cases, is a rare, aggressive tumor with poor prognosis and high recurrence rate. LCNEC closely correlated with smoke status, almost 90% of all the cases have smoke history. LCNEC was classified as a subtype of large cell carcinomas according to the World Health Organization (WHO) classification of lung tumors, while, in the 2015 WHO classification, it was classified as a neuroendocrine neoplasm along with smallcell lung cancer. Considering LCNEC shares many similarities with SCLC, such as therapeutic targets and gene alterations, 2 SCLC-based chemotherapy was expected to achieve similar effectiveness in patients with LCNEC. Unfortunately, the reported prognoses of LCNEC treated with SCLC-based chemotherapy are heterogeneous.<sup>3,4</sup> By now, no standard treatment regimen has been developed. LCNEC should be treated in a manner similar to that used for small cell lung cancer or similar to NSCLC is still on debating.

Considering the optimum treatment for LCNEC patients remain undefined, to improve prognoses in patients with LCNEC, this study investigated the effect of different treatments for LCNEC based on the data obtained from the SEER database.

### 2 | MATERIALS AND METHODS

### 2.1 | Database and date extraction items

The SEER database is an opening database containing frequency and survival data. SEER\*Stat 8.5.0 software was applied for data extraction. The variables including CS Schema v0204+ (lung), ICD-0-3 Hist/behav (8013/3), and AJCC 6th were used to extract the cases diagnosed with LCNEC registered in the SEER database.

The demographic and clinicopathologic characteristics were selected as follows: race, age, gender, grade, AJCC stage, AJCC T stage, AJCC N stage, AJCC M stage, surgery, radiation, chemotherapy, follow-up time, and outcome status. Based on the information of cases provided by the SEER database, we defined overall survival (OS) as the time from diagnosis to death from any cause, and patients alive were censored at the time of the last recording. We deleted the cases that do not contain all these data and obtained 2594 cases for further analysis.

### 2.2 | Propensity score matching (PSM)

A propensity 1:1 matched analysis was conducted to reduce possible bias to a minimum in this study. Propensity

TABLE 1 Patients' characteristics

| Variable         Alive         Dead         Total           Race         White         463         1708         2171           Black         71         242         313           Others/unknown         24         86         110           Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Value (2594) |      |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|------|-------|
| Race         White       463       1708       2171         Black       71       242       313         Others/unknown       24       86       110         Age         <60       198       548       746         ≥60       360       1488       1848         Gender         Male       284       1181       1465         Female       274       855       1129         Grade       1       3       9       12         II       10       21       31         III       10       21       31         IV       76       213       289         Unknown       217       1161       1378         TNM       1       129       290       569         II       46       89       135         III       104       421       525         IV       129       1236       1365         T       2       22       24         T1       192       351       543         T2       234       593       827         T3       24       113                                                                                                                                                                                      | Variable |              |      | Total |
| White       463       1708       2171         Black       71       242       313         Others/unknown       24       86       110         Age            <60       198       548       746         ≥60       360       1488       1848         Gender            Male       284       1181       1465         Female       274       855       1129         Grade            I       3       9       12         II       10       21       31         III       10       21       31         IV       76       213       289         Unknown       217       1161       1378         TNM        1       279       290       569         II       46       89       135         III       104       421       525         IV       129       1236       1365         T       Tx       20       203       223         TO       2       22                                                                                                                                                                                                                                                               |          | 211110       | Deud | 1000  |
| Black Others/unknown       71       242       313         Others/unknown       24       86       110         Age         <60       198       548       746         ≥60       360       1488       1848         Gender       Babe       1848       1848         Male       284       1181       1465         Female       274       855       1129         Grade       I       3       9       12         II       10       21       31         III       10       21       31         III       252       632       884         IV       76       213       289         Unknown       217       1161       1378         TNM       I       279       290       569         II       46       89       135         III       104       421       525         IV       129       1236       1365         T       Tx       20       203       223         TO       2       22       24         T1       192       351       543         T                                                                                                                                                                   |          | 463          | 1708 | 2171  |
| Others/unknown       24       86       110         Age         <60       198       548       746         ≥60       360       1488       1848         Gender       Bale       284       1181       1465         Female       274       855       1129         Grade       I       3       9       12         II       10       21       31         III       10       21       31         III       252       632       884         IV       76       213       289         Unknown       217       1161       1378         TNM       I       279       290       569         II       46       89       135         III       104       421       525         IV       129       1236       1365         T       Tx       20       203       223         TO       2       22       24         T1       192       351       543         T2       234       593       827         T3       24       113       137         T4 </td <td></td> <td></td> <td></td> <td></td>                                                                                                                                 |          |              |      |       |
| Age         <60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |              |      |       |
| <60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |              |      |       |
| ≥60       360       1488       1848         Gender       Male       284       1181       1465         Female       274       855       1129         Grade       II       3       9       12       11         II       10       21       31       111       252       632       884         IV       76       213       289       289       290       569       213       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289       289 <td></td> <td>198</td> <td>548</td> <td>746</td> |          | 198          | 548  | 746   |
| Gender         Male       284       1181       1465         Female       274       855       1129         Grade       I       3       9       12         II       10       21       31         III       252       632       884         IV       76       213       289         Unknown       217       1161       1378         TNM       I       279       290       569         II       46       89       135         III       104       421       525         IV       129       1236       1365         T       Tx       20       203       223         TO       2       22       24         T1       192       351       543         T2       234       593       827         T3       24       113       137         T4       86       754       840         N       N       7       90       97         N0       344       616       960         N1       54       184       238         N2                                                                                                                                                                                                   |          |              |      |       |
| Male       284       1181       1465         Female       274       855       1129         Grade       I         I       3       9       12         II       10       21       31         III       252       632       884         IV       76       213       289         Unknown       217       1161       1378         TNM       I       279       290       569         II       46       89       135         III       104       421       525         IV       129       1236       1365         T       Tx       20       203       223         T0       2       22       24         T1       192       351       543         T2       234       593       827         T3       24       113       137         T4       86       754       840         N       N       7       90       97         N0       344       616       960         N1       54       184       238         N2                                                                                                                                                                                                        |          |              |      |       |
| Grade         I       3       9       12         II       10       21       31         III       252       632       884         IV       76       213       289         Unknown       217       1161       1378         TNM       1       279       290       569         II       46       89       135         III       104       421       525         IV       129       1236       1365         T       Tx       20       203       223         T0       2       22       24         T1       192       351       543         T2       234       593       827         T3       24       113       137         T4       86       754       840         N       N       7       90       97         N0       344       616       960         N1       54       184       238         N2       118       800       918         N3       35       346       381         M       M0       429                                                                                                                                                                                                        |          | 284          | 1181 | 1465  |
| Grade         I       3       9       12         II       10       21       31         III       252       632       884         IV       76       213       289         Unknown       217       1161       1378         TNM       1       279       290       569         II       46       89       135         III       104       421       525         IV       129       1236       1365         T       Tx       20       203       223         T0       2       22       24         T1       192       351       543         T2       234       593       827         T3       24       113       137         T4       86       754       840         N       N       7       90       97         N0       344       616       960         N1       54       184       238         N2       118       800       918         N3       35       346       381         M       M0       429                                                                                                                                                                                                        | Female   | 274          | 855  | 1129  |
| II       10       21       31         III       252       632       884         IV       76       213       289         Unknown       217       1161       1378         TNM       I       279       290       569         II       46       89       135         III       104       421       525         IV       129       1236       1365         T       Tx       20       203       223         T0       2       22       24         T1       192       351       543         T2       234       593       827         T3       24       113       137         T4       86       754       840         N       N       7       90       97         N0       344       616       960         N1       54       184       238         N2       118       800       918         N3       35       346       381         M       M0       429       800       1229                                                                                                                                                                                                                                    | Grade    |              |      |       |
| II       10       21       31         III       252       632       884         IV       76       213       289         Unknown       217       1161       1378         TNM       T       161       1378         TNM       T       279       290       569         II       46       89       135         III       104       421       525         IV       129       1236       1365         T       Tx       20       203       223         T0       2       22       24         T1       192       351       543         T2       234       593       827         T3       24       113       137         T4       86       754       840         N       N       7       90       97         N0       344       616       960         N1       54       184       238         N2       118       800       918         N3       35       346       381         M       M0       429       800       1229                                                                                                                                                                                           | I        | 3            | 9    | 12    |
| III       252       632       884         IV       76       213       289         Unknown       217       1161       1378         TNM       II       279       290       569         II       46       89       135         III       104       421       525         IV       129       1236       1365         T       Tx       20       203       223         T0       2       22       24         T1       192       351       543         T2       234       593       827         T3       24       113       137         T4       86       754       840         N       N       7       90       97         N0       344       616       960         N1       54       184       238         N2       118       800       918         N3       35       346       381         M       M0       429       800       1229                                                                                                                                                                                                                                                                         | II       | 10           | 21   |       |
| Unknown       217       1161       1378         TNM       I       279       290       569         II       46       89       135         III       104       421       525         IV       129       1236       1365         T       Tx       20       203       223         T0       2       22       24         T1       192       351       543         T2       234       593       827         T3       24       113       137         T4       86       754       840         N       N       7       90       97         N0       344       616       960         N1       54       184       238         N2       118       800       918         N3       35       346       381         M       M0       429       800       1229                                                                                                                                                                                                                                                                                                                                                            | III      | 252          | 632  | 884   |
| TNM  I 279 290 569  II 46 89 135  III 104 421 525  IV 129 1236 1365  T  Tx 20 203 223  T0 2 22 24  T1 192 351 543  T2 234 593 827  T3 24 113 137  T4 86 754 840  N  Nx 7 90 97  N0 344 616 960  N1 54 184 238  N2 118 800 918  N3 35 346 381  M  M0 429 800 1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |              |      |       |
| I       279       290       569         II       46       89       135         III       104       421       525         IV       129       1236       1365         T       TX       20       203       223         T0       2       22       24         T1       192       351       543         T2       234       593       827         T3       24       113       137         T4       86       754       840         N       N       7       90       97         N0       344       616       960         N1       54       184       238         N2       118       800       918         N3       35       346       381         M       M0       429       800       1229                                                                                                                                                                                                                                                                                                                                                                                                                      | Unknown  | 217          | 1161 | 1378  |
| II       46       89       135         III       104       421       525         IV       129       1236       1365         T       T       2       203       223         T0       2       22       24         T1       192       351       543         T2       234       593       827         T3       24       113       137         T4       86       754       840         N       N       7       90       97         N0       344       616       960         N1       54       184       238         N2       118       800       918         N3       35       346       381         M       M0       429       800       1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TNM      |              |      |       |
| III     104     421     525       IV     129     1236     1365       T     TX     20     203     223       T0     2     22     24       T1     192     351     543       T2     234     593     827       T3     24     113     137       T4     86     754     840       N       Nx     7     90     97       N0     344     616     960       N1     54     184     238       N2     118     800     918       N3     35     346     381       M     M0     429     800     1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I        | 279          | 290  | 569   |
| IV       129       1236       1365         T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T       T <t< td=""><td>II</td><td>46</td><td>89</td><td>135</td></t<>                                                               | II       | 46           | 89   | 135   |
| T     Tx     20     203     223       T0     2     22     24       T1     192     351     543       T2     234     593     827       T3     24     113     137       T4     86     754     840       N       Nx     7     90     97       N0     344     616     960       N1     54     184     238       N2     118     800     918       N3     35     346     381       M     M0     429     800     1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | III      | 104          | 421  | 525   |
| Tx       20       203       223         T0       2       22       24         T1       192       351       543         T2       234       593       827         T3       24       113       137         T4       86       754       840         N       N       7       90       97         N0       344       616       960         N1       54       184       238         N2       118       800       918         N3       35       346       381         M       M0       429       800       1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IV       | 129          | 1236 | 1365  |
| TO     2     22     24       T1     192     351     543       T2     234     593     827       T3     24     113     137       T4     86     754     840       N       Nx     7     90     97       N0     344     616     960       N1     54     184     238       N2     118     800     918       N3     35     346     381       M       M0     429     800     1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T        |              |      |       |
| T1     192     351     543       T2     234     593     827       T3     24     113     137       T4     86     754     840       N     N     7     90     97       N0     344     616     960       N1     54     184     238       N2     118     800     918       N3     35     346     381       M       M0     429     800     1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tx       | 20           | 203  | 223   |
| T2       234       593       827         T3       24       113       137         T4       86       754       840         N       N       7       90       97         N0       344       616       960         N1       54       184       238         N2       118       800       918         N3       35       346       381         M         M0       429       800       1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T0       | 2            | 22   | 24    |
| T3       24       113       137         T4       86       754       840         N       N       7       90       97         N0       344       616       960         N1       54       184       238         N2       118       800       918         N3       35       346       381         M         M0       429       800       1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T1       | 192          | 351  | 543   |
| T4     86     754     840       N     7     90     97       N0     344     616     960       N1     54     184     238       N2     118     800     918       N3     35     346     381       M       M0     429     800     1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T2       | 234          | 593  | 827   |
| N     7     90     97       N0     344     616     960       N1     54     184     238       N2     118     800     918       N3     35     346     381       M       M0     429     800     1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Т3       | 24           | 113  | 137   |
| Nx     7     90     97       N0     344     616     960       N1     54     184     238       N2     118     800     918       N3     35     346     381       M       M0     429     800     1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T4       | 86           | 754  | 840   |
| N0     344     616     960       N1     54     184     238       N2     118     800     918       N3     35     346     381       M       M0     429     800     1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N        |              |      |       |
| N1     54     184     238       N2     118     800     918       N3     35     346     381       M       M0     429     800     1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Nx       | 7            | 90   | 97    |
| N2     118     800     918       N3     35     346     381       M       M0     429     800     1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N0       | 344          | 616  | 960   |
| N3     35     346     381       M     M0     429     800     1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N1       | 54           | 184  | 238   |
| M<br>M0 429 800 1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N2       | 118          | 800  | 918   |
| M0 429 800 1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N3       | 35           | 346  | 381   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M        |              |      |       |
| M1 129 1236 1365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M0       | 429          | 800  | 1229  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1       | 129          | 1236 | 1365  |

scores were calculated using logistic regression model for each patient in the comparing groups. The covariates included in the regression were race, age, gender, grade, AJCC stage, AJCC T stage, AJCC N stage, AJCC M stage, surgery, radiation, and chemotherapy. Patients in two groups were matched based on the propensity score (0.02).

Covariates balance between two groups was examined by  $\chi^2$  test. The survival comparisons were then performed for the propensity score-matched patients using the Kaplan-Meier method.

### 2.3 | Statistical analysis

SPSS (24.0) was used for statistical analysis. Overall survival was estimated using the Kaplan-Meier method and compared

TABLE 2 Univariate and multivariate analyses for LCNEC patients

|                | Univariate Cox regression |         | <b>Multivariate Cox regression</b> |         |  |
|----------------|---------------------------|---------|------------------------------------|---------|--|
| Characteristic | HR (95% CI)               | P value | HR (95% CI)                        | P value |  |
| Race           |                           |         |                                    |         |  |
| White          | 1.00 Reference            |         | 1.00 Reference                     |         |  |
| Black          | 0.930 (0.813-1.064)       | 0.290   | 0.911 (0.795-1.044)                | 0.181   |  |
| Others         | 1.013 (0.816-1.259)       | 0.904   | 0.832 (0.669-1.034)                | 0.097   |  |
| Age            |                           |         |                                    |         |  |
| <60            | 1.00 Reference            |         | 1.00 Reference                     |         |  |
| ≥60            | 1.306 (1.184-1.440)       | 0.000   | 1.396 (1.264-1.542)                | 0.000   |  |
| Gender         |                           |         |                                    |         |  |
| Male           | 1.00 Reference            |         | 1.00 Reference                     |         |  |
| Female         | 0.816 (0.747-0.891)       | 0.000   | 0.847 (0.775-0.926)                | 0.000   |  |
| Grade          |                           |         |                                    |         |  |
| I              | 1.00 Reference            |         | 1.00 Reference                     |         |  |
| II             | 0.760 (0.348-1.660)       | 0.492   | 1.007 (0.460-2.205)                | 0.985   |  |
| III            | 0.901 (0.467-1.740)       | 0.757   | 1.205 (0.623-2.332)                | 0.579   |  |
| IV             | 0.974 (0.500-1.899)       | 0.938   | 1.283 (0.657-2.505)                | 0.466   |  |
| Unknown        | 1.524 (0.791-2.937)       | 0.208   | 1.450(0.751-2.800)                 | 0.268   |  |
| TNM            |                           |         |                                    |         |  |
| I              | 1.00 Reference            |         | 1.00 Reference                     |         |  |
| II             | 1.678 (1.323-2.129)       | 0.000   | 1.525 (1.145-2.032)                | 0.004   |  |
| III            | 2.591 (2.228-3.014)       | 0.000   | 1.762 (1.444-2.149)                | 0.000   |  |
| IV             | 5.488 (4.796-6.279)       | 0.000   | 3.831 (3.199-4.590)                | 0.000   |  |
| T              |                           |         |                                    |         |  |
| T0             | 1.00 Reference            |         | 1.00 Reference                     |         |  |
| T1             | 0.593 (0.385-0.913)       | 0.017   | 1.456 (0.940-2.256)                | 0.093   |  |
| T2             | 0.831 (0.543-1.272)       | 0.395   | 1.638 (1.065-2.518)                | 0.025   |  |
| Т3             | 1.124 (0.712-1.774)       | 0.617   | 1.985 (1.250-3.154)                | 0.004   |  |
| T4             | 1.779 (1.164-2.720)       | 0.008   | 2.145 (1.400-3.285)                | 0.000   |  |
| Tx             | 1.640 (1.056-2.546)       | 0.028   | 1.650 (1.060-2.569)                | 0.027   |  |
| N              |                           |         |                                    |         |  |
| N0             | 1.00 Reference            |         | 1.00 Reference                     |         |  |
| N1             | 1.621 (1.374-1.913)       | 0.000   | 1.118 (0.919-1.359)                | 0.264   |  |
| N2             | 2.357 (2.119-2.623)       | 0.000   | 1.253 (1.096-1.432)                | 0.001   |  |
| N3             | 3.076 (2.685-3.523)       | 0.000   | 1.433 (1.226-1.674)                | 0.000   |  |
| Nx             | 3.609 (2.884-4.516)       | 0.000   | 1.516 (1.188-1.934)                | 0.001   |  |
| M              |                           |         |                                    |         |  |
| M0             | 1.00 Reference            |         | 1.00 Reference                     |         |  |
| M1             | 3.373 (3.068-3.708)       | 0.000   | 3.831 (3.199-4.590)                | 0.000   |  |

Bold indicates the significance value (P < 0.05).

TABLE 3 Characteristics among surgical and non-surgical early stage LCNEC patients before and after propensity score matching

|                 | Before PSM analysis    |                    |       | After PSM analysis    | 8                 |       |
|-----------------|------------------------|--------------------|-------|-----------------------|-------------------|-------|
| Characteristics | Non-Surgical (n = 107) | Surgical (n = 597) |       | Non-Surgical (n = 76) | Surgical (n = 76) | P     |
| Race            | (11 107)               | (11 0)))           | 0.105 | (11 / 0)              | (12 70)           | 0.158 |
| White           | 85                     | 503                |       | 59                    | 49                |       |
| Black           | 20                     | 71                 |       | 16                    | 21                |       |
| Others          | 2                      | 23                 |       | 1                     | 6                 |       |
| Age             |                        |                    | 0.001 |                       |                   | 0.339 |
| ≥60             | 91                     | 736                | 0002  | 61                    | 56                | 0.000 |
| <60             | 16                     | 251                |       | 15                    | 20                |       |
| Gender          |                        |                    | 0.946 |                       |                   | 0.050 |
| Male            | 55                     | 309                | 0.510 | 39                    | 27                | 0.050 |
| Female          | 52                     | 288                |       | 37                    | 49                |       |
| Grade           |                        | 200                | 0.000 |                       | .,                | 0.181 |
| I               | 0                      | 3                  | 0.000 | 0                     | 2                 | 0.101 |
| II              | 1                      | 16                 |       | 1                     | 3                 |       |
| III             | 33                     | 327                |       | 30                    | 18                |       |
| IV              | 12                     | 102                |       | 11                    | 15                |       |
| Unknown         | 61                     | 149                |       | 34                    | 38                |       |
| TNM             | 01                     | 149                | 0.509 | 54                    | 36                | 0.851 |
| I               | 84                     | 485                | 0.309 | 57                    | 58                | 0.651 |
| II              | 23                     | 112                |       | 19                    | 18                |       |
| T               | 23                     | 112                | 0.032 | 19                    | 10                | 0.628 |
|                 | 0                      | 0                  | 0.032 | 0                     | 0                 | 0.028 |
| Tx              |                        |                    |       |                       |                   |       |
| T0              | 0                      | 0                  |       | 0                     | 0                 |       |
| T1              | 44                     | 284                |       | 30                    | 32                |       |
| T2              | 51                     | 287                |       | 36                    | 36                |       |
| T3              | 12                     | 26                 |       | 10                    | 8                 |       |
| T4              | 0                      | 0                  | 0.055 | 0                     | 0                 | 0.000 |
| N               | •                      |                    | 0.255 | 0                     | 0                 | 0.808 |
| Nx              | 0                      | 0                  |       | 0                     | 0                 |       |
| NO              | 96                     | 511                |       | 67                    | 66                |       |
| N1              | 11                     | 86                 |       | 9                     | 10                |       |
| N2              | 0                      | 0                  |       | 0                     | 0                 |       |
| N3              | 0                      | 0                  | 0.000 | 0                     | 0                 |       |
| Radiation       |                        |                    | 0.000 |                       |                   | 1.000 |
| Yes             | 62                     | 52                 |       | 31                    | 31                |       |
| No              | 45                     | 545                |       | 45                    | 45                |       |
| Chemotherapy    |                        |                    | 0.366 |                       |                   | 0.184 |
| Yes             | 39                     | 191                |       | 25                    | 33                |       |
| No              | 68                     | 406                |       | 51                    | 43                |       |

by log-rank test. One-way ANOVA was used to test the statistical difference of race, age, gender, grade, AJCC stage, AJCC T stage, AJCC N stage, AJCC M stage, surgery, radiation, and chemotherapy between the groups. Univariate and

multivariate Cox proportional hazard models, with hazard ratios (HRs) and 95% confidence intervals (CIs) reported, were applied to identify factors that associated with OS. The values of P < 0.05 were considered statistically significant.



prognoses than non-surgery patients in stage III A LCNEC patients (P = 0.005). D, Surgery patients achieved better prognoses than non-surgery patients in stage III A LCNEC patients after PSM was conducted (P = 0.001). E, Surgery patients achieved better prognoses than non-surgery patients in stage III B LCNEC patients (P = 0.009). F, Surgery patients achieved better prognoses than non-(P = 0.000). B, Surgery patients achieved better prognoses than non-surgery patients in stage I and II LCNEC patients after PSM was conducted (P = 0.000). C, Surgery patients achieved better Surgery benefited stage I, II, and III LCNEC patients' prognoses. A, Surgery patients achieved better prognoses than non-surgery patients in stage I and II LCNEC patients surgery patients in stage III B LCNEC patients after PSM was conducted (P=0.017) FIGURE 1

|                          | Value   |          |           |          |  |  |
|--------------------------|---------|----------|-----------|----------|--|--|
| Treatment                | Stage I | Stage II | Stage III | Stage IV |  |  |
| Palliative treatment     | 25      | 8        | 85        | 337      |  |  |
| Radiation                | 32      | 3        | 33        | 184      |  |  |
| Chemotherapy             | 6       | 6        | 79        | 346      |  |  |
| Chemoradiation           | 21      | 6        | 188       | 411      |  |  |
| Surgery                  | 354     | 37       | 47        | 23       |  |  |
| Surgery + Radiation      | 13      | 2        | 5         | 14       |  |  |
| Surgery + Chemotherapy   | 107     | 47       | 41        | 18       |  |  |
| Surgery + Chemoradiation | 11      | 26       | 47        | 32       |  |  |

**TABLE 4** Treatment values of LCNEC patients in different stages

### 3 | RESULTS

### 3.1 | Patients' characteristics

The characteristics of the 2594 LCNEC patients were shown in Table 1. 2171 LCNEC patients were white people, the elderly patients were accounted for 1848, and there were 1465 males and 1129 females. The patients with stage I, II, III, and IV were 569, 135, 525, and 1365, respectively.

## 3.2 | Identifying adverse prognosis factors for LCNEC patients

LCNEC is an aggressive tumor with grim prognosis; moreover, the diagnostic rate was increasing in recent years (Figure S1A).

It is necessary to explore the factors that influenced long-term survival of patients with LCNEC. Univariate and multivariate Cox regression analyses were performed to determine prognostic factors (Table 2). The results suggested that race, grade, T1, and N1 were not considered as independent adverse prognostic factors for LCNEC patients. However, other characteristics including gender [male vs female, 1 vs 0.847 (0.775-0.926)], age [ $<60 \text{ vs} \ge 60$ , 1 vs 1.396 (1.264-1.542)], TNM stage{[I vs II, 1 vs 1.525 (1.145-2.032)]; [I vs III, 1 vs 1.762 (1.444-2.149)]; [I vs IV, 1 vs 3.831 (3.199-4.590)]}, T stage {[T0 vs T2, 1 vs 1.638 (1.065-2.518)]; [T0 vs T3, 1 vs 1.985 (1.250-3.154)]; [T0 vs T4, 1 vs 2.145 (1.400-3.285)] ; [T0 vs Tx, 1 vs 1.650 (1.060-2.569)]}, N stage {[N0 vs N2, 1 vs 1.253 (1.096-1.432)]; [N0 vs N3, 1 vs 1.433 (1.226-1.674)]; [N0 vs Nx, 1 vs 1.516



**FIGURE 2** The combination treatment of surgery and chemotherapy benefited stage I, II, and III LCNEC patients better than the other treatments. A, Compared with surgery alone, surgery combining with chemoradiation had no benefit for stage I, II, and III LCNEC patients (P = 0.555). B, Surgery combining with chemoradiation achieved better prognosis than surgery alone in stage I, II, and III LCNEC patients after PSM was conducted (P = 0.044). C, Surgery combining with chemotherapy achieved better prognosis than surgery combining with radiation (P = 0.035). D, Compared with surgery combining with chemoradiation, surgery combining with chemotherapy achieved better prognosis for patients (P = 0.025). E, Surgery combining with chemotherapy did not have significant difference when compared with surgery combining with chemoradiation in improving patients' prognoses after the differences of variables between the groups were reduced (P = 0.499). F, Survival comparisons between treatments showed surgery combining with chemotherapy have advantage in improving patients' prognoses than the other treatments (P = 0.033)

**TABLE 5** Characteristics among surgery alone (S) and surgery combining with chemoradiation (S + C + R) in stage I, II, and III LCNEC patients before and after propensity score matching

|                 | Before PSM ana | Before PSM analysis  |       | After PSM ana | lysis                |      |
|-----------------|----------------|----------------------|-------|---------------|----------------------|------|
| Characteristics | S (n = 438)    | S + C + R $(n = 84)$ | P     | S (n = 73)    | S + C + R $(n = 73)$ | P    |
| Race            |                |                      | 0.380 |               |                      | 0.89 |
| White           | 368            | 73                   |       | 62            | 62                   |      |
| Black           | 54             | 7                    |       | 6             | 7                    |      |
| Others          | 16             | 4                    |       | 5             | 4                    |      |
| Age             |                |                      | 0.001 |               |                      | 1.00 |
| ≥60             | 338            | 50                   |       | 47            | 47                   |      |
| <60             | 100            | 34                   |       | 26            | 26                   |      |
| Gender          |                |                      | 0.465 |               |                      | 0.39 |
| Male            | 226            | 47                   |       | 49            | 44                   |      |
| Female          | 212            | 37                   |       | 24            | 29                   |      |
| Grade           |                |                      | 0.229 |               |                      | 0.19 |
| I               | 3              | 1                    |       | 1             | 1                    |      |
| II              | 13             | 2                    |       | 2             | 2                    |      |
| III             | 236            | 51                   |       | 33            | 40                   |      |
| IV              | 59             | 13                   |       | 12            | 13                   |      |
| Unknown         | 127            | 17                   |       | 25            | 17                   |      |
| TNM             |                |                      | 0.000 |               |                      | 0.41 |
| Stage I         | 354            | 11                   |       | 12            | 11                   |      |
| Stage II        | 37             | 26                   |       | 33            | 21                   |      |
| Stage III       | 47             | 47                   |       | 28            | 41                   |      |
| Т               |                |                      | 0.000 |               |                      | 0.26 |
| Tx              | 0              | 0                    |       | 0             | 0                    |      |
| Т0              | 2              | 0                    |       | 1             | 0                    |      |
| T1              | 232            | 21                   |       | 33            | 20                   |      |
| T2              | 172            | 35                   |       | 20            | 28                   |      |
| Т3              | 11             | 15                   |       | 8             | 14                   |      |
| T4              | 21             | 13                   |       | 11            | 11                   |      |
| N               |                |                      | 0.000 |               |                      | 0.73 |
| Nx              | 0              | 0                    |       | 0             | 0                    |      |
| N0              | 376            | 27                   |       | 27            | 25                   |      |
| N1              | 32             | 20                   |       | 27            | 15                   |      |
| N2              | 28             | 36                   |       | 19            | 32                   |      |
| N3              | 2              | 1                    |       | 0             | 1                    |      |

(1.188-1.934)]}, M stage [M0 vs M1, 1 vs 3.831 (3.199-4.590)] were all identified as independent prognostic factors.

## 3.3 | Surgery benefit stage I, II, and III LCNEC patients' prognosis

When cancer patients are diagnosed at early stage (stage I and II), patients were recommended to perform surgery to

obtain better prognosis. To determine whether surgical treatment would benefit the early stage LCNEC patients' prognoses or not, we firstly divided the stage I and II patients into surgery and non-surgery group, PSM method was conducted to reduce the differences of variables between groups (Table 3). We found surgery benefit early stage patients' prognoses (Figure 1A,B). We also found stage III LCNEC patients who undergone surgery had better prognoses than the non-surgery

**TABLE 6** Characteristics among surgery combining with radiation (S + R) and surgery combining with chemotherapy (S + C) in stage I, II, and III LCNEC patients

|                 | Before PSM analysis |                 |       |
|-----------------|---------------------|-----------------|-------|
| Characteristics | S + R (n = 20)      | S + C (n = 195) | P     |
| Race            |                     |                 | 0.716 |
| White           | 16                  | 167             |       |
| Black           | 2                   | 20              |       |
| Others          | 2                   | 8               |       |
| Age             |                     |                 | 0.164 |
| ≥60             | 15                  | 115             |       |
| <60             | 5                   | 80              |       |
| Gender          |                     |                 | 0.061 |
| Male            | 7                   | 111             |       |
| Female          | 13                  | 84              |       |
| Grade           |                     |                 | 0.199 |
| I               | 0                   | 0               |       |
| II              | 0                   | 4               |       |
| III             | 9                   | 108             |       |
| IV              | 5                   | 45              |       |
| Unknown         | 6                   | 38              |       |
| TNM             |                     |                 | 0.260 |
| Stage I         | 13                  | 107             |       |
| Stage II        | 2                   | 47              |       |
| Stage III       | 5                   | 41              |       |
| T               |                     |                 | 0.833 |
| Tx              | 0                   | 1               |       |
| T0              | 0                   | 0               |       |
| T1              | 7                   | 52              |       |
| T2              | 7                   | 115             |       |
| Т3              | 5                   | 13              |       |
| T4              | 1                   | 14              |       |
| N               |                     |                 | 0.338 |
| Nx              | 0                   | 0               |       |
| N0              | 15                  | 112             |       |
| N1              | 4                   | 45              |       |
| N2              | 1                   | 27              |       |
| N3              | 0                   | 1               |       |

patients (Figure 1C-F, Tables S1 and S2). In clinic, the stage IV lung cancer patients are no longer suitable to perform surgery; however, we found that there are still some stage IV LCNEC patients have undergone surgery (Table 4). Because the variable differences such as age (P = 0.000), radiation (P = 0.029), and chemotherapy (P = 0.025) between the groups were exist even PSM method was conducted (Figure S1B,C, Table S3), it is uncertainty that whether surgery would benefit the prognoses or not for stage IV LCNEC

patients. The results demonstrated that surgery benefited the stage I, II, and III LCNEC patients; patients at those stages should perform surgery to achieve better prognoses.

# 3.4 | Combination treatment of surgery and chemotherapy benefit stage I, II, III LCNEC patients more than the other treatments

LCNEC is an aggressive tumor with high rate of recurrence even after complete surgical resection in its early stage; therefore, surgery alone is not sufficient to treat patients with LCNEC. We firstly compared surgery alone with surgery combining with radiation, surgery combining with chemotherapy and surgery combining with chemoradiation, respectively. When surgery alone compared with the combination treatment of surgery and radiation or the combination treatment of surgery and chemotherapy, there were differences of variables between the groups (Tables S4 and S5); it was uncertainty that whether those combination treatments would achieve better benefit than surgery alone or not (Figure S2A-D). However, we found, compared with surgery alone, the combination treatment of surgery and chemoradiation achieved better prognoses for stage I, II, and III LCNEC patients (Figure 2A,B, Table 5).

To explore the optimal treatment for stage I, II, and III LCNEC patients, we then compared the prognoses of the three groups (surgery combining with chemotherapy, surgery combining with radiation, and surgery combining with chemoradiation), respectively. We found, compared with the combination treatment of surgery and radiation, surgery combining with chemotherapy showed advantage to improve patients' prognoses (Figure 2C, Table 6); however, addition of radiation did not achieve better prognosis (Figur2D-F, Table 7). The results demonstrated that the optimal treatment for stage I, II, and III LCNEC patients was surgery combining with chemotherapy.

Although surgery benefit stage I, II, and III LCNEC patients' prognoses, there were still some patients did not perform surgery (Table 4). To achieve better prognosis for non-surgery stage I, II, and III patients, we compared the effect of palliative treatment, radiation, chemotherapy, and chemoradiation for those patients; the prognoses of the under treated patients were better than the palliative treatment group (Figure S3A-F, Tables S6-S8). There was no difference between chemotherapy and radiation in proving patients' prognoses (Figure 3A,B, Table 8). Combination treatment of radiation and chemotherapy achieved better prognosis than chemotherapy alone (Figure 3C,D, Table 9). Interestingly, when compared the combination treatment of radiation and chemotherapy with radiation alone, the combination treatment did not show advantage to achieve better prognoses for patients (Figure S4A,B, Table S9).

**TABLE 7** Characteristics among surgery combining with chemotherapy (S + C) and surgery combining with chemoradiation (S + C + R) in stage I, II, and III LCNEC patients before and after propensity score matching

| Characteristics | Before PSM analysis |                      |       | After PSM analysis |                      |       |
|-----------------|---------------------|----------------------|-------|--------------------|----------------------|-------|
|                 | S + C (n = 195)     | S + C + R $(n = 84)$ | p     | S + C (n = 73)     | S + C + R $(n = 73)$ | P     |
| Race            |                     |                      | 0.691 |                    |                      | 0.633 |
| White           | 167                 | 73                   |       | 66                 | 64                   |       |
| Black           | 20                  | 7                    |       | 4                  | 5                    |       |
| Others          | 8                   | 4                    |       | 3                  | 4                    |       |
| Age             |                     |                      | 0.932 |                    |                      | 0.407 |
| ≥60             | 115                 | 50                   |       | 39                 | 44                   |       |
| <60             | 80                  | 34                   |       | 34                 | 29                   |       |
| Gender          |                     |                      | 0.881 |                    |                      | 0.51  |
| Male            | 111                 | 47                   |       | 35                 | 39                   |       |
| Female          | 84                  | 37                   |       | 38                 | 34                   |       |
| Grade           |                     |                      | 0.795 |                    |                      | 0.488 |
| I               | 0                   | I                    |       | 0                  | 1                    |       |
| II              | 4                   | 2                    |       | 2                  | 2                    |       |
| III             | 108                 | 51                   |       | 48                 | 46                   |       |
| IV              | 45                  | 13                   |       | 12                 | 10                   |       |
| Unknown         | 38                  | 17                   |       | 11                 | 14                   |       |
| TNM             |                     |                      | 0.000 |                    |                      | 0.287 |
| Stage I         | 107                 | 11                   |       | 11                 | 11                   |       |
| Stage II        | 47                  | 26                   |       | 37                 | 24                   |       |
| Stage III       | 41                  | 47                   |       | 25                 | 38                   |       |
| Т               |                     |                      | 0.015 |                    |                      | 0.000 |
| Tx              | 1                   | 0                    |       | 0                  | 0                    |       |
| Т0              | 0                   | 0                    |       | 0                  | 0                    |       |
| T1              | 52                  | 21                   |       | 32                 | 14                   |       |
| T2              | 115                 | 35                   |       | 29                 | 33                   |       |
| Т3              | 13                  | 15                   |       | 11                 | 14                   |       |
| T4              | 14                  | 13                   |       | 1                  | 12                   |       |
| N               |                     |                      | 0.000 |                    |                      | 0.065 |
| Nx              | 0                   | 0                    |       | 0                  | 0                    |       |
| N0              | 122                 | 27                   |       | 18                 | 25                   |       |
| N1              | 45                  | 20                   |       | 34                 | 19                   |       |
| N2              | 27                  | 36                   |       | 21                 | 28                   |       |
| N3              | 1                   | 1                    |       | 0                  | 1                    |       |

# 3.5 | Chemotherapy alone benefited stage IV LCNEC patients more than the other treatments

As shown in Table 4, the main treatments for stage IV patients were palliative treatment, chemotherapy, radiation, and chemoradiation, we attempted to explore the

better treatment for the late stage patients. Compared with palliative treatment, chemotherapy achieved better OS (Figure 4A). To reduce the difference of variable between the groups (age, P=0.030), PSM method was conducted, 308 patients were matched. After PSM, variables between the two groups had no significant differences (Table 10). Chemotherapy treatment has longer OS



**FIGURE 3** The effect of treatments in non-surgical stage I, II, and III LCNEC patients. A, Radiation achieved better benefit than chemotherapy for the non-surgical stage I, II, and III LCNEC patients (P = 0.023). B, After the differences of variables between the groups were reduced, compared with chemotherapy, radiation did not showed advantage in proving patients' prognoses (P = 0.839). C, Chemoradiation achieved better prognosis than chemotherapy alone (P = 0.000). D, Chemoradiation showed advantage than chemotherapy in improving patients' prognoses after PSM method was conducted (P = 0.003)

than palliative treatment (Figure 4B). Furthermore, radiation (Figure S4C, Table S10) and chemoradiation (Figure S4D, Table S11) also achieved better prognoses than palliative treatment.

To determine which one of the treatments (chemotherapy, radiation, chemoradiation) benefits more for the late stage patients, we firstly compared radiation with chemotherapy. Chemotherapy benefited patients more than radiation (Figure 4C, Table 11). Then, we compared radiation with chemoradiation after PSM, 184 patients were matched (Table S12). As shown in Figure 4D,E, chemoradiation obtained better benefit than radiation alone. While compared with chemotherapy alone, the combination treatment chemoradiation did not achieve more benefit (Figure 4F, Figure S4E, Table S13). The results demonstrated that chemotherapy alone was the better treatment than palliative treatment, radiation, and chemoradiation for the stage IV LCNEC patients.

### 4 | DISCUSSION

The optimal treatment strategies for LCNEC patients have not yet been established. In order to improve prognoses in patients with LCNEC, this study investigated the effect of different treatments based on the data obtained from the SEER database. We found that age, gender, TNM stage, T stage, N stage, and M stage were all independent prognostic factors. Surgery benefited stage I, II, and III LCNEC patients' prognoses. Surgery combining with chemotherapy was the optimal treatment for stage I, II, and III LCNEC patients. Chemotherapy alone achieved better prognosis than palliative treatment, radiation, or chemoradiation for stage IV LCNEC patients.

Surgical treatment can achieve satisfactory results for suitable patients. As for LCNEC, the patients who suit to perform surgery have no standard by now. Surgical resection was indicated for stage I and II patients to obtain better

298

**TABLE 8** Characteristics among chemotherapy (C) and radiation (R) in stage I, II, and III LCNEC patients before and after propensity score matching

| Characteristics | Before PSM analysis |            |       | After PSM anal | lysis      |       |
|-----------------|---------------------|------------|-------|----------------|------------|-------|
|                 | R (n = 68)          | C (n = 91) | P     | R (n = 41)     | C (n = 41) | P     |
| Race            |                     |            | 0.751 |                |            | 0.883 |
| White           | 54                  | 70         |       | 33             | 33         |       |
| Black           | 11                  | 16         |       | 6              | 7          |       |
| Others          | 3                   | 5          |       | 2              | 1          |       |
| Age             |                     |            | 0.224 |                |            | 0.538 |
| ≥60             | 55                  | 66         |       | 32             | 34         |       |
| <60             | 13                  | 25         |       | 9              | 7          |       |
| Gender          |                     |            | 0.280 |                |            | 0.513 |
| Male            | 36                  | 56         |       | 23             | 20         |       |
| Female          | 32                  | 35         |       | 18             | 21         |       |
| Grade           |                     |            | 0.277 |                |            | 0.243 |
| I               | 1                   | 0          |       | 1              | 0          |       |
| II              | 1                   | 1          |       | 0              | 0          |       |
| III             | 21                  | 32         |       | 13             | 16         |       |
| IV              | 6                   | 15         |       | 4              | 7          |       |
| Unknown         | 39                  | 43         |       | 23             | 18         |       |
| TNM             |                     |            | 0.000 |                |            | 0.888 |
| Stage I         | 32                  | 6          |       | 6              | 6          |       |
| Stage II        | 3                   | 6          |       | 3              | 2          |       |
| Stage III       | 33                  | 79         |       | 32             | 33         |       |
| Τ               |                     |            | 0.000 |                |            | 0.610 |
| Tx              | 6                   | 7          |       | 6              | 1          |       |
| T0              | 1                   | 0          |       | 1              | 0          |       |
| T1              | 21                  | 6          |       | 7              | 3          |       |
| T2              | 21                  | 23         |       | 8              | 14         |       |
| Т3              | 3                   | 8          |       | 3              | 2          |       |
| T4              | 16                  | 47         |       | 16             | 21         |       |
| N               |                     |            | 0.000 |                |            | 0.737 |
| Nx              | 1                   | 2          |       | 1              | 2          |       |
| N0              | 36                  | 17         |       | 10             | 10         |       |
| N1              | 2                   | 4          |       | 2              | 3          |       |
| N2              | 21                  | 43         |       | 20             | 15         |       |
| N3              | 8                   | 25         |       | 8              | 11         |       |

prognosis.<sup>5</sup> However, the 1-year OS rate of stage I, II, and III ALCNEC patients who underwent surgery was better (88.9%) than those who did not undergo surgery (51.9%).<sup>6</sup> Except the stages reported before, in this study, we also found stage III B LCNEC patients achieved benefit upon surgical treatment. Comparing with previous studies, tumor patients exhibiting both LCNEC and the other kind of tumors as well as the lung metastasis tumors were removed; all the patients analyzed in this study were pure LCNEC

patients. Moreover, a bigger cohort of patients was analyzed, and the differences of variables between the groups that may influence the effect of surgery for patients' prognoses were reduced. Thus, we demonstrate that stage I, II, and III LCNEC patients should perform surgery to achieve better prognosis.

LCNEC is an aggressive tumor with high rate of recurrence even after complete surgical resection in its early stage;<sup>7</sup> therefore, surgery alone is not sufficient to treat

**TABLE 9** Characteristics among chemotherapy (C) and chemoradiation (C + R) in stage I, II, and III LCNEC patients before and after propensity score matching

|                 | Before PSM analysis |                 |       | After PSM ana | llysis         |       |
|-----------------|---------------------|-----------------|-------|---------------|----------------|-------|
| Characteristics | C (n = 91)          | C + R (n = 215) | P     | C (n = 89)    | C + R (n = 89) | P     |
| Race            |                     |                 | 0.503 |               |                | 0.846 |
| White           | 70                  | 174             |       | 69            | 68             |       |
| Black           | 16                  | 33              |       | 15            | 16             |       |
| Others          | 5                   | 8               |       | 5             | 5              |       |
| Age             |                     |                 | 0.521 |               |                | 0.203 |
| ≥60             | 66                  | 148             |       | 64            | 56             |       |
| <60             | 25                  | 67              |       | 25            | 33             |       |
| Gender          |                     |                 | 0.223 |               |                | 0.650 |
| Male            | 56                  | 116             |       | 54            | 51             |       |
| Female          | 35                  | 99              |       | 35            | 38             |       |
| Grade           |                     |                 | 0.178 |               |                | 0.75  |
| I               | 0                   | 1               |       | 0             | 1              |       |
| II              | 1                   | 1               |       | 1             | 1              |       |
| III             | 32                  | 68              |       | 30            | 35             |       |
| IV              | 15                  | 22              |       | 15            | 10             |       |
| Unknown         | 43                  | 123             |       | 43            | 42             |       |
| TNM             |                     |                 | 0.185 |               |                | 0.67  |
| Stage I         | 6                   | 21              |       | 6             | 4              |       |
| Stage II        | 6                   | 6               |       | 6             | 5              |       |
| Stage III       | 79                  | 188             |       | 77            | 80             |       |
| T               |                     |                 | 0.019 |               |                | 0.94  |
| Tx              | 7                   | 12              |       | 7             | 7              |       |
| T0              | 0                   | 2               |       | 0             | 0              |       |
| T1              | 6                   | 38              |       | 6             | 6              |       |
| T2              | 23                  | 59              |       | 23            | 21             |       |
| Т3              | 8                   | 17              |       | 8             | 13             |       |
| T4              | 47                  | 87              |       | 45            | 42             |       |
| N               |                     |                 | 0.566 |               |                | 1.00  |
| Nx              | 2                   | 2               |       | 2             | 0              |       |
| N0              | 17                  | 42              |       | 15            | 20             |       |
| N1              | 4                   | 8               |       | 4             | 7              |       |
| N2              | 43                  | 124             |       | 43            | 45             |       |
| N3              | 25                  | 39              |       | 25            | 17             |       |

patients with LCNEC, and adjuvant treatment such as chemotherapy or radiation is necessary. Prophylactic cranial irradiation could decrease the incidence of brain metastasis and improve survival rate in patients with SCLC.<sup>8</sup> Pulmonary neuroendocrine carcinoma patients with brain metastasis could be effectively treated with either whole-brain radiation therapy or stereotactic radiosurgery (SRS).<sup>9</sup> However, radiation did not make any benefit in improving LCNEC

patients' prognosis. <sup>10</sup> Chemoradiation achieved better overall response rate than chemotherapy alone; <sup>11</sup> unlike the result found in literature, in our study, we found that chemoradiation did not make may benefit in proving stage I, II, and III surgery patients' prognoses or stage IV patients' prognoses. The effect of radiation for LCNEC patients is limited and should be reconsidered thoroughly. Contrast with radiation, chemotherapy showed significant advantage. For example,



FIGURE 4 Chemotherapy alone achieved better prognosis than the other treatments in Stage IV LCNEC patients. A, Chemotherapy achieved better prognosis than palliative treatment (P = 0.000). B, Chemotherapy achieved better prognosis than palliative treatment after PSM was conducted (P = 0.000). C, Chemotherapy achieved better prognosis than radiation treatment (P = 0.000). D, Chemoradiation achieved better prognosis than radiation (P = 0.000). E, Chemoradiation achieved better prognosis than radiation after PSM was conducted (P = 0.000). F, Chemoradiation did not have advantage than chemotherapy alone in proving patients' prognoses (P = 0.688)

**TABLE 10** Characteristics among palliative treatment (P) and chemotherapy (C) in stage IV LCNEC patients before and after propensity score matching

|                 | Before PSM ana | llysis      |       | After PSM anal | ysis        |       |
|-----------------|----------------|-------------|-------|----------------|-------------|-------|
| Characteristics | P (n = 337)    | C (n = 411) | P     | P (n = 308)    | C (n = 308) | P     |
| Race            |                |             | 0.536 |                |             | 0.789 |
| White           | 294            | 292         |       | 266            | 267         |       |
| Black           | 31             | 35          |       | 30             | 27          |       |
| Others          | 12             | 16          |       | 12             | 14          |       |
| Age             |                |             | 0.030 |                |             | 0.843 |
| ≥60             | 271            | 254         |       | 243            | 245         |       |
| <60             | 66             | 92          |       | 65             | 63          |       |
| Gender          |                |             | 0.842 |                |             | 0.934 |
| Male            | 203            | 211         |       | 194            | 193         |       |
| Female          | 134            | 135         |       | 114            | 115         |       |
| Grade           |                |             | 0.067 |                |             | 0.604 |
| I               | 0              | 4           |       | 0              | 4           |       |
| II              | 1              | 2           |       | 1              | 0           |       |
| III             | 67             | 87          |       | 66             | 74          |       |
| IV              | 23             | 30          |       | 21             | 23          |       |
| Unknown         | 247            | 223         |       | 220            | 207         |       |
| T               |                |             | 0.970 |                |             | 1.000 |
| Tx              | 54             | 60          |       | 50             | 50          |       |
| T0              | 4              | 3           |       | 4              | 3           |       |
| T1              | 34             | 29          |       | 30             | 24          |       |
| T2              | 80             | 93          |       | 76             | 84          |       |
| T3              | 13             | 13          |       | 12             | 12          |       |
| T4              | 152            | 148         |       | 136            | 135         |       |
| N               |                |             | 0.654 |                |             | 1.000 |
| Nx              | 35             | 21          |       | 31             | 18          |       |
| N0              | 58             | 54          |       | 49             | 67          |       |
| N1              | 31             | 24          |       | 30             | 21          |       |
| N2              | 149            | 157         |       | 139            | 140         |       |
| N3              | 64             | 90          |       | 59             | 82          |       |

when patients were diagnosed at stage I, II, and III, surgery combining with chemotherapy was the optimal treatment; in stage IV patients, chemotherapy alone achieved better prognosis than the others treatment. Our study demonstrated advantageous position of chemotherapy in improving patients' prognoses for LCNEC.

In conclusion, through this study, we recommend that stage I, II, and III LCNEC patients should perform surgery to obtain better prognoses, surgery combining with chemotherapy is the optimal treatment for stage I, II, and III LCNEC patients, and chemotherapy alone is better than the other treatments for stage IV patients.

### **ACKNOWLEDGMENTS**

We thank all the participants for their help in this study. This work was supported by the National Natural Science Foundation of China [grant numbers 81870033, 81302016, 81302015], the Six Talent Peaks Project of Jiangsu Province [Grant number WSN-106], the Medical Scientific Research Foundation of Jiangsu Province of China [Grant numbers QNRC2016340], the Foundation for High-level Talents during the 13th Fiveyear Plan Period of Yangzhou, China [Grant numbers ZDRC201866].

**TABLE 11** Characteristics among radiation (R) and chemotherapy (C) in stage IV LCNEC patients before propensity score matching

|                 | Before PSM as |             |       |
|-----------------|---------------|-------------|-------|
| Characteristics | R (n = 184)   | C (n = 346) | P     |
| Race            |               |             | 0.301 |
| White           | 151           | 292         |       |
| Black           | 24            | 35          |       |
| Others          | 9             | 16          |       |
| Age             |               |             | 0.503 |
| ≥60             | 140           | 254         |       |
| <60             | 44            | 92          |       |
| Gender          |               |             | 0.111 |
| Male            | 99            | 211         |       |
| Female          | 85            | 135         |       |
| Grade           |               |             | 0.565 |
| I               | 0             | 4           |       |
| II              | 1             | 2           |       |
| III             | 42            | 87          |       |
| IV              | 14            | 30          |       |
| Unknown         | 127           | 223         |       |
| T               |               |             | 0.384 |
| Tx              | 23            | 60          |       |
| Т0              | 3             | 3           |       |
| T1              | 19            | 29          |       |
| T2              | 49            | 93          |       |
| Т3              | 10            | 13          |       |
| T4              | 80            | 148         |       |
| N               |               |             | 0.066 |
| Nx              | 13            | 21          |       |
| N0              | 47            | 54          |       |
| N1              | 16            | 24          |       |
| N2              | 77            | 157         |       |
| N3              | 31            | 90          |       |

### CONFLICT OF INTEREST

There is no conflict of interest in this manuscript.

#### DATA AVAILABILITY STATEMENT

The datasets used during the current study are available from the corresponding author on reasonable request.

### ORCID

Jianjun Gu https://orcid.org/0000-0003-3521-0908

#### REFERENCES

- Eichhorn F, Dienemann H, Muley T, Warth A, Hoffmann H. Predictors of survival after operation among patients with large cell neuroendocrine carcinoma of the lung. *Ann Thorac Surg.* 2015;99:983-989. https://doi.org/10.1016/j.athoracsur.2014.10.015.
- Miyoshi T, Umemura S, Matsumura Y, et al. Genomic profiling of large-cell neuroendocrine carcinoma of the lung. *Clin Cancer Res.* 2017;23:757-765. https://doi.org/10.1158/1078-0432. CCR-16-0355.
- Naidoo J, Santos-Zabala ML, Iyriboz T, et al. Large cell neuroendocrine carcinoma of the lung: clinico-pathologic features, treatment, and outcomes. *Clin Lung Cancer*. 2016;17:e121-e129. https://doi.org/10.1016/j.cllc.2016.01.003.
- Sun J-M, Ahn M-J, Ahn JS, et al. Chemotherapy for pulmonary large cell neuroendocrine carcinoma: similar to that for small cell lung cancer or non-small cell lung cancer? *Lung Cancer*. 2012;77:365-370. https://doi.org/10.1016/j.lungcan.2012.04.009.
- Kawase A, Nagai K. Treatment strategy for neuroendocrine carcinoma of the lung. Gan To Kagaku Ryoho. 2009;36:1619-1622.
- Ustaalioglu B, Ulas A, Esbah O, et al. Large cell neuroendocrine carcinoma: retrospective analysis of 24 cases from four oncology centers in Turkey. *Thorac Cancer*. 2013;4:161-166. https://doi. org/10.1111/j.1759-7714.2012.00129.x.
- Matsuura N, Nakashima N, Igai H, et al. Prognosis of surgically treated large cell neuroendocrine carcinoma. *KyobuGeka*. 2011;64:187-190.
- Cao KJ, Huang HY, Tu MC, et al. Long-term results of prophylactic cranial irradiation for limited-stage small-cell lung cancer in complete remission. *Chin Med J (Engl)*. 2005;118:1258-1262.
- Kotecha R, Zimmerman A, Murphy ES, et al. Management of brain metastasis in patients with pulmonary neuroendocrine carcinomas. *Technol Cancer Res Treat*. 2016;15:566-572. https://doi. org/10.1177/1533034615589033.
- Rieber J, Schmitt J, Warth A, et al. Outcome and prognostic factors of multimodal therapy for pulmonary large-cell neuroendocrine carcinomas. *Eur J Med Res.* 2015;20:64. https://doi.org/10.1186/ s40001-015-0158-9.
- 11. Shimada Y, Niho S, Ishii G, et al. Clinical features of unresectable high-grade lung neuroendocrine carcinoma diagnosed using biopsy specimens. *Lung Cancer*. 2012;75:368-373. https://doi.org/10.1016/j.lungcan.2011.08.012.

### SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

**How to cite this article:** Gu J, Gong D, Wang Y, et al. The demographic and treatment options for patients with large cell neuroendocrine carcinoma of the lung. *Cancer Med.* 2019;8:2979–2993. <a href="https://doi.org/10.1002/cam4.2188">https://doi.org/10.1002/cam4.2188</a>