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Abstract: Network analysis provides a rich framework to model complex phenomena, such as human
brain connectivity. It has proven efficient to understand their natural properties and design predictive
models. In this paper, we study the variability within groups of networks, i.e., the structure of
connection similarities and differences across a set of networks. We propose a statistical framework
to model these variations based on manifold-valued latent factors. Each network adjacency matrix
is decomposed as a weighted sum of matrix patterns with rank one. Each pattern is described as
a random perturbation of a dictionary element. As a hierarchical statistical model, it enables the
analysis of heterogeneous populations of adjacency matrices using mixtures. Our framework can
also be used to infer the weight of missing edges. We estimate the parameters of the model using
an Expectation-Maximization-based algorithm. Experimenting on synthetic data, we show that the
algorithm is able to accurately estimate the latent structure in both low and high dimensions. We
apply our model on a large data set of functional brain connectivity matrices from the UK Biobank.
Our results suggest that the proposed model accurately describes the complex variability in the data
set with a small number of degrees of freedom.

Keywords: network modeling; network variability; Stiefel manifold; MCMC-SAEM; data imputation

1. Introduction

Network science is at the core of an ever-growing range of applications. Network
analysis [1] aims at studying the natural properties of complex systems of interacting com-
ponents or individuals through their connections. It provides a large number of tools to
detect communities [2], predict unknown connections [3] and covariates [4], measure popu-
lation characteristics [5,6] or build unsupervised low-dimensional representations [7]. The
need to understand and model networks arises in multiple fields, such as social networks
analysis [8], recommender systems [9], gene interactions networks [10], neuroscience [11]
or chemistry [12]. Network analysis allows accounting for very diverse phenomenons
in similar mathematical frameworks, which lend themselves to theoretical and statistical
analysis [13]. In this paper, we are interested in groups of undirected networks that are
defined on the same set of nodes. This situation describes the longitudinal evolution of a
given network throughout time or the case where the nodes define a standard structure
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identical across the networks. The former is of interest in computational social science,
which studies the evolution of interactions within a fixed population [14]. The latter arises
naturally in neuroscience, where the connections between well-defined brain regions are
studied on large groups of subjects. The analysis of brain networks is the main application
of the present study. It has proven an efficient tool to discover new aspects of the anatomy
and function of the human brain [15] and remains a very active research topic [16].

In this study, we are interested in the variability of undirected graph data sets, i.e., how
graphs defined on a common set of nodes vary from one network to another. Accounting
for this variability is a crucial issue in neuroscience: predicting neurodegenerative diseases
or understanding the complex mechanisms of aging requires robust, coherent statistical
frameworks that model the diversity among a population. Working on such graphs sharing
the same nodes allows comparing them to one another through their adjacency matrices.

The comparison and statistical modeling of such matrices are difficult problems.
If all the graphs have n nodes, a Gaussian model on the n× n adjacency matrices has a
covariance matrix with n4 coefficients, which is hard to interpret and difficult to estimate
from a reasonable number of observations. Considering adjacency matrices as large vectors
allows using classical statistical methods, such as Principal Component Analysis (PCA), but
does not take advantage of the strong structures underlying the interactions between the
nodes. Tailored kernel methods can be employed to evaluate distances between networks,
but many theoretically interesting graph kernels require solving NP-hard problems [17].
In the field of brain network analysis, graphs are often modeled and summarized by
features like the average shortest path length, which only partially characterize their
structure [6]. Recent methods relying on graphs neural networks often consider the nodes
of the network to be permutation invariant, whereas nodes in brain networks play a specific
role likely to remain stable across subjects [15,18].

In this paper, we propose a generative statistical model to express the variability in
undirected graph data sets. We decompose the network adjacency matrices as a weighted
sum of orthonormal matrix patterns with rank one. The patterns and their weights vary
around their mean values. Using rank-one patterns allows understanding each decom-
position term, while using only a small number of parameters. This is comparable to
PCA where each observation is decomposed onto orthogonal elements, which in this case
would be matrices. The orthogonal patterns are seen as elements of the Stiefel manifold
of rectangular matrices X such that X>X is the identity matrix [19]. This model allows
us to use known distributions and perform a statistical estimation of the mean patterns
and weights. We use a restricted number of patterns to get a robust model, which captures
the main structures and their variations. This low-dimensional parametric representation
provides a simple interpretation of the structure and the variability of the distribution. Our
model accounts for two sources of variability: the perturbations of the patterns and their
weight. In contrast, current approaches in the literature only consider one of them, as with
dictionary-based models and graph auto-encoders.

The proposed framework is expressed as a generative statistical model so that it
can easily be generalized to analyze heterogeneous populations. This corresponds to a
mixture of several copies of the former model where each cluster has its own center and
variance parameters.

In Section 2, we recall relevant literature references for network modeling and statistics
on the Stiefel manifold. Section 3 defines our model and further motivates its structure.
Section 4 proposes an algorithm based on Expectation-Maximization (EM) to perform
Maximum Likelihood Estimation of the model parameters. In Section 5, we present
numerical experiments on synthetic and real data. We use our model to predict missing
links using the parameters given by the algorithm. We show how our model can be used
to perform clustering on network data sets, allowing to distinguish different modes of
variability better than a classical clustering algorithm. Applying our method to the UK
Biobank collection of brain functional connectivity networks, we demonstrate that our
model is able to capture a complex variability with a limited number of parameters. Note
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that the tools we present here could also be used on any type of network, such as the ones
we mentioned above or gene interaction networks.

2. Background
2.1. Statistical Modeling for Graphs Data Sets

The analysis of graph data sets is a wide area of research that overlaps with many
application domains. In this section, we review the principal trends of this field that are
used in statistics and machine learning.

The first category of statistical models characterizes graphs in a data set (with possibly
varying number of nodes) by a set of features that can be compared across networks,
rather than matching the nodes of one graph to those of another. These features can be,
for example, the average shortest path length, the clustering coefficient, or the occurrence
number of certain patterns. Two examples of such models are Exponential Random
Graphs Models [20] and graph kernel methods [17]. Other models are defined by a simple,
interpretable generative procedure that allows testing hypotheses on complex networks.
The Erdős–Rényi model [21] assumes that each node has an equal probability of connecting
with one another. The Stochastic Block Model (SBM, [22]) extends this model and introduces
communities organized in distinct clusters with simple interactions. In the limit of a large
number of nodes, the same idea gives rise to the graphon model, which has also recently
been used to model graph data sets [23]. Finally, recent machine learning models leverage
the power of graph neural networks [24] to perform classification or regression tasks. They
are used, for instance, in brain network analysis to predict whether a patient is affected by
Alzheimer’s disease or how the disease will evolve [25,26].

In this paper, we consider undirected graphs on a fixed given set of n nodes connected
by weighted or binary edges. This situation arises when studying the evolution of a given
network across time [27] or when considering several subjects whose networks have the
same structure, for instance, brain networks and protein or gene interaction networks. This
constraint allows building models based on the ideas of mean and covariance of adjacency
matrices, otherwise ill-defined when the nodes change across networks. In particular, little
work has been done in the literature so far on the analysis of the variability of graphs in
a data set sharing a common set of nodes. Dictionary-based graph analysis models [28]
and graph auto-encoders [25,29] are interesting frameworks in that regard. They allow
concisely representing a network in a form that compresses the O(n2) adjacency matrix
representation into a smaller space of dimension O(p) or O(np) (where p is the encoding
dimension that characterizes the model). However, they each focus on one aspect of the
variability of graph data sets, either the variations of patterns for graph auto-encoders or
the variations of patterns weights for dictionary-based models. The model proposed in
Section 3 builds on these ideas and accounts for both sources of variability in two latent
variables that are combined to obtain the adjacency matrices. These variables are the
dominant eigenvalues and the related eigenvectors.

These eigenvectors are regrouped in matrices with orthonormal columns, which
makes them points on the Stiefel manifold introduced in the next section. Statistical
modeling of these matrices requires taking their geometry into account with manifold-
valued distributions.

2.2. Models and Algorithms on the Stiefel Manifold
2.2.1. Compact Stiefel Manifolds of Orthonormal Frames

In this paper, we will be considering latent variables belonging to the compact Stiefel
manifold Vn,p, defined as the set of n-dimensional orthonormal p-frames (with p ≤ n):
Vn,p = {X ∈ Rn×p | X>X = Ip}. Since an element of Vn,p can be obtained by tak-
ing the p first columns of an orthogonal matrix, the Stiefel manifold can be seen as a
quotient manifold from the orthogonal group, and thus inherits a canonical Riemannian
manifold structure. A detailed and clear introduction to algorithms for optimization and
geodesic path computation on the Stiefel Manifold can be found in [30]. More recently,
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Zimmermann [31] proposed an algorithm to compute the Riemannian logarithm associated
with the canonical metric, solving the inverse problem of the geodesic computation.

2.2.2. Von Mises–Fisher Distributions

Various difficulties arise when dealing with statistical distributions on Riemannian
manifolds: for instance, computing the barycenter of a set of points can be a difficult prob-
lem, if not even ill-posed. The normalizing constant of a distribution is often impossible to
compute analytically from its non-normalized density, so Maximum Likelihood Estimation
cannot be performed by standard optimization.

Luckily, tractable distributions on the Stiefel manifolds circumventing some of these
problems have been brought up and studied over the last decades in the research field
of directional statistics. The most well-studied of them is the von Mises–Fisher (vMF)
distribution (also called the Matrix Langevin distribution in some papers) first introduced
in [32], which is the one we will be using in this paper. Given a matrix-valued parameter
F ∈ Rn×p, the von Mises–Fisher distribution on the Stiefel Manifold is defined by its density:
pvMF(X) ∝ exp(Tr(F>X)). Written differently, if we denote by f1, ..., fp the columns of F
and by x1, ..., xp those of X, we have

pvMF(X) ∝ exp(〈 f1, x1〉+ ... + 〈 fp, xp〉) .

In this expression, each xi is drawn toward fi/| fi| (up to the orthogonality constraint).
The norm | fi| can be interpreted as a concentration parameter that determines the strength
of the attraction toward fi/| fi|. The von Mises–Fisher distribution can be considered
analogous to a Euclidean Gaussian distribution with a diagonal covariance matrix: the
density imposes no interaction between the components of X, so that the only dependency
between the columns is the orthogonality constraint. The equivalent of the Gaussian mode
(which is the same as the Gaussian mean) is given by the following lemma:

Lemma 1. The von Mises–Fisher distribution with parameter F reaches its maximum density
value at X = πV(F), where πV is an orthogonal projection onto the Stiefel manifold.

Proof. From the definition of the von Mises–Fisher density, we have:

argmaxX>X=Ip
Tr(F>X) = argmaxX>X=Ip

−1
2

Tr(F>F) + Tr(F>X)− 1
2

Tr(X>X)

= argminX>X=Ip

1
2
‖F− X‖2 ,

with ‖·‖ the Frobenius norm. Hence, by definition, πV(F) maximizes the von Mises–Fisher
density. Note that the projection onto the Stiefel manifold is not uniquely defined, as Vn,p
is not convex.

The following lemma allows us to compute such a projection.

Lemma 2. Let M ∈ Rn×p, and M = UDV> (U ∈ Rn×p, D ∈ Rp×p, V ∈ Rp×p) the Singular
Value Decomposition of M. If M has full rank, then UV> is the unique projection of M onto the
Stiefel manifold Vn,p.

Proof. Let us consider the Lagrangian related to the constrained optimization problem
πV(M) ∈ argminX>X=Ip

1
2‖M− X‖2:

L(X, Λ) =
1
2
‖M− X‖2 − Tr(Λ>(Ip − X>X)) .
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Then the Karush–Kuhn–Tucker theorem [33] shows that, if X∗ is a local extremum
of X 7→ 1

2‖X−M‖2 over Vn,p, then there exists Λ∗ such that ∇XL(X∗, Λ∗) = 0. This
gradient writes:

∇XL(X∗, Λ∗) = X∗ −M + X∗(Λ∗ + Λ∗>)

= X∗(I + Λ∗ + Λ∗>)−M = 0 .

Since X ∈ Vn,p and M has full rank, the symmetric matrix Ω = I + Λ∗ + Λ∗> must be
invertible, so that X∗ = MΩ−1. Hence

Ip = X∗>X∗ = Ω−1M>MΩ−1 ⇐⇒ Ω2 = M>M = VD2V> .

The matrix square roots of M>M are exactly given by the Ω’s of the form VRV>, with R =
Diag(±D11, ...,±Dpp). We get X∗ = MΩ−1 = UDR−1V>, which gives the following
objective function:

‖M− X∗‖2 =
∥∥∥U(D− DR−1)V>

∥∥∥2
=
∥∥∥D− DR−1

∥∥∥2
.

As D has a positive diagonal, this function is globally minimized by R = D, so that
the unique projection is X∗ = UV>.

The simple, interpretable density of the von Mises–Fisher distribution comes with
several important advantages. First, it allows using classical Markov Chain Monte Carlo
(MCMC) methods to sample efficiently from the distribution (see Figure 1 for examples of
distributions over V3,2). Next, the form of the density makes it a member of the exponential
family, which is a key requirement to perform latent variable inference with the MCMC-
Stochastic Approximation Expectation-Maximization algorithm (MCMC-SAEM, [34]) used
in this paper. Finally, reasonably efficient algorithms exist to perform Maximum Likelihood
Estimation (MLE) of the parameter F. This point will be further developed in Section 4.
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Figure 1. One thousand samples of three von Mises–Fisher distributions on V3,2. The mode of the distribution is represented
by two red arrows along the x and z axes, and the two vectors in each matrix by two blue points. The concentration
parameters are set to | fz| = 10 and | fx| ∈ [10, 100, 500] (from left to right). Samples are drawn with an adaptive Metropolis–
Hastings sampler using the transition kernel described in Section 4. A stronger concentration of the x vector impacts the
spread of the z vector.

2.2.3. Application to Network Modeling

Statistical modeling on the Stiefel manifold has proven relevant to analyze networks.
By considering the matrix of the p eigenvectors associated with the largest eigenvalues
of an adjacency matrix as an element of Vn,p, Hoff and colleagues [35–38] showed that
probabilistic modeling of the eigenvector matrix on the Stiefel manifold provides a robust
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representation while allowing to quantify the uncertainty of each edge and estimate the
probability of missing links. In these papers, the eigenvectors follow a uniform prior
distribution. In the present study, we propose to model the eigenvectors of several networks
as samples of a common distribution on Vn,p concentrated around a mode.

3. A Latent Variable Model for Graph Data Sets
3.1. Motivation

We model graphs in a data set by studying the eigendecomposition of their adjacency
matrices. Given such a symmetric weighted adjacency matrix A ∈ Rn×n, the spectral
theorem grants the existence of a unique decomposition A = XΛX> = ∑r

i=1 λixix>i , where
r is the rank of A, and λ1 ≥ ... ≥ λr and x1, ..., xr are the eigenvalues and the orthonormal
eigenvectors of the matrix. This decomposition is unique up to the sign of the eigenvectors,
as long as the non-zero eigenvalues values have multiplicity-one, which always holds in
practice. The interest of this decomposition for graph adjacency matrices is threefold.

First, the eigendecomposition of the adjacency matrix reflects the modularity of a
network, i.e., the extent to which its nodes can be divided into separate communities.
For instance, in the case of the Stochastic Block Model (SBM), each node i is randomly
assigned to one cluster c(i) among p possible ones. Nodes in clusters c, c′ are connected
independently with probability Pcc′ . In expectation, the adjacency matrix is equal to the
matrix (Pc(i)c(j)), which has the rank of p at most. In samples of the SBM as well as real
modular networks, the decay of the eigenvalues allows estimating the number of clusters.
The eigenvectors related to non-zero eigenvalues are used to perform clustering on the
nodes to retrieve their labels.

Furthermore, this decomposition provides a natural expression of A as a sum of
rank-one patterns xix>i . Modeling vectors as a weighted sum of patterns is at the core of
dictionary learning-based and mixed effects models, which have proven of great interest
to the statistics and machine learning research communities. In the specific case of graph
data sets, such a model was recently proposed by D’Souza et al. [28] in the context of brain
networks analysis. The authors learn a set of rank-one patterns without orthogonality
constraints, and estimate the adjacency matrices as weighted sums of these patterns,
in order to use the weights as regression variables. However, they consider the patterns
as population-level variables only. This choice prevents taking into account potential
individual-level variations.

Finally, the dominant eigenvectors yield strong patterns that are likely to remain
stable among various networks in a data set, up to a certain variability. In other words,
given N adjacency matrices A(1), ..., A(N) and their eigendecompositions (X(1), Λ(1)), ...,
(X(N), Λ(N)), the first columns of the X(k)’s should remain stable among subjects (up
to a column permutation and/or change of sign). On the contrary, smaller eigenvalues
should be expected to correspond to eigenvectors with greater variability. The recent work
of Chen et al. [39] takes stock of this remark to analyze the Laplacian matrices of brain
networks (the Laplacian is a positive matrix that can be computed from the adjacency
matrix). The authors propose to compute the L1 mean of the X(k)’s first p columns in order
to get a robust average X representative of the population. As the X(k)’s are composed
of p orthonormal vectors, their average should have the same property: it ensures that
the obtained matrix can be interpreted as a point that best represents the distribution.
Its definition thus formulates as an optimization problem over the Stiefel manifold Vn,p.
The authors show that taking this geometric consideration into account leads to better
results than computing a Euclidean mean.

In the next section, we introduce our statistical analysis framework. We model the
perturbations of the adjacency matrix eigendecomposition to account for the variability
within a network data set.
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3.2. Model Description

We propose to account for the variability in a set of networks by considering the
random perturbation of both the patterns (X variable) that compose the networks and
their weight (λ variable). In this study, we consider each pattern xi (column of X) and
each weight λi to be independent of one another. This assumption, although a first
approximation, leads to a tractable inference problem and interpretable results. Future
works could consider interactions between the xi’s or the λi’s, as well as the dependency
between both.

The model decomposition of each adjacency matrix A(k) in a data set writes

A(k) = X(k)Diag(λ(k))X(k)> + ε(k) (1)

with X(k) a pattern matrix, λ(k) the pattern weight vector and ε(k) the symmetric resid-
ual noise. The X(k) and λ(k) are independent unobserved variables that determine the
individual-level specificity of network k. We model these variables as follows:

X(k) i.i.d∼ vMF(F)

λ(k) i.i.d∼ N (µ, σ2
λ Ip)

ε(k)
i.i.d∼ N (0, σ2

ε In(n+1)/2).

(2)

The matrix F ∈ Rn×p parametrizes a von Mises–Fisher distribution for the eigen-
vectors matrix X(k), and the eigenvalues λ(k) follow a Gaussian distribution with mean
µ ∈ Rp and independent components with variance σ2

λ. We further impose that the
columns of F are orthogonal: this constraint ensures that the maximum of the log-density
〈 f1, x1〉+ ... + 〈 fp, xp〉 is reached at πV(F) = ( f1/| f1|, ..., fp/| fp|). In this model, the matrix
πV(F) is the mode of the distribution of patterns and plays a role similar to the mean of
a Gaussian distribution. The mode of the full distribution of latent variables thus refers
to (πV(F), µ). In the particular case where F has orthogonal columns, the column norms
of F correspond to its singular values. In the remainder of the paper we call them the
concentration parameters of the distribution. The variability of the adjacency matrices is thus
fully characterized by σε, σλ and the concentration parameters. The pattern weights λ(k)

are the eigenvalues of the X(k)Diag(λ(k))X(k)> term, and we thus call them eigenvalues
even though they are not the actual spectrum of the real adjacency matrices A(k). Our
model is summarized in Figure 2.

F, µ, σλ, σε, (π)

X(1), λ(1), (z(1)) X(k), λ(k), (z(k)) X(N), λ(N), (z(N))

Parameters

Latent variables

ObservationsA(1) A(k) A(N)

Figure 2. Graphical model for a data set of adjacency matrices A1, ..., AN . The variables π and z(k)

can be added to get a mixture model.

Note that this model may be adapted to deal with other types of adjacency matrices.
The distribution for λ(k) can be effortlessly changed to a log-normal distribution to model
data sets of positive matrices like covariance matrices. Binary networks can be modeled by
removing the ε(k) noise and adding a Bernoulli sampling step, considering X(k)λ(k)X(k)> as
a logit. Adjacency matrices with positive coefficients are considered by adding the softplus



Entropy 2021, 23, 490 8 of 34

function x 7→ log(1 + ex) in Equation (1). These extensions bring a wide range of possible
statistical models for adjacency matrices for which the estimation procedure is the same as
the one developed below.

Equation (1) theoretically requires each A(k) to be close to a rank p matrix. While
this assumption is reasonable for well-clustered networks like samples of an SBM, some
real-life networks exhibit heavy eigenvalue tails and cannot be approximated accurately
using low rank matrices. While our model should not be expected to provide a perfect
fit on general networks data sets, its main goal is to retrieve the principal modes of
variability and their weight in an interpretable way, comparable to probabilistic Principal
Component Analysis (PCA) or probabilistic Independent Component Analysis (ICA) [40].
An important difference with these methods is that our model expresses each of the p
components using only an n-dimensional vector, whereas PCA and ICA require an n× n
matrix per component to model adjacency matrices.

In the case of well clustered networks, our model can be seen as a refinement of the
SBM better suited to data sets of networks. The SBM is designed to handle one single
network and mainly addresses the problem of identifying the communities. In the case of
network data sets, all subjects share the same node labels and the communities can be more
easily identified by averaging the edge weights over the subjects. The main assumption of
the SBM that the connections between the nodes are independent of one another prevents
from further analyzing individual-level variability. In contrast, our model can account for
the impact of a node variation on its connections, as well as pattern variations affecting the
whole network. In the limit where the concentration parameters become very large and the
weight variance is small, the patterns become constant and our model becomes equivalent
to an SBM for networks organized in distinct clusters.

Another remark can be made on the identifiability of the model: the manifold of
matrices of the form XDiag(λ)X> with X ∈ Vn,p, λ ∈ Rp (also known as the non-compact
Stiefel manifold) has a tangent space T with dimension dim(Vn,p) + p = np− p(p− 1)/2
at X(k)Diag(λ(k))X(k)>. The noise ε(k) can be decomposed into components in T and its
orthogonal complement T> with dimension n2 − np + p(p− 1)/2. The component in T
thus induces an implicit source of variability on X and λ, which depends on σε. We show
in the experiment section that it may lead to underestimating the concentration parameters
(| f1|, ..., | fp|). While aware of this phenomenon, we consider it an acceptable trade-off
regarding the simple formulation of Equation (2).

3.3. Mixture Model

The matrix distribution introduced in the previous section can be integrated in a
mixture model to account for heterogeneous populations with a multi-modal distribution
and variability. It amounts to considering K clusters with, for each cluster, a probability πc

and a parameter θc = (Fc, µc, σc
ε , σc

λ). The mixture model writes hierarchically:
z(k) ∼ Categorical(π)

(X(k) | z(k) = c) ∼ vMF(Fc)

(λ(k) | z(k) = c) ∼ N (µc, (σc
λ)

2 Ip)

(A(k) | X(k), λ(k), z(k) = c) ∼ N (X(k)Diag(λ(k))X(k)>, (σc
ε )

2 In(n+1)/2).

(3)

We show in the next section on parameter estimation that the mixture layer only comes
at a small algorithmic cost.

4. A Maximum Likelihood Estimation Algorithm

We now turn to the problem of estimating the model parameters θ = (F, µ, σλ, σε)
given a set of observations (A(k))N

k=1. Let us denote λ · X = XDiag(λ)X>. The complete
likelihood is expressed as:



Entropy 2021, 23, 490 9 of 34

p((A(k)), (X(k)), (λ(k)); θ) =
N

∏
k=1

1
K(θ)

p(A(k) | X(k), λ(k); θ)p(X(k); θ)p(λ(k); θ)

with
p(A(k) | X(k), λ(k); θ) = 1

|σε |n2 (2π)n2/2
exp

[
− 1

2σ2
ε
‖A(k) − λ(k) · X(k)‖2

]
p(X(k); θ) = 1

Cn,p(F) exp
[
Tr(F>X(k))

]
p(λ(k); θ) = 1

|σλ |p(2π)p/2 exp
[
− 1

2σ2
λ

‖λ(k) − µ‖2
]

We compute the maximum of the observed likelihood p((A(k)); θ) using the MCMC-
SAEM algorithm introduced in the next section. The MLE is not unique, as a permutation
or a change of sign in the columns of X (together with a permutation of λ) yield the same
model. This invariance can be broken by sorting the eigenvalues µ in increasing order as
long as they are sufficiently spread. However, in practice, several eigenvalues may be close,
and imposing such an order hinders the convergence of the algorithm. We thus choose to
leave the optimization problem unchanged and deal with the permutation invariance by
adding a supplementary step to the MCMC-SAEM algorithm.

4.1. Maximum Likelihood Estimation for Exponential Models with the MCMC-SAEM Algorithm

When dealing with latent variable models, the standard tool for MLE is the Expectation-
Maximization (EM) algorithm [41]. Given a general parametric model p(y, z; θ) with y
an observed variable and z a latent variable, performing MLE amounts to maximizing
log p(y; θ) = log

∫
p(y, z; θ)dz, which is intractable in practice with classical optimization

routines. The EM algorithm allows indirectly maximizing this objective by looping over
two alternating steps:

1. E-step: Using the current value of the parameter θt, compute the expectation

Qt(θ) = Ep(z|y;θt)[log p(y, z; θ)] ;

2. M-step: Find θt+1 ∈ argmaxθ Qt(θ).

While the EM algorithm proves efficient to deal with simple models like mixtures of
Gaussian distributions, it requires adaptation for the cases of more complicated models
where the expectation in the Qt(θ) function is intractable, and the distribution p(z | y, θn)
cannot be explicitly sampled from to approximate the expectation.

The Markov Chain Monte Carlo–Stochastic Approximation EM algorithm (MCMC-
SAEM) developed by [34] aims at overcoming these hurdles in the case of models be-
longing to the Curved Exponential Family. For such models, the log-density expresses
as log p(y, z; θ) = 〈S(y, z), ϕ(θ)〉+ ψ(θ), where S(y, y) is a sufficient statistic. The Qt func-
tion then simply rewrites Qt(θ) = 〈Ep(z|y;θt)[S(y, z)], ϕ(θ)〉+ ψ(θ). In the MCMC-SAEM
algorithm, the expectation of sufficient statistics is computed throughout iterations using
Stochastic Approximation. The samples from p(z | y; θt) are drawn using a MCMC kernel
q(z | zt; θt) with invariant distribution p(z | y; θt). The procedure is recalled in Algorithm 1.
Under additional assumptions on the model and the Markov kernel, the MCMC-SAEM
algorithm converges toward a critical point of the initial objective log p(y; θ) [42,43].

In the case of the model proposed in this paper, the MCMC-SAEM is well suited to the
problem at hand as we have to deal with a latent variable model. In a setting with manifold-
valued latent variables, the E-step of the SAEM algorithm becomes intractable; using the
MCMC-SAEM allows overcoming this hurdle. Following the outline of Algorithm 1, we
need to draw samples from p(X(k), λ(k) | A(k); θ) and perform the maximization step using
the stochastic approximation of sufficient statistics.



Entropy 2021, 23, 490 10 of 34

Algorithm 1: The MCMC-SAEM Algorithm
Initialize θ0, z0 and S0
repeat

Simulate zt+1 ∼ q(· | zt; θt) using MCMC
Update St+1 = (1− αt)St + αtS(y, zt+1)
Find θt+1 ∈ argmaxθ〈St+1, ϕ(θ)〉+ ψ(θ)

until convergence
return θT , (zt)T

t=1

4.2. E-Step with Markov Chain Monte Carlo
4.2.1. Transition Kernel

The target density p(X(k), λ(k) | A(k); θ) is known up to a normalizing constant, and
it is sufficient to use MCMCs based on the Metropolis–Hastings acceptance rule [44].
The MCMC is structured as a Gibbs sampler alternating simulations of X(k) and λ(k) for
each individual. Note that conditional density p(λ(k) | X(k), A(k); θ) is a Gaussian dis-
tribution. However, when experimenting with the MCMC-SAEM, we find that using
Metropolis–Hastings-based transitions rather than sampling directly from the true condi-
tional distribution accelerates the Markov chain convergence. This is why we perform a
Metropolis–Hastings within Gibbs sampler for both variables [45]. We generate proposals
for λ with a symmetric Gaussian kernel with adaptive variance in order to reach a target
acceptance rate. We also use a Metropolis Hastings transition for X, with the constraint
that the variable stays on the Stiefel manifold. Several techniques can be used to generate
such proposals. The most natural equivalent of the symmetric random walk consists of a
geodesic random walk generated by normally distributed tangent vectors. This method can
be employed as the exponential map on the Stiefel manifold has a closed-form expression
relying on the matrix exponential [30]. Another option is to use the curves given by the Cay-
ley transform as in [46]: Cayley curves can be considered a fast first-order approximation
of the exponential map. Finally, a more direct approach consists of making non-manifold
Gaussian transitions and projecting the result back onto the manifold using Lemma 2.
In our experiments these three approaches turn out to give very similar performances,
and in practice we use the last method, which is also the fastest.

Remark 1. Our numerical implementation offers the possibility to use the Metropolis Adjusted
Langevin Algorithm (MALA) instead of Metropolis–Hastings, as the gradient of the log-likelihood
can be computed explicitly. While the experiments we have presented rely on the Metropolis–
Hastings kernel, which is faster overall, we find that in some cases where the dimensions n and p
grow large the MALA kernel allows accelerating the convergence.

4.2.2. Permutation Invariance Problem

The non-uniqueness of the MLE translates into a practical hurdle to the convergence
of the MCMC: if two eigenvalues µi, µj are close, we get (µi, µj) · (xi, xj) ' (µj, µi) · (xi, xj).
As a consequence, the distribution p(X(k), λ(k) | A(k); θ) is multi-modal in X(k), with a
dominant mode close to πV(F) and other modes corresponding to column sign variations
and permutations among similar eigenvalues. These modes are numerical artifacts rather than
likely locations for the true value of X(k). Exploring them in the MCMC-SAEM hinders the
global convergence: they encourage the samples to spread over the Stiefel manifold, which in
turn yields a very bad estimation of F by inducing a bias toward the uniform distribution.

We address the permutation invariance problem by adding a column matching step
every five SAEM iterations for the first third of the SAEM iterations. This step is a greedy
algorithm that aims at finding the column permutation of a sample X(k) that makes it closest to
M = πV(F). It proceeds recursively by choosing the columns mi, xj with the greatest absolute
correlation. The steps are summarized in Algorithm 2. The greedy permutation algorithm
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causes the MCMC samples to stabilize around a single mode, allowing estimation of the F
parameter.

Algorithm 2: Greedy column matching

input F ∈ Rn×p, X ∈ Vn,p

Compute M = πV(F), D = (〈mi, xj〉)
p
i,j=1

Let I = J = {1, ..., p}
Let σ = (0, ..., 0) (column order), η = (0, ..., 0) (column sign)
for t ∈ [1, ..., n] do

Find it, jt ∈ argmaxi∈I,j∈J |Dij|
Set σ(jt) = it, η(it) = sign(Dit jt)
Set I = I\{it}, J = J\{jt}

end
return σ, η

4.3. M-Step with Saddle-Point Approximations

The maximization step of the MCMC-SAEM algorithm has a closed form expression,
except for the parameter F. In this section, we recall a method to estimate F in a general set-
ting and apply this method to get the optimal model parameters given sufficient statistics.

4.3.1. Maximum Likelihood Estimation of Von Mises–Fisher Distributions

The main obstacle to retrieving the parameter F given samples X1, ..., XN is the normal-
izing constant of the distribution: though analytically known, it is hard to compute in practice
(see Pal et al. [47] for a computation procedure when n = 2). Jupp and Mardia [48] proved
that the MLE exists and is unique as long as p < n and N ≥ 2, or p = n and N ≥ 3. Khatri
and Mardia [32], who first studied the properties of the MLE, showed the following result:

Theorem 1 ([32]). Let X1, ..., XN be N samples from a von Mises–Fisher distribution and X =
1
n ∑n

i=1 Xi. Let X = UDV> be the Singular Value Decomposition (SVD) of X. Then the Maximum
Likelihood Estimator can be written under the form F̂ = UDiag(ŝ)V>, with ŝ ∈ Rp

+.

Maximizing the log-likelihood of samples X1, ..., XN is thus equivalent to solving the
optimization problem

argmaxs∈Rp Tr[VDiag(s)U>X]− log Cn,p(UDiag(s)V>), (4)

where Cn,p(F) is the normalizing constant of the vMF distribution.
Several methods were proposed to solve this problem: the authors of [32] provide

approximate formulas when the singular values of F are all either very large or very small. The
authors of [49] propose a method to approximate the normalizing constant, which in turn
yields a surrogate objective for the MLE giving satisfactory results. Finally, in [50], a different
formula is proposed, which applies when the singular values are small. When experimenting
with von Mises–Fisher distributions, we found that the method proposed by [49] gives the
most robust results for a wide range of singular values of F, even in a high-dimensional setting.

4.3.2. Application to the Proposed Model

Computational details for the likelihood rearrangement are deferred to Appendix A.
The model belongs to the curved exponential family, and its sufficient statistics are:

S(A, X, λ) =



S1 = 1
N ∑N

k=1 X(k)

S2 = 1
N ∑N

k=1 λ(k)

S3 = 1
N ∑N

k=1

∥∥∥λ(k)
∥∥∥2

S4 = 1
N ∑N

k=1

∥∥∥A(k) − λ(k) · X(k)
∥∥∥2

.
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These sufficient statistics are updated using the MCMC samples (X(k)
t , λ

(k)
t )N

k=1 with
the stochastic approximation St+1 = (1− αt)St + αtS(A, Xt, λt). The optimization problem
defined by the M-step of the SAEM algorithm gives the following results:

θ̂t =


F̂ = F̂(S1

t )

µ̂ = S2
t

σ̂2
λ = 1

p

(
‖µ̂‖2 − 2〈µ̂, S2

t 〉+ S3
t

)
σ̂2

ε = 1
n2 S4

t ,

(5)

where F̂(S1
t ) denotes the MLE of the von Mises–Fisher distribution. As explained in the section

above, the method proposed by Kume et al. [49] allows estimating the normalizing constant of
general Fisher–Bingham distributions. The approximation relies on rewriting the constant to
make it depend on a density that fits into the framework of Saddle-Point Approximations [51].
We recall the main steps of the computation procedure for this approximation in Appendix A
for the specific, simple case of vMF distributions.

In the definition of our model, we impose that the columns of F are orthogonal. As recalled
in Section 2.2, the MLE for the vMF mode is M = UV>, where X = UDV> is the SVD of
the empirical arithmetic mean of samples. Since the column norms correspond to the singular
values when the columns are orthogonal, the MLE under this constraint can be sought under
the form MDiag(s). Hence, the optimization problem is used to estimate F:

argmaxs∈Rp Tr[Diag(s)M>X]− log Ĉn,p(MDiag(s)) , (6)

with Ĉn,p the approximation of the normalizing constant. We solve this optimization
problem using the open source optimization library scipy.optimize.

The complete procedure is summarized in Algorithm 3.

4.4. Algorithm for the Mixture Model

The mixture model adds a cluster label z(k) for each subject and a list π of cluster
probabilities. The model still remains in the curved exponential family, and the MCMC-
SAEM algorithm can still be used. The Gibbs sampler now also updates z(k): it consists
of sampling from the probabilities p(z(k) | X(k), λ(k), A(k); π, θ), which can be computed
explicitly. The sufficient statistics S1, S2, S3, S4 are defined and stored for each cluster.
The statistics of cluster c are updated using only the indices k such that z(k) = c. The variable
π adds new sufficient statistics: Sπ = (#{k | z(k) = c}/N)K

c=1. The related MLE estimate of
π is π̂ = Sπ .

In our implementation, we initialize the clusters using the K-Means algorithm. We use
the tempering proposed by [52] for the z sampling step in order to encourage points moving
between clusters at the beginning of the algorithm. The vMF parameters Fc are aligned
every 5 SAEM iterations using Algorithm 2 in order to allow the latent variables to move
between the regions of influence of different clusters through small Metropolis–Hastings
steps. The resulting algorithm is detailed in Appendix C.

4.5. Numerical Implementation Details

We initialize the algorithm by taking the first eigenvectors and eigenvalues of each
adjacency matrix. Algorithm 2 is used to align the eigenvectors between samples. In order
to accelerate the convergence, we perform a small number of hybrid MCMC-SAEM steps
at the start of the algorithm, where the MCMC step on X is replaced with a gradient ascent
step on the log-likelihood. These first steps move the X(k)’s to an area of Vn,p with high
posterior probability, which accelerate the convergence of the MCMC, as the X variable is
the slowest to evolve along the MCMC-SAEM iterations. The Riemannian gradient ascent
is detailed in Appendix B.
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Algorithm 3: Maximum Likelihood Estimation algorithm for θ = (F, µ, σε, σλ)

Initialize θ0, X0, λ0 and S0
for t = 1 to T do

if t ≤ T/3 and (t mod 5) = 0 then
for k = 1 to N do

Use Algorithm 2 to align X(k)
t with πV(Ft).

Permute λ
(k)
t accordingly.

end
end

Set X̃(k)
0 = X(k)

t and λ̃
(k)
0 = λ

(k)
t

for ` = 1 to nMCMC do
for k = 1 to N do

Sample X̃(k)
` from the Metropolis kernel qX(· | X̃(k)

`−1, λ̃
(k)
`−1; θt) targetting

p(X(k) | A(k), λ̃
(k)
`−1; θt)

Sample λ̃
(k)
` from the Metropolis kernel qλ(· | X̃(k)

` , λ̃
(k)
`−1; θt) targetting

p(λ(k) | A(k), X̃(k)
`−1; θt)

end
end

Set X(k)
t+1 = X̃(k)

nMCMC and λ
(k)
t+1 = λ̃

(k)
nMCMC

Update the sufficient statistics St+1 = (1− αt)St + αtS(A, Xt+1, λt+1)
Compute µt+1, (σε)t+1 and (σλ)t+1 using Equation (5).
Compute Ft+1 by solving problem (6).

end
return θT , (Xt, λt)T

t=1

The Metropolis–Hastings transition variance is selected adaptively throughout the
iterations using stochastic approximation. At SAEM step t + 1, the proportion of accepted
Metropolis transitions is computed. The logarithm of the variance is then incremented
according to the rule log σt+1

MH = log σt
MH + `t/2t0.6, with `t = ±1 depending on whether

the proportion of accepted jumps should be increased or decreased.
During the first half of the T iterations we set αt = 1 in order to minimize the impact

of poor initializations. Then αt decreases as 1/(t− T/2)0.6, which ensures the theoretical
convergence of the algorithm.

The algorithms as well as all the experiments presented in this paper are implemented
with Python 3.8.6. The package Numba [53] is used to accelerate the code. We provide
a complete implementation (https://github.com/cmantoux/graph-spectral-variability,
accessed on 19 April 2021), which allows reproducing the experiments on synthetic data
and running the algorithm on new data sets.

5. Experiments
5.1. Experiments on Synthetic Data
5.1.1. Parameters Estimation Performance

First we investigate the ability of the algorithm to retrieve the correct parameters when
the data are simulated according to Equations (1) and (2). We test the case (n = 3, p = 2),
referred to as low-dimensional, where X can be visualized in three dimensions as well as
the case (n = 40, p = 20), referred to as high-dimensional.

Small Dimension

We choose F with two orthogonal columns uniformly in V3,2 with column norms
(25, 10). Using these low concentration parameters makes the results simple to visualize.
We set µ = (20, 10) and σλ = 2, and generate N = 100 matrices A(k) with σε = 0.1 and 100

https://github.com/cmantoux/graph-spectral-variability
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other matrices with the same X(k)’s and λ(k)’s but a much stronger noise standard deviation
σε = 4. We run the MCMC-SAEM algorithm for 100 iterations with 20 MCMC steps for
each maximization step. The results are shown in Figure 3. In both cases, the mode of the
vMF distribution πV(F) is well recovered. In the small noise case, the posterior X samples
closely match the true X samples, and the estimated concentration parameters (23.7, 8.0)
remain close to ground truth. In the strong noise case, the posterior samples spread much
farther around F̂ than the true samples: the estimated concentration is (9.9, 2.8). This result
highlights the remark in Section 3.2 on the bias induced by the Gaussian noise on the latent
variable spread: the best X variable to estimate the matrix A(k) is moved apart from the
true X(k) in a random direction because of the noise ε(k) living outside the manifold.
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Figure 3. True latent variables X(k) and their posterior MCMC mean estimation. The red arrows represent the true πV(F)
parameter and its estimate πV(F̂). (a) The true mode and samples. (b) Mode and samples estimates when σε = 0.1. (c)
Mode and samples estimates when σε = 4. The columns are rearranged using Algorithm 2 to ease visualization. The latent
variables are accurately estimated when the noise is small. A stronger noise causes the estimated latent variables to spread
over the Stiefel manifold.

High Dimension

We now consider a synthetic data set of N = 200 samples generated from 20 latent
patterns in dimension 40 and σε = 1, σλ = 2, with various sizes of concentration parameters
and eigenvalues, pairing large eigenvalues together with high concentrations. We run the
MCMC-SAEM algorithm for 100 iterations with 20 MCMC steps per SAEM iteration to
obtain convergence. The convergence of the parameters is shown in Figure 4. For both
the concentration parameters and the eigenvalues, the algorithm starts by finding the
highest values, only identifying lower values progressively afterward. The lowest values
are associated to patterns with low weight, hence their recovery is naturally more difficult.
As in the previous sections, the concentration parameters tend to be underestimated,
indicating wider spreading around the mode vectors fi/| fi| than the original latent variable.
However, the ordering and orders of magnitude of the concentrations stay coherent, which,
in practice, allows interpreting them and comparing them to each other. The estimation
F̂ matches the true parameter with a relative Root Mean Square Error (rRMSE) of 28%.
As can be seen in Figure 5, the estimated normalized columns closely correspond to the
original ones except when the concentration parameters get too small to allow for a good
estimation, as explained above.

We use this example to illustrate the role of the algorithm hyperparameters on the
practical convergence, namely the number of MCMC steps per SAEM iteration and the
column matching step. We consider the same data set, but we initialize the MCMC-SAEM
algorithm with random latent variables instead of the method described in Section 4: this
worst-case initialization highlights the differences between the settings more easily. It is
also closer to the case of real data sets: the MCMC and model parameters are slower to
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converge on real data, as the adjacency matrices are not actual samples of the theoretical
model distribution. For different numbers of MCMC steps per SAEM iterations, we run the
MCMC-SAEM algorithm for 200 iterations 10 times to average out the random initialization
dependency, with and without the column matching step. Then we compute the relative
RMSE of the parameters F and µ at the end of the algorithm. The rRMSE averaged over the
10 runs is shown in Figure 6. It can be seen that when the column matching step is used,
increasing the number of MCMC steps at a fixed number of SAEM iterations improves
the estimation. It allows accelerating the convergence, as MCMC steps are faster than the
maximization step (which requires repeated vMF normalizing constant computations).
However, when the number of MCMC steps gets too large, the performance improvement
stagnates while the execution time increases. We find that, in practice, using between 20 and
40 MCMC steps per SAEM iterations is a good compromise in terms of convergence speed.
Figure 6 also illustrates the need for the column matching step proposed in Section 4: when
not used, the parameters hardly converge to the right values, even with a large number
of MCMC steps per SAEM iteration. When the eigenvectors are permuted differently
across the samples, the related eigenvalues cannot be estimated accurately, as they mix
together when averaged in the maximization step. The abscence of permutations also
spreads the eigenvectors over the Stiefel manifold, which prevents estimating the von
Mises–Fisher parameter. Since Algorithm 2 is very fast to execute, it is not a computational
bottleneck. In our experiments, the number of SAEM iterations between successive column
permutation steps did not have a significant impact as long as it was not too high: values
between 5 and 20 produced similar results.

Model Selection

In all the experiments on simulated data presented in this paper, we use the correct
number of columns p, which we assume to be known. However, when studying real data
sets, classical model selection procedures like the Bayesian Information Criterion cannot be
applied to our model: they require computing the complete probability of the observations
p(A | θm) =

∫
Vn,p

∫
Rpm p(A | X, λ, θm)dX dλ for each model θm. This probability cannot be

computed explicitly, as it requires integrating over the Stiefel manifold, which results in
intractable expressions using the matrix hypergeometric function [49].
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Figure 4. Convergence of the concentration parameters (| f1|, . . . , | fp|) (left) and the mean eigenvalues µ (right) over the
SAEM iterations. The red lines represent the values of the parameters along the iterations. The black dotted lines represent
the true values, which are grouped in batches to ease visualization. The convergence is fastest for the large eigenvalues
and concentration parameters. At the start of the algorithm, the biggest changes in the parameters come from the greedy
permutation performed every 5 iterations. As explained in the text, the concentration parameters are underestimated.
However, they keep the right order of magnitude, which allows interpreting the output of the algorithm in practice.
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Figure 5. Von Mises-Stiefel distribution parameter F and its estimation F̂. (Top row): the two
parameters and their difference. (Bottom row): mode of the true distribution (given by πV(F)), mode
of the estimated distribution πV(F̂) and their difference. The images show each matrix as an array
of coefficients, with pixel color corresponding to coefficient amplitude. Since the matrix columns
are orthonormal, the projection just consists of normalizing the columns. The columns are sorted by
decreasing the concentration parameter. The normalized columns of F corresponding to the smallest
concentration parameters are estimated with less precision.
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Figure 6. Relative RMSE of parameters F and µ after 100 MCMC-SAEM iterations depending on the
number of MCMC steps per SAEM iteration. Results are averaged over 10 experiments to reduce the
variance. The shaded areas indicate the extremal values across the repeated experiments. When using
the greedy permutation, the rRMSE decreases rapidly when the number of MCMC steps increases
before stabilizing. On the other hand, without the permutation step, the performance stays poor
for any number of MCMC steps per maximization, as the parameters cannot be estimated correctly.
In this experiment only, the latent variables are initialized at random to highlight the result.
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In practice, several tools can be used to choose the number of latent patterns. First,
the marginal likelihood p(A | X, λ; θ) or the error ‖A− λ · X‖ can be used to evaluate
the model expressiveness. As p increases, the error will naturally diminish and should
be very small for p = n. As with linear models, the proportion of the variance captured
by λ · X can be computed to evaluate the improvement gained by adding new patterns.
The concentration parameters of the von Mises–Fisher distribution also give important
information on pattern relevance: if a pattern has a very low concentration parameter, it
means that the related eigenvectors are widely spread across the Stiefel manifold. Smaller
concentrations are thus related to overfitting, as they do not correspond to actual patterns
contributing to the data set variability. The relative importance of concentration parameters
can be compared numerically with the vMF concentration obtained on samples from the
uniform distribution gathered with Algorithm 2.

Remark 2. In this paper, we approximate the posterior mean of MCMC samples of X(k) by
projecting their arithmetic mean over the Stiefel manifold. We find this procedure a very convenient
alternative to computing the Fréchet mean (i.e., the Riemannian center of mass) over the manifold
for two reasons. First, computing the Fréchet mean requires an extensive use of the Riemannian
logarithm. Although a recent paper [31] allows computing this logarithm, the proposed algorithm
heavily relies on matrix logarithm computations and requires points to remain very close to the mean.
Similar iterative algorithms to compute the mean based on other retraction and lifting maps than the
Riemannian exponential and logarithm were proposed and analyzed in [54], but in our experiments,
these alternatives also turn out to require samples close to the mean point, especially in high
dimensions. Second, projecting the mean sample onto the Stiefel manifold amounts to computing the
mode of a vMF distribution. As shown in Appendix D, the vMF distribution is symmetric around
its mode, which makes this mode a summary variable similar to the Gaussian mean.

5.1.2. Missing Links Imputation

Once the parameters θ̂ are estimated from adjacency matrices A1, ..., AN , missing links
can be inferred on a new adjacency matrix A. Suppose that only a subset Ω of the edge
weights is known: the weights of masked edges Ω can be obtained by considering the
posterior distribution p(AΩ | AΩ; θ). This distribution is obtained as a marginal of the full
posterior p(AΩ, X, λ | AΩ; θ). Sampling from this distribution yields a posterior mean as
well as confidence intervals for the value of missing links. In the case of binary networks,
the posterior distribution gives the probability of a link existing for each masked edge.
Samples are obtained by Gibbs sampling using the same method as in Section 4. We also
compute the Maximum A Posteriori (MAP) by performing gradient ascent on the posterior
density of (AΩ, X, λ) given AΩ.

We generate a synthetic data set of N = 200 adjacency matrices with n = 20 nodes
and p = 5. The noise level σε is chosen such that the average relative difference between
the coefficients of A(k) and λ(k) · X(k) is 25%. We estimate the model parameters using the
MCMC-SAEM algorithm. Then, we generate another 200 samples from the same model.
We mask 16% of the edge weights corresponding to the interactions between the last eight
nodes. The posterior estimation is compared with the ground truth for one matrix in
Figure 7. Both the MAP and posterior mean allow to estimate the masked coefficients better
than the mean sample (A1 + ... + AN)/N, which is the base reference for missing data
imputation. They achieve, respectively, 58% (±28%) and 57% (±24%) rRMSE on average,
whereas the mean sample has an 85% (±10% over the data set) relative difference to the
samples on average. Finally, we perform the same experiment except we select the masked
edges uniformly at random, masking 40% of the edges. This problem is easier than the
former despite the larger amount of hidden coefficients because the missing connections
are not aligned with each other. The posterior mean and the MAP achieve, respectively, 34%
(±9% over the data set) and 35% (±7%) rRMSE, against 75% (±5%) for the mean sample.
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(a) Ground truth (rRMSE=0.0)
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Figure 7. Result for missing link inference using the posterior distribution. (a) Ground truth input matrix A. (b) Posterior
mean of the masked coefficients. (c) MAP estimator. (d) Mean of model samples for comparison. The area of masked edges
is highlighted by a black square. Above each matrix is the rRMSE with the ground truth. Both the posterior mean and the
MAP give a reasonable estimation for the missing weights, significantly better than the empirical mean of all adjacency
matrices, which is the base reference for missing data imputation. The images show each matrix as an array of coefficients,
with pixel color corresponding to coefficient amplitude.

Link prediction has been a very active research topic in network analysis for several
decades, and numerous methods can be employed to address this problem depending on
the setting [3,55,56]. However, the most commonly used approaches are designed to per-
form inference on a single network or consider the nodes as permutation invariant. In turn,
the new approach we propose allows for population-informed prediction and uncertainty
quantification. It could be used in practice to compare specific connection weights of a new
subject with their distribution given the other coefficients and the population parameters.
This comparison provides a tool to detect anomalies in the subject’s connectivity network
stepping out of the standard variability.

Remark 3. The error uncertainties reported in this paper refer to the variance of the estimation
error across the adjacency matrices.

5.1.3. Clustering on Synthetic Data

As explained in Section 3.3, our model can be used within a mixture to account for
multi-modal distributions of networks. When experimenting with the clustering version of
our algorithm on data sets with distinctly separated clusters, we noticed that the algorithm
provides results similar to running K-Means and estimating the parameters on each K-
Means cluster separately. However, the clusters in complex populations often overlap,
and the ideal case where all groups are well separated rarely occurs. In this section, we
show two examples of simulated data sets where the variabilities of the clusters makes
them hard to distinguish with the sole application of the K-Means algorithm.

Small Dimension

We test the mixture model estimation in the small dimensional case (n = 3, p = 2)
where results can be visualized. We simulate three clusters of matrices as in Section 5.1.1
with N = 500 samples overall. In order to make the problem difficult, we use the same
mean eigenvalues for two clusters. We set the Stiefel modes of these clusters to be very
close, differing mainly by their concentration parameters. We run the tempered MCMC-
SAEM for 1000 iterations with a decreasing temperature profile Tt = 1 + 50/t0.6. Once the
convergence is achieved, the estimated clusters are mapped to the true clusters. The eigen-
value parameters are estimated accurately with 2% rRMSE. The original and estimated
von Mises–Fisher distributions are compared in Figure 8. We can see that each cluster
distribution is well recovered. In particular, the overlapping distributions of cluster 1 and 2
are separated, and the higher concentration of cluster 1 is recovered in the estimation. This
example also highlights the relevance of the MCMC-SAEM clustering procedure compared
with its K-Means initialization: up to a label permutation, 50.4% of the K-Means proposed
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labels are correct, whereas the posterior distribution p(z(k) | A(k); θ̂) computed with the
final MCMC samples predicts the correct answer for 79.6% of the model samples.
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Figure 8. True latent variables X(k) and their posterior mean estimation for the clustering problem. (Top row): the plots (a–c)
represent the true vMF modes (in red), as well as the true X(k) samples (in green) in their true class. (Bottom row): the plots
(d–f) represent the three estimated vMF central modes (in red) and the estimated X(k) in their estimated class (in blue).
The cluster centers are well recovered, as well as the concentration parameters. In particular, the two first clusters, which
mainly differ by their concentration parameters, are correctly separated.

Larger Dimension

We now test the mixture model on a synthetic data set of 500 samples in dimension
(n = 20, p = 10). We generate four clusters with Stiefel modes close to one another,
with equal concentration parameters. The modes mainly differ by their mean eigenvalues
µc. The eigenvalue standard deviation σλ is set to be of the same order of magnitude as
the means µ, larger than most of its coefficients. The resulting data set is hard to estimate
with classical clustering: the K-Means algorithm retrieves 53.6% of correct labels at best.
In contrast, running the tempered MCMC-SAEM algorithm for 1000 iterations yields 99.4%
of correct labels. The algorithm achieves this result by identifying the template patterns of
each cluster despite the large variation in their weights. Once these template patterns are
learned, the proportion of correctly classified samples increases and the mean eigenvalues
of each cluster converge to a good estimation.

Model Selection

Selecting the number of clusters K is a known problem adressed for general mixture
models [57]. Although it is well understood for simple Gaussian mixture models or for
low dimensional data, other cases remain challenging problems. For the model proposed
in this paper, likelihood-based procedures cannot be applied, as the complete likelihood is
an integral over the Stiefel manifold (see Section 5.1.1). As with the selection of parameter
p, the concentration parameters and the reconstruction errors could be used to choose
the number of clusters. Using a K that is too small will result in stretching the latent von
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Mises–Fisher distributions toward low concentration parameters and large reconstruction
errors. The reconstruction error should decrease slower once the right number of clusters
has been reached.

Remark 4. The link prediction procedure described in Section 5.1.2 could also be applied in the
mixture model to infer the coefficients of new networks of which the class is unknown.

5.2. Experiments on Brain Connectivity Networks

We test our model on the UK Biobank data repository [58]. The UK Biobank is a large
scale data collection project, gathering brain imaging data on more than 37,000 subjects.
In this paper, we are interested more specifically in the resting-state functional Magnetic
Resonance Imaging data (rs-fMRI). The rs-fMRI measures the variations of blood oxygena-
tion levels (BOLD signals) across the whole brain while the subject is in a resting state,
i.e., receives no stimulation. The brain is then divided into regions through a spatial ICA
that maximizes the signal coherence within each region [59]. Smaller regions give more
detail on the brain structure but are less consistent across individuals. Finally, the raw imag-
ing data are processed to obtain a matrix that gathers the temporal correlations between
the mean blood oxygenation levels in each region. This matrix thus represents the way
brain regions activate and deactivate with one another. It is called the functional connectivity
network of the brain, as it provides information on the role of the regions rather than their
physical connections. In the UK Biobank data used in the present study, the connectivity
matrices are defined on a parcellation of the brain into n = 21 regions. These connectivity
matrices illustrate our purpose well: as shown in Figure 9, the data set has a very large
diversity of networks that express in patterns with varying weights.

5.2.1. Parameter Estimation

We run our algorithm on N = 1000 subjects for 1000 SAEM iterations with 20 MCMC
steps per SAEM iteration. Working on a restricted number of samples allows for a fast
convergence toward the final values. Indeed, we noticed that, while most of the parameters
stabilize relatively fast, the time to convergence of the concentration parameters grows
with the number of samples. Apart from these concentration parameters, we obtained
very similar results when taking all the UK Biobank subjects. In this section, we consider
a decomposition into p = 5 patterns. In Appendix E.1, we show the results obtained by
taking different values of p.

In Figure 10, we show the p normalized patterns fi f>i /‖ fi‖2 obtained once the al-
gorithm has converged. Patterns 3 and 5 have very high concentration parameters and
only use a small subset of the nodes. The three other patterns have smaller concentration
parameters. However, these concentrations are still high enough for the related columns
of X to be significantly more concentrated than a uniform distribution: the average Eu-
clidean distance between these three columns of X(k) and the related mode columns is 1.1
(±0.2 over the data set). Comparatively, the average distance between two points drawn
uniformly on the Stiefel manifold is 2.4 (±0.2) (over 10,000 uniform samples).

Figure 11 displays data set matrices A(k) alongside the respective mean posterior
estimates of λ(k) · X(k). For comparison purpose, we also compute the approximation
given by the projection onto the subspace of the first five PCA components of the full
data set, where each component has been vectorized. The λ · X matrices capture the
main structure, whereas the PCA approximation relying on the same number of base
components provides a less accurate reconstitution. Quantitatively, the λ · X term has a
47% (±5% over the data set) relative distance to A, whereas the PCA approximation has
a 92% (±12%) relative distance to A. The λ · X representation accounts for 60% of the
total variance, whereas the corresponding PCA representation only accounts for 35%. This
difference highlights the benefits of taking into account the variations of the patterns across
individuals. In a classical dictionary-based representation model, the patterns do not vary
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among individuals. In contrast, accounting for the pattern variability only adds a small
number of parameters (one per pattern) and increases the representation power.
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Figure 9. Functional connectivity matrices (21× 21 ) of 25 UK Biobank subjects. The connectivity structure changes a lot
depending on the subject, with various patterns expressing with different weights. The matrices in the data set have no
diagonal coefficients; hence, the diagonals are shown as zero.
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Figure 10. Normalized rank-one connectivity patterns. The matrix i represents sign(µi) fi f>i /‖ fi‖2. The caption above
each pattern gives the related concentration parameter and mean eigenvalue. The diagonal coefficients are set to zero,
as they do not correspond to values in the data set. The images show each matrix as an array of coefficients, with pixel color
corresponding to coefficient amplitude.
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Figure 11. (a) UK Biobank connectivity matrices for 5 subjects. (b) Corresponding posterior mean value of λ · X estimated
by the MCMC-SAEM. (c) Projection of the true connectivity matrices onto the subspace of the first five PCA components.
The posterior mean matrix achieves a better rRMSE than PCA by capturing the main patterns of each individual matrix.
As in Figure 10, the diagonal cofficients are set to zero.

5.2.2. Pattern Interpretation

Once the patterns are identified, they can be interpreted based on the function of
the related involved brain regions. All brain regions can be found on a web page of the
UK Biobank project (https://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/
rfMRI_ICA_d25_good_nodes.html, accessed on 19 April 2021). The regions analyzed in
this section can be visualized on brain cuts in Appendix E.2.

Pattern 3 mainly represents the anti-correlation between regions 1 and 3. Region 1
comprises, among others, the inner part of the orbitofrontal cortex and the precuneus.
These regions are parts of the Default Mode Network (DMN) of the brain, which is a
large-scale functional brain network known to be active when the subject is at rest or
mind-wandering [60]. Region 3 comprises part of the insular cortex and the post-central
gyrus, which both play a role in primary sensory functions. The anti-correlation between
regions 1 and 3 is a consequence of external sensations activating the sensory areas and
decreasing the DMN activity. This anti-correlation is also one of the strongest coefficients
in pattern 1.

Pattern 5 mainly features the dependency between nodes 2, 4, 8, 9, and 19, which are
all related to the visual functions. Node 2 represents the parts of the occipital and temporal
lobes forming the ventral and dorsal streams: they are theorized to process the raw sensory
vision and hearing to answer the questions “what?” and “where?” [61]. Region 4 features
the cuneus, which is a primary visual area in the occipital lobe. Region 8 spans over the
whole occipital lobe, covering primary visual functions and associative functions like the
recognition of color or movement. Region 9 comprises the continuation of the ventral and
dorsal streams of region 2 in the parietal and medial temporal areas. Finally, Region 19
represents the V1 area that processes the primary visual information. Pattern 5 involving
these regions has a very high concentration parameter, which means that this structure
remains very stable among the subjects.

Considering that the subject’s activity in the MRI scanner mainly consists of looking
around and laying still, it is coherent that the most stable patterns (i.e., with highest

https://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/rfMRI_ICA_d25_good_nodes.html
https://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/rfMRI_ICA_d25_good_nodes.html
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concentration parameters) during the resting-state fMRI measurement are the activity of
the vision system and the anti-correlation between the DMN and sensory areas.

Pattern 4 also shows the interaction between the visual areas 2, 4, 8, and 19. It also
includes the strong correlation between nodes 9, 10, 11, 12, and 17. Regions 10, 11, and 12
are involved in motor functions. Region 10 features part of the pre-central gyrus, which is
central in the motor control function, and part of the post-central gyrus, which is involved
in sensory information processing. Region 11 encompasses the entire pre-central gyrus.
Region 12 includes a part of the motor and pre-motor cortex in the frontal lobe and the
insular cortex. It also includes the cerebellum, which plays an important role in motor
control, and the insular cortex, which also acts on the motor control, for instance, in the
face and hands motion control [62]. Region 17 comprises the medial face of the superior
temporal gyrus and the hippocampus, which are involved in short and long-term memory
and spatial navigation.

Pattern 2 combines, to some extent, the structure contained in patterns 4 and 5. It
features, among others, interactions between the visual areas and the correlation between
the motor function areas.

Remark 5. The results and interpretation we present in this experiment depend on the state of
the subjects—in this case, a resting state—and the brain parcellation used to obtain the definition
of the regions. If we were to analyze another data set of subjects performing a different task,
the connectivity patterns X would likely differ from their resting-state counterpart. It follows from
the fact that two different phenomenons naturally require two different base dictionaries. Analyzing
the pattern difference would thus provides a way to interpret the structure difference between the
two settings. For instance, the role of the occipital lobe in the vision-involved patterns would likely
change for tasks related to vision. However, if the brain regions are defined differently in the two
experiments, the comparison can only be made in a qualitative way.

5.2.3. Link Prediction

We evaluate the relevance of our model on fMRI data by testing the missing link
imputation method introduced in the previous section. First we fit the model on N = 1000
subjects. Then we take 1000 other test subjects and mask the edges corresponding to
the interactions between the last nine nodes (except the diagonal coefficients, which are
unknown and thus considered null). We compute the MAP estimator of the masked
coefficients. For comparison purposes, we perform a linear regression to predict the
masked coefficients given the visible ones. Finally, we truncate the matrix with masked
coefficients to only keep the p dominant eigenvalues. This technique is at the core of low-
rank matrix completion methods [63], and it relates naturally with the estimation derived
from our model relying on low-rank variability. The result is shown for one sample in
Figure 12. The linear model and the MAP estimator give comparable estimates, both close
to the true masked coefficients. Over the 1000 test subjects, these estimators achieve on
average 58% (±14% over the samples) rRMSE for the linear model and 65% (±15%) rRMSE
for the MAP. Interestingly, our model uses only np + p + 2 = 112 degrees of freedom,
whereas the linear prediction model has dimension 26,640 and was specifically trained for
the regression purpose.

Our model captures a faithful representation of the fMRI data set and uses far fewer
coefficients than other models like PCA and linear regression by accounting for the struc-
ture of the interactions between the network nodes. It provides an explanation of the
network variability using simple interpretable patterns, which correspond to known spe-
cific functions and structures of the brain. The variations of these patterns and their weight
allow for a representation rich enough to explain a significant proportion of the variance
and impute the value of missing coefficients.
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Figure 12. From left to right: (a) True connectivity matrix A. (b) MAP estimator for the masked coefficients framed in a
black square. (c) Linear model prediction for the masked coefficients. (d) Rank 5 truncation of the matrix A with masked
coefficients set to zero. (e) Mean of all data set matrices. Above each matrix is the rRMSE with the ground truth.

6. Conclusions

This paper introduces a new model for the analysis of undirected graph data sets.
The adjacency matrices are expressed as a weighted sum of rank-one matrix patterns.
The individual-level deviations from the population average translate into variations of the
patterns and their weight. Sample graphs are characterized by these variations in a way
similar to PCA. The form of the decomposition allows for a simple interpretation: each
pattern corresponds to a matrix with rank one and is thus represented by a vector of node
coefficients. The variability of this decomposition is captured within a small number of
variance and concentration parameters.

We use the MCMC-SAEM algorithm to estimate the model parameters as well as the
individual-level variable. The parameter of von Mises–Fisher distributions is recovered
by estimating the vMF normalizing constant, which allows retrieving both the mode
and its concentration parameters. Future work could further investigate the role of the
approximation error induced by the use of saddle-point approximations, comparing its
performance with a recently proposed alternative method [64]. The impact of noise on the
underestimation of the vMF distribution concentration also requires further analysis.

Experiments on synthetic data show that the algorithm yields good approximations of
the true parameters and covers the posterior distributions of the latent variables. Our model
can be used to infer the value of masked or unknown edge weights once the parameters are
estimated. In practice, the posterior distribution could be compared to the real connections
to detect anomalous connections that step out of the expected individual variability.

The model we introduce is a hierarchical generative statistical model, which easily
extends to mixture models. We show that a mixture of decomposition models can be
estimated with a similar algorithmic procedure and allow disentangling between modes of
variability that are indistinguishable by a traditional clustering method.

We demonstrate the relevance of the proposed approach for the modeling of func-
tional brain networks. Using few parameters, it explains the main components of the
variability. The induced posterior representation is more accurate than PCA and gives
a link prediction performance similar to a linear model, which has a comparably simple
structure, but requires far more coefficients and was trained specifically to that purpose.
The estimated connectivity patterns have a simple structure and lead to an interpretable
representation of the functional networks. We show that our model identifies specific
patterns for the visual information processing system or the motor control. The related
concentration parameters allow measuring the variability of the function of the related
brain regions across the subjects.

This work focuses on cross-sectional network data sets, i.e., populations where each
adjacency matrix belongs to a different subject and is independent of the others. Our model
could also be used as a base framework for longitudinal network modeling using the tools
proposed by Schiratti et al. [65]. This would consist of considering time-dependent latent
variables X and λ for each subject, evolving close to a population-level reference trajectory
in the latent space.

Future work could investigate the dependencies between the latent variables of the
model. Correlation can be introduced between the patterns by using Fisher–Bingham



Entropy 2021, 23, 490 25 of 34

distributions on the Stiefel manifold [38] and between pattern weights with full Gaussian
covariance matrices. Another direction to develop is the quantification of the uncertainty:
by adding prior distributions on F and µ, a Bayesian analysis would naturally provide pos-
terior confidence regions for the model parameters [47]. Finally, our framework could be
adapted to model graph Laplacian matrices instead of adjacency matrices. The analysis of
the eigenvalues and eigenvectors of the graph Laplacian has proven of great theoretical [66]
and practical [67] interest in network analysis. Understanding the variability of the eigen-
decomposition of graph Laplacians could help to design robust models relying on spectral
graph theory.
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Appendix A. SAEM Maximization Step

Appendix A.1. Maximum Likelihood Estimates for µ, σ2
λ, σ2

ε

Up to a constant normalization term c, the complete log-likelihood of the model in the
Gaussian case writes:

log p((A(k)), (X(k)), (λ(k)); θ) =
N

∑
k=1

log p(A(k), X(k), λ(k); θ)

=
N

∑
k=1

[
− 1

2σ2
ε

∥∥∥A(k) − λ(k) · X(k)
∥∥∥2
− 1

2σ2
λ

∥∥∥λ(k) − µ
∥∥∥2

+ Tr(F>X(k))

]
(A1)

− Nn2 log σ− Np log σλ − N log Cn,p(F) + c

= N

[
Tr(F>S1) + 〈S2,

1
2σ2

λ

µ〉 − S3
1

2σ2
λ

− S4
1

2σ2
ε
+ Ψ(θ)

]

https://www.ukbiobank.ac.uk/
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with Ψ(θ) = −n2 log σε − p log σλ − log Cn,p(F) + c, and

S1 = 1
N ∑N

k=1 X(k)

S2 = 1
N ∑N

k=1 λ(k)

S3 = 1
N ∑N

k=1

∥∥∥λ(k)
∥∥∥2

S4 = 1
N ∑N

k=1

∥∥∥A(k) − λ(k) · X(k)
∥∥∥2

The model thus belongs to the curved exponential family, and its sufficient statistics
are given by (S1, S2, S3, S4). The log-likelihood is componentwise convex in µ, σ2

λ and σ2
ε .

Computing its gradient yields one single critical point, which is thus the maximum value.
In the case of the binary model, the log-likelihood writes:

log p((A(k)), (X(k)), (λ(k)); θ) =
N

∑
k=1

n

∑
i,j=1

[
A(k)

ij log h(λ(k) · X(k))ij + (1− A(k)
ij ) log(1− h)(λ(k) · X(k))ij

]
+

N

∑
k=1
− 1

2σ2
λ

∥∥∥λ(k) − µ
∥∥∥2

+ Tr(F>X(k))

− Np log σλ − N log Cn,p(F) + c

with h(x) = 1/(1 + exp(−x)) the sigmoid function, which applies component-wise on
matrices. The distribution (A | λ, X) is non parametric and needs no estimation. Hence,
for all the model parameters F, µ, σλ the MLE remains unchanged.

Appendix A.2. Saddle-Point Approximation of Cn,p(F)

We recall the main steps to compute the approximation of Cn,p(F) proposed by Kume
et al. [49]. For more details on the justification of the approximation and applications to
more general distributions, we refer the reader to the original paper. Our implementation
provides a function spa.log_vmf, which computes this approximation. The approximation
Ĉn,p(F) for von Mises–Fisher distributions is written in Equation (16) of [49]:

Ĉn,p(F) =
2p(2π)np/2−p(p+1)/4

|K̂′′|1/2|Ĉ|1/2
exp

{
1
2

vec(F)>Ĉ−1vec(F)−
p

∑
i=1

ϑ̂ii

}
exp(T − p/2) . (A2)

Using the following definitions:

• C(ϑ) = −2Inp − 2 ∑1≤i≤j≤p ϑij(Jij + Jji). The matrix Jij is composed of p2 blocks.
Block (i, j) is the identity In and all the other blocks are set to zero.

• K(ϑ) = − 1
2 log |C(ϑ)| − 1

2 µ>C(ϑ)−1µ − 1
2 vec(µ)>vec(µ). In this formula, µ is the

n× p diagonal matrix with diagonal p singular values ω of F. The function K(ϑ) is
the cumulant generating function.

• ϑ̂ is the unique solution of the so-called saddle-point equation K′(ϑ) = ϑ. It has the

explicit expression ϑ̂ = −1/(2Diag(φ̂)), with φ̂r =
(

n +
√

n2 + 4ω2
r

)
/(2ω2

r )

• Ĉ is given by C(ϑ̂) and K̂′′ by K′′(ϑ̂).
• K̂′′ can be computed explicitly:

K̂′′(r1,s1),(r2,s2)
=


0 r1 6= r2 or s1 6= s2,
nφ̂rφ̂s + φ̂rφ̂s(ω2

r φ̂r + ω2
s φ̂s) r1 = r2 < s1 = s2,

2nφ̂2
r + 4ω2

r φ̂3
r r1 = r2 = s1 = s2

• The parameter T is defined in Equation (8) of [49] and computed in the supplementary
material of the paper in the case of vMF distributions. In first approximation, T can be
considered zero.
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As in the original paper, we validate our implementation by comparing the result with the
Monte Carlo estimate of the normalizing constant produced by uniform sampling on the
Stiefel manifold.

Remark A1. The −p/2 factor comes from using B = −In×p/2 (and thus V = In×p) and
compensating with Equation (22) of [49] to handle vMF distributions, which otherwise have B = 0.
This point is not stated explicitly in the main text of the paper but it is explained in the related
MATLAB implementation provided by the authors.

Appendix B. Gradient Formulas

The MCMC-SAEM initialization heuristic, as well as the MALA transition kernel,
require the gradients of the log-likelihood with respect to the latent variables. In this
section, we compute these gradients for the model with Gaussian perturbation and the
model with binary coefficients.

Appendix B.1. Model with Gaussian Perturbation

Consider the log-likelihood for the variables of only one subject (X, λ, A). Using the
formula in Equation (A1), we can compute its gradients with respect to X and λ. For λ,
it writes:

∇λ log p(X, λ, A; θ) = −
(

1
σ2

ε
+

1
σ2

λ

)
λ +

1
σ2 (x>i Axi)

p
i=1 +

1
σ2

λ

µ ,

with (xi)
p
i=1 the columns of X. Similarly, the Euclidean gradient for X is given by

∇X log p(X, λ, A; θ) =
1
σ2

ε
AXDiag(λ) + F + 4XDiag(λ)X>XDiag(λ)

Following Edelman et al. [30], the Riemannian gradient on the Stiefel manifold is then
given by:

∇VX log p(X, λ, A; θ) = ∇X log p(X, λ, A; θ)X(k)> − X∇X log p(X, λ, A; θ)

Appendix B.2. Binary Model

Similarly, the log-likelihood gradients can be derived for the binary model. Let x̃i be
the i-th row of X and � denote the entrywise product. We have:

∇λ log p(X, λ, A; θ) = − 1
σ2

λ

(λ− µ) +
n

∑
i,j=1

[Aijh(−(λ · X)ij)− (1− Aij)h((λ · X)ij)](x̃i � x̃j)

∇X log p(X, λ, A; θ) = F + ∑
i 6=j

[Aijh(−(λ · X)ij)− (1− Aij)h((λ · X)ij)]Hij

+
n

∑
i=1

[Aiih(−(λ · X)ii)− (1− Aii)h((λ · X)ii)]Ki .

In the latter formula, Hij is a n × p matrix with zeros everywhere except the i-th
row equal to λ � x̃j and the j-th row equal to λ � x̃i. Ki is the n × p matrix with zeros
everywhere except the i-th row equal to 2λ� x̃i.
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Appendix C. Algorithm for the Clustering Model

We summarize in Algorithm A1 the procedure to estimate the MLE of a mixture model.

Algorithm A1: Maximum Likelihood Estimation of θ = (F, µ, σε, σλ, π) for the mixture model
Initialize θ0 and S0.
Initialize X0, λ0 and z0 using the K-Means algorithm.
for t = 1 to T do

if (t mod 5) = 0 then
Align together the parameters (Fc, µc)K

c=1 of each cluster using Algorithm 2.
end
if t ≤ T/3 and (t mod 5) = 0 then

for k = 1 to N do

Use Algorithm 2 to align X(k)
t with πV

(
Fz(k)t

t

)
.

Permute λ
(k)
t accordingly.

end
end

Set X̃(k)
0 = X(k)

t , λ̃
(k)
0 = λ

(k)
t , z̃(k)0 = z(k)t

for ` = 1 to nMCMC do
for k = 1 to N do

Sample X̃(k)
` from the Metropolis kernel qX(· | X̃(k)

`−1, λ̃
(k)
`−1, z̃(k)`−1; θt) targetting

p(X(k) | A(k), λ̃
(k)
`−1, z̃(k)`−1; θt).

Sample λ̃
(k)
` from the Metropolis kernel qλ(· | X̃(k)

` , λ̃
(k)
`−1, z̃(k)`−1; θt) targetting

p(λ(k) | A(k), X̃(k)
` , z̃(k)`−1; θt).

Sample z̃(k)` from the distribution p(z(k) | A(k), X̃(k)
` , λ̃

(k)
` ; θt).

end
end

Set X(k)
t+1 = X̃(k)

nMCMC , λ
(k)
t+1 = λ̃

(k)
nMCMC and z(k)t+1 = z̃(k)nMCMC .

Update the sufficient statistics St+1 = (1− αt)St + αtS(A, Xt+1, λt+1).
Compute πt+1 using the proportion of samples z(k)t+1 belonging to each cluster.
for c = 1 to K do

Compute µc
t+1, (σc

ε )t+1 and (σc
λ)t+1 with Equation (5) using only the k such that z(k)t+1 = c.

Compute Fc
t+1 by solving problem (6), using only the k such that z(k)t+1 = c.

end
end
return θT , (Xt, λt, zt)T

t=1

Appendix D. Symmetry of Von Mises–Fisher Distributions

Let F be the parameter of a von Mises–Fisher distribution. Let expX be the Riemannian
exponential map at X. We have the following result:

Proposition A1. Suppose that the columns of F are orthogonal. Let M = πV(F) be the mode
of the vMF distribution and D ∈ TMVn,p a tangent vector at M. Then pvMF(expM(D)) =
pvMF(expM(−D)), i.e., the vMF distribution is symmetric around its mode.

Proof. Since the columns of F are orthogonal, we can write F = MΛ with M = πV(F) ∈
Vn,p and Λ = Diag(λ). Let D ∈ TMVn,p. As proven in [30], the geodesic Xt starting at M
with X′(0) = D is then given by

Xt = (M, M⊥) exp(tKM(D))In,p ,
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where exp is the matrix exponential, M⊥ ∈ Vn,n−p is such that M>M⊥ = 0 and KM(D) is
skew-symmetric: KM(D)> = −KM(D). Therefore, the von Mises–Fisher log-density along
Xt writes as:

Tr(F>Xt) = Tr(ΛM>(M, M⊥) exp(tKM(D))In,p)

= Tr(ΛIp,n exp(tKM(D))In,p)

= Tr(I>n,p exp(tKM(D))> I>p,nΛ>)

= Tr(Ip,n exp(tKM(D)>)In,pΛ)

= Tr(ΛIp,n exp(−tKM(D))In,p)

= Tr(F>X−t)

Therefore the von Mises–Fisher density is symmetric around its mode.

Appendix E. Additional Details on the UK Biobank Experiment

Appendix E.1. Impact of the Number p of Patterns

We perform the same experiment as in Section 5.2 with different numbers of patterns,
p ∈ {2, 5, 10}, always running the MCMC-SAEM for 1000 iterations with 20 MCMC steps
per SAEM iteration. We call the related models M2, M5, and M10. The normalized patterns
of M2 and M10 are reproduced in Figures A1 and A2. The patterns of M2 correspond to
patterns 1 and 2 of M5 and M10. Similarly, the patterns of M5 correspond to patterns 1 to 5 of
M10. This result confirms that our model acts in a way comparable to PCA, selecting first the
dominant patterns with the largest eigenvalues. Figure A3 compares the posterior means
of λ · X given by M2, M5 and M10 for 5 subjects. Coherently, the approximation λ(k) · X(k)

refines and gets closer to A(k) as p increases. Over the 1000 subjects, these posterior means
achieve, respectively, 57% (±7%), 47% (±5%) and 35% (±4%) relative RMSE.

However, this observation does not assess whether higher values of p provide addi-
tional relevant features to represent the network structure. The following result illustrates
this idea. We repeat the experiment of missing link MAP imputation on models M2 and
M10. We find that both M2 and M10 yield a worse prediction than M5 on this task: model
M2 gets 70% (±16%) rRMSE and M10 gets 76% (±16%) rRMSE, whereas model M5 gets
65% (±15%) rRMSE. While the prediction performance of M2 is expected to be worse
than M5’s, observing a worse prediction performance in M10 means that the information
captured by the additional components does not help infer the network structure. As with
PCA, the components with lesser amplitude are less relevant to perform regression tasks;
this idea is at the core of Partial Least Square Regression [68].
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Figure A1. Normalized connectivity patterns when p = 2, computed as in Figure 10.
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Figure A2. Normalized connectivity patterns when p = 10, computed as in Figure 10.
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Figure A3. (a) UK Biobank connectivity matrices for 5 subjects. (b) M10 posterior mean value of λ · X. (c) M5 posterior
mean value of λ · X. (d) M2 posterior mean value of λ · X. The rRMSE coherently increases as p decreases.

Therefore, the parameter p should be chosen with care when using our model for
predictive purposes. The experiment presented above can be used to quantify the relevance
of the obtained representation, but other methods could be explored. Future work could
investigate the question of parameter selection by adapting Bayesian model selection
methods to our method, as well as likelihood ratio tests or criteria like BIC and AIC.
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Appendix E.2. Brain Regions of the UK Biobank fMRI Correlation Networks

As explained in Section 5.2, the Regions Of Interest (ROIs) that define the correlation
networks are detected automatically using a spatial ICA [59]. Each component of the ICA
attributes a weight to each brain voxel. The brain regions are visualized by selecting the
voxels with weight above a certain threshold. The obtained level set may be scattered over
the brain, which sometimes makes their interpretation difficult. In Figure A4, we show
the brain regions mentioned in the interpretation of the patterns identified by our model,
namely regions 1, 2, 3, 4, 8, 9, 10, 11, 12, 17, 19. In this figure, as well as online, the ICA
weight threshold value is set to 5.
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Figure A4. Frontal, sagittal, and transverse cuts of the brain for the UK Biobank fMRI brain regions analyzed in this paper.
As explained in Section 5.2, region 1 comprises part of the Default Mode Network of the brain, which characterizes its
activity at rest. Region 3, which is anti-correlated to region 1, is related to sensory functions. Regions 2, 4, 8, 9, and 19
are involved in the visual functions. Regions 10, 11, 12 correspond to motor control. Region 17 is involved in memory
and spatial navigation. The L/R letters distinguish the left and right hemispheres. The black axes on each view give the
three-dimensional position of the cut. The color strength corresponds to the truncated ICA weight.
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