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Abstract
Mauremys sensu lato was divided intoMauremys, Chinemys,Ocadia, and Annamemys
based on earlier research on morphology. Phylogenetic research on this group has been

controversial because of disagreements regarding taxonomy, and the historical speciation

is still poorly understood. In this study, 32 individuals of eight species that are widely distrib-

uted in Eurasia were collected. The complete mitochondrial (mt) sequences of 14 individu-

als of eight species were sequenced. Phylogenetic relationships, interspecific divergence

times, and ancestral area reconstructions were explored using mt genome data (10,854

bp). Subsequent interspecific gene flow level assessment was performed using five

unlinked polymorphic microsatellite loci. The Bayesian and maximum likelihood analyses

revealed a paraphyletic relationship among four old genera (Mauremys, Annamemys, Chin-
emys, andOcadia) and suggested the four old genera should be merged into the genus

(Mauremys). Ancestral area reconstruction and divergence time estimation suggested

Southeast Asia may be the area of origin for the common ancestral species of this genus

and genetic drift may have played a decisive role in species divergence due to the isolated

event of a glacial age. However,M. japonicamay have been speciated due to the creation

of the island of Japan. The detection of extensive gene flow suggested no vicariance

occurred between Asia and Southeast Asia. Inconsistent results between gene flow

assessment and phylogenetic analysis revealed the hybrid origin ofM.mutica (Southeast
Asian). Here ancestral area reconstruction and interspecific gene flow level assessment

were first used to explore species origins and evolution ofMauremys sensu lato, which pro-

vided new insights on this genus.
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Introduction
Mauremys sensu lato belonging to Geoemydidae was proposed as a new genus based on the
recent molecular research. For this genus, nine species are generally recognized:M. annamensis
from Vietnam,M. caspica from Turkey to Iran,M. rivulata from Northeast Mediterranean,M.
leprosa from Southern Europe to Northern Africa,M.mutica from Southeast China and Viet-
nam,M. reevesii from China, Korea and Japan,M. sinensis from Southeast China, Laos and
Vietnam,M. nigricans from Southern China,M. japonica from Japan [1].

In earlier studies using morphological comparisons,Mauremys sensu lato was divided into
the narrow-jawed clade and broad-jawed clade based on the characteristics of the palate [2].
Mauremys sensu lato has been regarded to comprise four monophyletic groups; i.e.,Mauremys,
Annamemys, Chinemys, and Ocadia [3]. Subsequent studies based on molecular data firmly
suggested the paraphyletic of four old genera [4–7]. Therefore, some authors have suggested
combining these four monophyletic genera into an expanded genus; i.e.,Mauremys sensu lato
[1,5,6].

In recent years, more attention has been focused on the phylogeography and population
genetic structure ofMauremys sensu lato. Previous studies of gene flow in this group mainly
focused onWestern Palearctic species. The existence of intraspecific gene flow was confirmed
inM. leprosa,M. caspica, andM. rivulata [8–10]. Based on these results, Fritz et al. (2006) sur-
mised the population ofM. leprosamay be affected by glacial period bottlenecks, resulting in a
decline in population diversity [9]. This inference has been confirmed in subsequent research
about the population genetic structure ofM. japonica [11]. However, the interspecific gene
flow of East and Southeast Asian species has rarely been reported.

Eight species ofMauremys sensu lato were collected in this study.M. nigricans was not
included because purebredM. nigricans is hardly found in the wild or turtle market. The phylo-
genetic relationships, interspecific divergence times, and ancestral area reconstruction of this
group were explored using mt data. Subsequently, interspecific gene flow levels were assessed
using five unlinked polymorphic microsatellite loci. Ancestral area reconstruction and inter-
specific gene flow level assessment were first used to explore species origins and evolution of
Mauremys sensu lato, which provide new insights on the phylogeny of this genus.

Materials and Methods

2.1 Ethics statement and Sample collection
Procedures involving animals and their care were consistent with NIH guidelines (NIH Pub.
No. 85–23, revised 1996) and approved by the Animal Care and Use Committee of Anhui Nor-
mal University under approval number #20130710.

Thirty-two individuals of eight species included 18 living turtles and 14 specimens. No
endangered or protected species were involved in this study. Twenty-five samples were col-
lected from China and boundary areas adjacent to Vietnam. No permission was necessary for
accessing areas where turtles were collected. AllM. japonica and three West Asian species (M.
caspica,M. rivulata, andM. leprosa) were purchased from the pet market; i.e., Yihe market in
Guangdong (Table 1). Tissue samples were collected from the tails (3–5 mm from the tip) of
living turtles at a sampling location using procedures that minimized pain. Before tissue collec-
tion, we used 5% lidocaine ointment to anesthetize the tails to alleviate pain and 70% alcohol to
clean the tails to avoid infection. A low dose of antibiotic was applied on the wound after tissue
collection. During the healing period, wound were kept dry.

Most turtles were immediately released into the local habitat and others were fed in Anhui
Normal University due to being an alien species. Specimens were deposited in the Provincial
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Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui,
China.M.mutica were collected from two populations; i.e., an eastern China population and
Vietnamese population.M.mutica from the two regions had obvious differences in morphology.

2.2 Laboratory protocols
Total genomic DNA was extracted from tail muscle tissue by a standard phenol/chloroform
procedure via proteinase K digestion [12], and then kept at -20°C for PCR amplification.

Sixteen pairs of universal primers were designed for the mt DNA ofMauremys sensu lato
(S1 Table). PCR reactions were conducted in 50 μL reaction mixtures containing 200 ng tem-
plate DNA, 5 μL 10 × buffer (TaKaRa, Dalian, China), 4.0 μL MgCl2 (2.5 mol/L), 3.0 μL dNTP
(2.5 mM), 2 μL of each primer (5 μmol/L), and 0.5 U Taq DNA polymerase (25 U/μL,

Table 1. Listing of samples ofMauremys sensu lato.

Species Original genus Locality Situation

M. reevesii 1 Chinemys Anhui, China Specimen*

M. reevesii 2 Chinemys Anhui, China Specimen*

M. reevesii 3 Chinemys Anhui, China Specimen*

M. reevesii 4 Chinemys Anhui, China Specimen*

M. reevesii 5 Chinemys Anhui, China Specimen*

M. annamensis 1 Annamemys Guangxi, China (adjacent to Vietnam) Specimen*

M. annamensis 2 Annamemys Guangxi, China (adjacent to Vietnam) Specimen*

M. annamensis 3 Annamemys Guangxi, China (adjacent to Vietnam) Specimen*

M. mutica (East Asian) 1 Mauremys Anhui, China Specimen*

M. mutica (East Asian) 2 Mauremys Anhui, China Specimen*

M. mutica (East Asian) 3 Mauremys Zhejiang, China Live

M. mutica (East Asian) 4 Mauremys Zhejiang, China Live

M. mutica (East Asian) 5 Mauremys Zhejiang, China Live

M. mutica (East Asian) 6 Mauremys Zhejiang, China Live

M. mutica (East Asian) 7 Mauremys Zhejiang, China Live

M. mutica (Southeast Asian) 1 Mauremys Guangxi, China (adjacent to Vietnam) Specimen*

M. mutica (Southeast Asian) 2 Mauremys Guangxi, China (adjacent to Vietnam) Specimen*

M. mutica (Southeast Asian) 3 Mauremys Guangxi, China (adjacent to Vietnam) Live

M. mutica (Southeast Asian) 4 Mauremys Guangxi, China (adjacent to Vietnam) Live

M. mutica (Southeast Asian) 5 Mauremys Guangxi, China (adjacent to Vietnam) Live

M. mutica (Southeast Asian) 6 Mauremys Guangxi, China (adjacent to Vietnam) Live

M. japonica 1 Mauremys Japan Specimen*

M. japonica 2 Mauremys Japan Live

M. japonica 3 Mauremys Japan Live

M. japonica 4 Mauremys Japan Live

M. sinensis 1 Ocadia Guangdong, China Live

M. sinensis 2 Ocadia Guangdong, China Live

M. sinensis 3 Ocadia Guangdong, China Live

M. sinensis 4 Ocadia Guangdong, China Live

M. rivulata Mauremys Greece live

M. caspica Mauremys Iran Specimen*

M. leprosa Mauremys France live

*All specimens were deposited in the provincial key laboratory of the conservation and exploitation research of biological resources in Anhui, China.

doi:10.1371/journal.pone.0144711.t001
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TaKaRa). PCR conditions were as follows: initial denaturation (95°C, 1 min), then 35 cycles of
denaturation (94°C, 50 s), primer annealing (50°C–58°C, 50 s), and elongation (72°C, 1 min)
and a final extension (72°C, 10 min). The mt DNA fragments of intended sizes were recovered
using a Gel Extract Purification Kit (TaKaRa). Purified PCR products were cloned into
pMD19T vectors (TaKaRa) and all fragments were sequenced in both directions with an
ABI3730 automated sequencer (Invitrogen Biotechnology Co., Ltd, USA).

Cross species microsatellite amplification was performed across 10 primer pairs developed
forM. reevesii in earlier work of our laboratory (patent number: ZL201110026152.5) and five
loci were chosen for amplification in this study. PCR conditions were as follows: 95°C for 5
min, 94°C for 30 s, 57°C for 60 s and 72°C for 90 s, followed by 32 cycles of step 2 to step 4 and
final extension at 72°C for 5 min. SSR analysis was detected by ABIPRISM 3730. The results
were read with GeneMarker software.

2.3 Genetic distance analysis
Complete mt sequences of 14 individuals of eight species (i.e.,M.mutica,M. japonica,M.
sinensis,M. annamensis,M. reevesii,M. caspica,M. rivulata, andM. leprosa) were sequenced.
Twelve protein-coding genes [cytochrome c oxidase (COX) subunits 1, 2, and 3, cytochrome b
(Cyt b), NADH dehydrogenase (ND) subunits 1, 2, 3, 4, 4L, and 5, and ATP synthase F0 (ATP)
subunits 6 and 8] were chosen for analyses. Other genes [22 tRNA genes, 2 rRNA genes, a
highly variable control region (CR) and ND6 gene] were excluded from the analyses due to
potential saturation, alignment problems and different evolutionary rates, which influenced
replacement patterns at the amino acid sequence level [13,14].

Twelve protein-coding genes were aligned separately with Mega 6.06 software [15] by
ClustW (codon). Then, the genetic distances for all species were calculated by analysis of the
combined data (10,854 bp) of mt 12 protein-coding genes using Mega v6.06.

2.4 Phylogenetic analysis
In order to resolve the current ambiguous phylogeny ofMauremys sensu lato, a total of 35
complete mt genome sequences of Cuora andMauremys sensu lato, and out-groupManouria
emys were selected (S2 Table).

Considering different evolutionary rates, twelve protein-coding genes were partitioned by codon
positions and a best-fit substitution model was selected using PartitionFinder [16] (Table 2).

Phylogenetic relationships were inferred with maximum likelihood (ML) and Bayesian
analysis (BI) under a best-fit partitioning scheme. ML tree was calculated with Raxml version
7.2.6 [17]. For each partition scheme, we performed a rapid (–f a -x option) with 1,000 replica-
tions to assess support on different nodes [17,18]. We regard bootstrap values of� 70% as
strong support and values of< 70% as weak support [19]. BI analysis was constructed using
MrBayes v.3.1.2 [20]. BI was run with four Markov chains for 5 × 107 generations and sampled
every 1000 generations. The stationary point was reached when the potential scale reduction
factor (PSRF) equaled 1, and when -log likelihood (-lnL) scores plotted against generation time
reached a stationary value, and 25% of the generations were discarded. Trees from sample
points following the burn-in were combined into a 50% majority rule consensus tree; the

Table 2. Substitution models for nucleotide data partitions selected using the BIC in PartitionFinder.

Partition Model

ATP6, ATP8, Cytb, ND1, ND2, ND3, ND4L, ND4, ND5, CO1, CO2, CO3 1st and 2nd -codon GTR+I+G

ATP6, ATP8, Cytb, ND1, ND2, ND3, ND4L, ND4, ND5, CO1, CO2, CO3 3rd-codon HKY+I+G

doi:10.1371/journal.pone.0144711.t002
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percentage of samples recovering a given clade reflected the clade’s posterior probability (PP).
Posterior probabilities� 95% are regarded as strong support.

2.5 Ancestral area reconstruction and divergence time estimation
Ancestral area reconstructions were inferred by the program RASP 3.0 [21] for speciational
evolution in phylogenetic trees, using the Bayesian binary method (BBM) and the statistical
dispersal-vicariance method (S-DIVA). All eight species were allocated to five areas where
these turtles still existed: (1) East Asia (A); (2) Southeast Asia (B); (3) West Asia (C); (4) West
Europe (D); (5) South Europe and North Africa (E).

The divergence times of these species have been estimated using BEAST 1.8.0 under a
model of uncorrelated rates drawn from a log normal distribution for 1.5 × 108 generations,
assigning a Yule prior to rates of cladogenesis [22]. In order to ensure the time estimates to be
as accurate as possible, all existing mt 12-protein sequences of Testudinidae, Cuora andMaur-
emys were selected from the NCBI database and Pelomedusa subrufa was used as the out-group
(S3 Table). Two calibration points were selected to calibrate the divergence times: the fossil
record of earliest divergence between Testudinidae and Geoemydidae, 55.0–66.4 million years
ago (ma) [23]; the fossil record in Testudinidae, 45.6–55.8 ma [24].

2.6 Gene flow level assessment
Interspecific gene flow levels were assessed with Popgene 1.32 [25] using five unlinked poly-
morphic microsatellite data from 29 individuals except three Western Palearctic species (M.
rivulata,M. caspica andM. leprosa). The interspecific genetic differentiation coefficients (Fsts)
were calculated and 1,000 bootstrap resampling were carried out to verify confidence intervals
(P< 0.05). Subsequently, the number of individual migrations in each generation was esti-
mated by the effective number of migrants (Nm), which was calculated by the formula
Nm = 0.25�(1-FST)/FST [26].

Results

3.1 Characteristics of the mitochondrial gene data
Fourteen individuals of eight species were determined from 16,443 bp (GU938833 and
NC_016951) to 17,067 bp (KP100055) in length. All complete mt genomes encoded for 2
rRNA, 22 tRNA, 13 protein-encoding genes and a highly variable control region (CR). Similar
to other vertebrates, CRs of all species were located between tRNApro and tRNAphe. The follow-
ing three parts of CR were also identified in these fourteen turtles: central conserved sequence
block (CD), termination associated sequence (TAS), and conserved sequence blocks (CSB).
And CSB contains a variable number of tandem repeat (VNTR) sequences. The arrangement
of mt genes accorded with the general features of vertebrates.

Twelve protein-coding genes encoded by the H-strand were chosen for subsequent analyses
because of the suitable evolutionary rate. The entire dataset was 10,854 bp in length, which
contained 6,771 conserved sites, 4,080 variable sites, 3,072 parsim-informative sites and 1,008
singleton sites. The nucleotide compositions were slightly biased toward A and the average
value was 32.3%.

3.2 Genetic distance comparative analyses between Cuora and
Mauremys sensu lato
We calculated the genetic distance of Cuora andMauremys sensu lato, respectively. Results for
genetic distance showed that the largest genetic diversity inMauremys sensu lato existed
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betweenM. reevesii andM. leprosa as well asM. reevesii andM. annamensis and the value was
0.086 (S4 Table). However, the largest value of Cuorawas 0.093 and it existed between C.mouho-
tii, and C. amboinensis (S5 Table). Compared with Cuora, the genetic distance results suggested
the largest divergence inMauremys sensu lato was still at the species level within the genus.

3.3 Phylogenetic analyses
Phylogenetic relationships were estimated for the first time with ML and BI using mt twelve
protein-coding genes. Trees derived from ML and BI analyses showed identical topology (Fig
1). Phylogenetic trees clearly indicated a sister relationship between Cuora andMauremys
sensu lato, whileManouria emys came out as the outgroup.

The "deeper" phylogenetic relationships inMauremys sensu lato were divided into three clades
(M. annamensis +M.mutica clade,M. japonica +M. sinensis +M. reevesii clade andM. rivulata
+M. caspica +M. leprosa clade). TheM. annamensis +M.mutica clade first diverged as the
basal (PP = 1; BP = 100). The relationships betweenM. rivulata +M. caspica +M. leprosa and
M. japonica +M. sinensis +M. reevesii and betweenM. leprosa andM. rivulata +M. caspica were
not well supported (PP = 0.81; BP = 46 and PP = 0.78; BP = 43, respectively). However, the sister
relationship betweenM. rivulata andM. caspica was strong supported (PP = 1; BP = 100) as well
asM. sinensis +M. reevesii (PP = 1; BP = 100).M. japonica revealed a sister relationship with
M. sinensis +M. reevesiiwith significantly statistical support (PP = 1; BP = 100).

In additon, the paraphyletic relationships betweenM. reevesii andM.megalocephala and
betweenM. annamensis andM.mutica were revealed in both ML and BI trees (PP = 1;
BP = 100 and PP = 1; BP = 100, respectively).

3.4 Divergence time estimation and ancestral area reconstruction
The results were read combining the trend of temperature change and climatic events (Fig 2)
[27]. Divergence time estimation was calibrated by two fossil records (node 1 and node 2)

Fig 1. Phylogenetic trees forMauremys sensu lato reconstructed based onmt heavy chain 12 protein-coding genes.Numbers of nearby branches
are posterior probabilities (PPs, Left) and bootstrap proportions (BPs, Right) recovered from BI and ML analyses, respectively. Four old genera ofMauremys
sensu lato are shown using different colours; i.e., red represents Chinemys; green representsOcadia; purple representsMauremys; blue represents
Annamemys.

doi:10.1371/journal.pone.0144711.g001
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[23,24]. The mean and 95% confidence interval (CI) of the ages of major nodes in the phylog-
eny are listed in Table 3. The divergence time between Coura and Mauremys sensu lato was
consistent with Lourenco et al.’s results (mean: 32.26 ma with a 28.01–36.97 ma 95% CI) [24].

Fig 2. Chronogram using BEAST 1.8.0 based onmt heavy chain 12 protein-coding genes. A. Divergence time estimation; B. The trend of temperature
change redrawn from Zachos et al.’s results [27]. The red zone represents the warming period. The blue zone represents the glacial period.

doi:10.1371/journal.pone.0144711.g002
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The earliest divergence ofMauremys sensu lato occurred in two Southeast Asian species (node
4; mean: 23.55 ma with a 12.26–32.12 ma 95% CI), and then species of the Eastern andWestern
Palearctic region diverged in 22.12 ma (node 5).

The historical evolution ofMauremys sensu lato is clearly shown by the results of ancestral
area reconstruction in Fig 3. The slight difference between the results of BBM and S-DIVA
analyses were a consequence of assumptions underlying different methods. We preferred the
results of BBM analysis compared to S-DIVA because BBM calculates the probability of each
area based on the distribution of terminal taxa [21].

All results supported Southeast Asia (area B) as the original area of living members ofMaur-
emys sensu lato and current distributions were formed by multiple diffusion. Diffusion began
in Southeast Asia (area B), and then expanded step by step from East Asia (area A) to Western
Palearctic region (areas C, D and E). Most species ofMauremys sensu lato were distributed in
East and Southeast Asia, and only three species (M. caspica,M. rivulata, andM. leprosa) were
distributed in Western Palearctic region.

3.5 The assessment of gene flow
Five microsatellite loci amplified unambiguous and repeatable products in the size range
expected. We assessed the interspecific gene flow level of six populations of East and Southeast
Asian species. The results are represented by Fst and Nm values (Table 4).

Strong gene flow existed among most all of the populations (Nm> 1), except for between
M. annamensis andM. reevesii (Nm = 0.96). The maximum Nm and the minimum Fst
occurred between the Southeast Asian population and East Asian population ofM.mutica and
this suggested no differentiation between the two populations ofM.mutica.

Discussion

4.1 Interspecific phylogenetic relationships ofMauremys sensu lato
In both ML and BI trees, species of oldMauremys (purple in Fig 1) were discovered in all three
clades (M. annamensis +M.mutica clade,M. japonica +M. sinensis +M. reevesii clade andM.
rivulata +M. caspica +M. leprosa clade). The paraphyletic relationship among four old genera;
i.e.,Mauremys, Annamemys, Chinemys, and Ocadia, was revealed clearly, so it suggested that

Table 3. Divergence time estimates in the chronogram shown in Fig 2.

Node Fossil calibrated? Lognormal priors

Mean (Ma) 95% CI

1 Yes 60.1 53.03–67.26

2 Yes 49.36 43.52–55.49

3 No 32.26 28.01–36.97

4 No 23.55 12.26–32.12

5 No 22.12 13.08–30.61

6 No 18.56 6.36–27.85

7 No 15.19 5.9–24.47

8 No 12.27 3.81–23.49

9 No 12.4 4.96–21.7

10 No 7.72 2.44–14.78

11 No 2.35 0.29–6.87

12 No 0.24 0.02–0.99

doi:10.1371/journal.pone.0144711.t003
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the four old genera should be merged into the genus; i.e.,Mauremys, which was consistent with
previous studies based on different molecular data [4–7].

Compared with Cuora, the most diverse species inMauremys sensu lato should remain in
the same genus, which was clearly reflected in the genetic distance. The largest diversity recog-
nized in Cuora was discovered between C.mouhotii and C. amboinensis and the value was
0.093. However, the interspecific maximum value inMauremys sensu lato was 0.083 and this
existed betweenM. reevesii andM. leprosa as well asM. reevesii andM. annamensis. The inter-
specific maximum genetic distance ofMauremys sensu lato was less than Cuora.

Fig 3. Results for ancestral area reconstruction inferred from BBM and S-DIVA based onmt heavy chain 12 protein-coding genes. The map is from
the Central Intelligence Agency (CIA: https://www.cia.gov/library/publications/the-world-factbook/index.html). Potential original areas are coded as A: East
Asia, B: Southeast Asia andWestern Palearctic region (C: West Asia + D: West Europe + E: South Europe and North Africa), shown by different colours in
the area pie chart.

doi:10.1371/journal.pone.0144711.g003
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However, there is still controversy in recent molecular studies. Barth et al. (2004) and Spinks
et al. (2004) suggested a sister relationship betweenM. reevesii andM. japonica +M. sinensis
clade [4,6]. Also, Feldman et al. (2004) revealedM. sinensis was the sister toM. japonica +M.
reevesii clade [5]. However, our results strongly supported a sister relationship betweenM.
japonica andM. sinensis +M. reevesii clade.

Based on our phylogenies, an obvious paraphyletic relationship betweenM. reevesii andM.
megalocephala was revealed. We inferred the reason for this paraphyletic relationship was that
M.megalocephala is a “diet variant” ofM. reevesii. This inference was in congruence with
Barth et al.’s results [28].

4.2 The hypothesis for the origin and evolution of species inMauremys
sensu lato
Species ofMauremys sensu lato have a very wide distribution all over the Palearctic region.
Some species are far apart and there is no gene exchange among them. However, they have an
ultra-close phylogenetic relationship. This disjunction pattern had been reported for many spe-
cies, e.g., softshell turtles, plants, fishes, amphibians, birds, and mammals [29,30].

We sampled extensively and traced the origins using mt genes. Combining divergence time
and ancestral area reconstruction, we propose all species ofMauremys originated from a com-
mon ancestry in Southeast Asia. The earliest divergence ofMauremys occurred during the
period of Late Oligocene Warming (25–16 Ma) (Fig 2, node 4). The warming climate provided
a prerequisite for geographic radiations ofMauremys. Then, the divergence of species between
the Eastern and Western Palearctic region was detected (Fig 2, node 5 and 6), while the turtles
ofMauremys were diffusing from the East Asia to Western Palearctic region (Fig 3).

M. japonica diverged in approximately 15.19 Ma (Fig 2, node 7) while Japan was separating
as an island arc by the Miocene back-arc opening of the Japan Sea during 15–25 Ma [31]. Con-
sidering thatM. japonica is an endemic species in Japan, we suggest the divergence of this turtle
may have been caused by the effects of the creation of the island of Japan.

The warm period broke in the late Miocene with the following glacial age [27] and turtles
gathered in each refuge again. During long term evolution, genetic drift plays an important
role that may lead to speciation [32]. Then permanent isolation between the species ofMaur-
emys occurred by the emergence of deserts, oceans and mountains until now [33].

4.3 Interspecific gene flow level assessment for Southeast Asian and
East Asian species
We assessed the interspecific gene flow level based on five unlinked polymorphic microsatellite
loci. The results indicated the presence of extensive gene flow among East Asian and Southeast
Asian species.

Table 4. Pairwise values of Fst (below diagonal) and Nm (above diagonal) among six populations of East and Southeast Asian species.

Fst \Nm* 1 2 3 4 5 6

1. M. annamensis 0.96 1.14 1.64 1.34 1.10

2. M. reevesii 0.21 1.02 1.28 1.01 1.34

3. M. japonica 0.18 0.20 1.92 1.57 1.15

4. M. mutica (Southeast Asian) 0.13 0.16 0.12 4.81 2.63

5. M. mutica (East Asian) 0.16 0.20 0.14 0.05 2.60

6. M. sinensis 0.19 0.16 0.18 0.09 0.09

*Nm = 0.25*(1-FST)/FST.

doi:10.1371/journal.pone.0144711.t004
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Interestingly, phylogenetic analyses based on mt genes showed obvious paraphyletic rela-
tionship betweenM. annamensis andM.mutica. The Southeast Asian population ofM.mutica
was closer toM. annamensis than the East Asian population ofM.mutica. However, extremely
extensive gene flow has been detected between the two populations ofM.mutica and the value
of Fst revealed that the two populations were hardly differentiated. The inconsistency in the
two different data sets suggested the hybrd origin of Southeast AsianM.mutica. Compared
with the study of Qi [34], we inferred sex-biased dispersal ofM. annamensismay have
occurred. The females ofM. annamensismated with the males ofM.mutica. Then hybrids
mated withM.mutica. The nuclear proportion ofM. annamensis was diluted for multi-genera-
tions and mitochondria were preserved. Nevertheless, further evidence is required.

The extensive gene flow indicated the possibility of interspecific hybridization. More
hybridization has been reported inMauremys sensu lato, such as O. glyphistoma being a hybrid
ofM. sinensis andM. cf. annamensis [35] andM. pritchardi being hybrids ofM. reevesii andM.
mutica, respectively [36,37]. Therefore, the interspecific gene flow may have been increased by
the turtle trade, escape from farms and release activities, which led to the genetic diversity of
wild populations being lost.
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