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Background: Despite the comparatively low prevalence of osteosarcoma (OS)

compared to other cancer types, metastatic OS has a poor overall survival rate of

fewer than 30%. Accumulating data has shown the crucial functions of

immunogenic cell death (ICD) in various cancers; nevertheless, the relationship

between ICD and OS was not previously well understood. This research aims to

determine the function of ICD in OS and construct an ICD-based prognostic panel.

Methods: Single cell RNA sequencing data from GSE162454 dataset

distinguished malignant cells from normal cells in OS. The discrepancy in

ICD scores and corresponding gene expression was intensively explored

between malignant cells and normal cells. Using the RNA sequencing data of

the TARGET-OS, GSE16091, GSE21257, and GSE39058 datasets, the molecular

subtype of OS was determined by clustering seventeen ICD-related genes

obtained from the literature. Differentially expressed genes (DEGs) between

different molecular subtypes were identified to develop a novel ICD-associated

prognostic panel.

Results: The malignant cells had a remarkable decrease in the ICD scores and

corresponding gene expression compared with normal cells. A total of 212 OS

patients were successfully stratified into two subtypes: C1 and C2. C1-like OS

patients were characterized by better prognostic outcomes, overexpression of

ICD genes, activation of the ICD pathway, high inflitration abundance of

immunocytes, and low expression levels of immune checkpoint genes

(ICGs); however, the reverse is true in C2-like OS patients. Utilizing the
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limma programme in R, the DEGs between two subtypes were determined, and

a 5-gene risk panel consisting of BAMBI, TMCC2, NOX4, DKK1, and CBS was

developed through LASSO-Cox regression analysis. The internal- and external-

verification cohorts were employed to verify the efficacy and precision of the

risk panel. The AUC values of ROC curves indicated excellent prognostic

prediction values of our risk panel.

Conclusions: Overall, ICD represented a protective factor against OS, and our

5-gene risk panel serving as a biomarker could effectively evaluate the

prognostic risk in patients with OS.
KEYWORDS

osteosarcoma, immunogenic cell death, prognostic panel, molecular subtype, single
cell RNA sequencing, bulk RNA sequencing
Introduction

Osteosarcoma (OS) is a primary malignant bone tumor that

affects mostly children and teenagers (1, 2). OS is known as

malignant tumor, which often occurs in the metaphysis of long

bones, including the arms, legs, knees, and shoulders, and is

distinguished by a poor prognosis and a high incidence of

impairment (3, 4). Multimodal treatment has improved these

patients’ 5-year survival rates to about 70%, particularly when

neoadjuvant chemotherapy is used in conjunction with extensive

surgical resection (5). Nevertheless, a significant proportion of

individuals present with metastases when initial diagnosis or

following intense therapy (6, 7). More than half of these

individuals will die within five years (6, 7). It is thus

imperative that indicators of osteosarcoma’s biological

heterogeneity be identified in order to enhance prognosis.

Cell death has been defined and interpreted from

morphological, biochemical, and functional viewpoints by the

Nomenclature Committee on Cell Death throughout the last

decade (8). Immunogenic cell death (ICD) was initially

hypothesized in the context of anticancer treatment, and was

based on animal studies that revealed that tumor-specific

immune responses might decide the success of anticancer

medicines (9). The ICD is aimed to stimulate the immune

system in immunocompetent hosts. When ICD occurs, a slew

of damage-associated molecular patterns (DAMPs) are exposed

and released, giving dying cancer cells a powerful adjuvanticity

boost by attracting and activating antigen-presenting cells (10–

12). Diverse innate immune receptors are implicated in DAMPs-

mediated ICD, and their collaboration with DAMPs is required

for ICD and anti-tumor immune response (13). However, the

therapeutic potential and mechanism of harnessing ICD in OS

have not yet been thoroughly studied. Therefore, the in-depth

understanding of the correlation between ICD-related genes and
02
overall survival of OS maybe invent a novel method for the

therapy and prognosis evaluation in patients with OS.

In this research, a molecular classifier of OS was successfully

established depending on the expression profiles of ICD-related

genes in the TARGET-OS, GSE16091, GSE21257, and

GSE39058 datasets. The relationship between molecular

clusterss, prognosis, immunocyte inflitration, and ICD activity

was explored. A robust 5-gene risk panel that contained BAMBI,

TMCC2, NOX4, DKK1, and CBS was developed using

differentially expressed genes (DEGs) between the OS

subtypes, which could serve as a biomarker to effectively

evaluate the prognostic risk in patients with OS.
Methods

Data collection and processing

Single-cell RNA sequencing (scRNA-seq) data GSE162454

was downloaded from GEO platform, which detected a total of 6

osteosarcoma tissues based on the 10X Genomics (14). RNA-

sequencing (RNA-seq) data and corresponding follow-up

information of TARGET-OS samples were obtained from the

TARGET database (https://ocg.cancer.gov/programs/target) (15,

16). The expression profiles and clinical information in the

GSE16091, GSE21257, and GSE39058 datasets were acquired

from the GEO database (https://www.ncbi.nlm.nih.gov/geo/)

(17–19). In total, there were 17 ICD-related genes collected

from the literatures (20, 21).

The detailed processing of scRNA-seq data was illustrated

below: 1) The ‘Seurat’ package was used to preprocess the

scRNA-seq data (22); the PercentageFeatureSet function was

used to determine the proportion of mitochondrial genes; and

correlation analysis was utilized to investigate the relationship
frontiersin.org
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between sequencing depth and mitochondrial gene sequences

and/or total intracellular sequences. 2) Set each gene to be

expressed in at least 5 cells. 3) The expression of genes in each

cell is more than 300 and less than 5000, the content of

mitochondria is less than 10%, and the UMI of each cell is at

least greater than 1000 were preserved. 3) The scRNA-seq data

were normalized by the LogNormalize method after

data filtering.

The detailed processing of RNA-seq data of TARGET-OS

cohort was illustrated below: 1) The samples that lacked of

corresponding follow-up information were eliminated; 2) The

Gene Symbol format was obtained by converting the ENSEMBL

gene IDs; 3) The median value was computed using multiple

Gene Symbol expressions.

The detailed processing of microarray data of GEO-OS

cohort was illustrated below: 1) The samples that lacked of

corresponding follow-up information were eliminated; 2) The

Gene Symbol format was obtained by converting the probe IDs;

3) Probes were removed because of their correspondences to

multiple genes; 4) The average value was regarded as the gene

expression while multiple probes were corresponded to

one gene.

The intersecting genes were acquired via taking the

intersection between the mRNA expression profiles from

TARGET and GEO datasets. Using the “ComBat” function

from the “sva” package in R, the expression data of

intersecting genes were transformed into log2(x + 1) format

and batch normalised (23, 24). The mRNA expression profiles of

these intersecting genes were curated with corresponding follow-

up data in TARGET and GEO datasets, respectively. After

preprocessing, we enrolled 84 OS samples from TARGET-OS,

34 OS samples from GSE16091 dataset, 53 OS samples from

GSE21257 dataset, and 41 OS samples from GSE39058 dataset.
Potential regulatory pathways between
tumor cells and normal cells

The tSNE dimensionality reduction of 28968 cells were

performed using “RunTSNE” functions in R. Subsequently, the

“CellCycleScoring” function was employed to calculate S and

G2M scores based on S phase and G2M phase gene expression,

and predicts classification of each cell in either S, G2M, or the G1

phase. Meanwhile, the “copykat” package in R was applied to

predict copy number variation of each cell, and in turn, infer

diploid (normal cells) and aneuploid (tumor cells) (25).

Following these, we downloaded and curated 50 typical

hallmark pathways and ICD pathway from the Molecular

Signatures Database (MsigDB, http://www.gsea-msigdb.org/

gsea/index.jsp) (26, 27). Through ssGSEA analysis of tumor

cells and normal cells in each sample, we obtained the
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enrichment score of each pathway. A heatmap was utilized to

show the discrepancies of pathway enrichment scores and ICD-

related gene expressions between diploid (normal cells) and

aneuploid (tumor cells).
Consistency clustering algorithm, gene
set variation analysis and gene set
enrichment analysis

From 212 OS samples, the expression patterns and clinical

data of 17 ICD-related genes were derived. Next, these ICD-

related genes were clustered using ConsensusClusterPlus

(parameters: reps = 50, pItem = 0.8, pFeature = 1, clusterAlg =

“km”, distance=“euclidean”) (28–30). The km and euclidean

distances were used as a clustering algorithm and distance

measure, respectively. The “GSVA” package in R was applied

to compute the ICD scores of each patient with OS, which could

serve as the indicator of ICD activites (31, 32). The “wilcox.test”

fucntion in R was then employed to compare the discrepancy in

the ICD scores between different clusters. In addition to ICD

scores, the enrichment scores of 50 typical HALLMARKER-

signaling pathways were also computed by “GSVA” package;

meanwhile, similar method was applied to compare the potential

discrepancy of signaling pathways between different clusters.
Cluster-based analysis of tumor
immune microenvironment

The “estimate” package in R was employed to compute the

ImmuneScore, StromalScore, EstimateScore, and tumor purity of

each OS sample, and the “ggpubr” package in R was used to visualize

this result (33). In addition, the TIMER2.0 database (http://timer.

cistrome.org/) provides a complete immunological signature of

tumor infiltrating cells in a variety of tumor samples from the

TCGA database on the basis of the algorithms of TIMER,

CIBERSORT, EPIC, and MCPCOUNTER (34). The ‘pheatmap’

package in R was used to illustrate the infiltration of distinct

immune cells in each OS sample. Subsequently, the ‘limma’

package in R was used to determine statistically significant changes

in immune cell infiltration between C1 and C2 subgroups; cells were

then isolated and stored based on these p values (p < 0.05).

The activation of immune checkpoint genes (ICGs) that

suppress antitumor immune responses is crucial for the

immunosurveillance evading and malignant progression of

tumor cells. It has been generally accepted that ICGs played an

irreplaceable role in regulating the functions of immunocytes

and disease progression. Thus, we further explored the

discrepancy of the ICGs expression levels between C1 and

C2 populations.
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http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
http://timer.cistrome.org/
http://timer.cistrome.org/
https://doi.org/10.3389/fimmu.2022.994034
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.994034
Identification of differentially
expressed genes

The “limma” programme was utilized to determine the DEGs

between C1 and C2 subtypes, and the filtering thresholds were as

follows: 1) FDR < 0.05; 2) fold-change (FC) > 1.5 or FC <2/3.

Then, the identified DEGs were investigated by performing Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis

and Gene Ontology (GO) enrichment analysis using multiple R

packages (e.g. clusterProfiler, enrichplot, ggplot2, and dplyr)

(35–37).
Development and verification of a novel
ICD-based risk panel

Random assortment
The 128 OS samples in the GEO database were randomly

stratified into two groups, including training dataset (n = 64) and

test1 dataset (n = 64). All of 128 OS samples in the GEO database

were assigned to the test2 cohort (n = 128) and all samples in the

TARGET database were assigned to the test3 cohort (n = 84).

Risk panel development and validation
The univariate Cox regression analysis was carried out to

determine DEGs that were highly related to prognosis in the

training cohort. Second, to narrow the range of target genes,

DEGs with prognostic values were included in least absolute

shrinkage and seletion operator (LASSO) regression analysis.

Subsequently, according to the result of multivariate Cox

regression analysis, we developed a novel ICD-associated

prognostic panel (ICD-APP) and calculated the risk score of it

through the “predict” function in R. The median of the risk score

was set as the cut-off point, and patients were stratified into

high- and low-risk subpopulations. Kaplan–Meier survival

curves were then depicted to analyze the survival discrepancy

and receiver operating characteristic (ROC) curves of 1, 3 and 5

years were drawn to estimate the efficiency of our ICD-APP

using the timeROC package. The above analysis was verified

through the internal validation dataset (test1 and test2) and

external validation dataset (test3). After identifying essential

genes required for model construction, we queried the DisNor
Frontiers in Immunology 04
database (https://disnor.uniroma2.it/) to investigate these genes’

upstream and downstream connections and their mechanism of

action (38, 39).
Results

Quality control, normalization,
and bioinformatics analysis of
scRNA-seq data

By filtering the single cell data such that each gene must be

expressed in at least three cells and each cell must express at least

300 genes, a total of 49744 cells were gathered. Next, 28968 cells

are obtained by calculating the proportions of mitochondria and

rRNA using the PercentageFeatureSet function and ensuring

that the expression of genes in each cell is between 300 and 5000,

the content of mitochondria is less than 10 percent, and the UMI

of each cell is at least greater than 1000. Table 1 displays the cell

count data for each sample before and after filtering. There is a

strong association between the number of UMI and mRNA, as

shown in Figure S1A, however there is no correlation between

the number of UMI/mRNA and the content of mitochondrial

genes. Figures S1B, C shows the violin before and after quality

assurance. Principal component analysis (PCA) was used to

estimate the available dimensions, and the findings did not

indicate any substantial distinction between osteosarcoma

cells. Fifty of the most distinctive principal components were

chosen for further investigation (Figure S1D).

Then, the RunTSNE function is used to assess the TSNE

dimension reduction of 28968 cells, and Figure 1A represents the

tsne diagram of the distribution of six samples. Using the marker

gene in S phase and G2M phase, the CellCycleScoring function

generated the cell cycle stage score, and Figure 1B displayed the

distribution of cells in various cell cycles. In parallel, we

examined single cell data via cnv using the copykat package.

The results showed that there were 4988 tumor cells, 22589

normal cells and 1391 unknown cells (Figure 1C). Lastly, we

evaluated the ratio of tumor cells to normal cells as well as the

ratio of cells in the G1, G2M, and S phases in various samples. As

depicted in Figure 1D, the percentage of normal cells in the

majority of OS samples was much greater than that of malignant
TABLE 1 Cell counts for each sample before and after filtering.

GSM Patient Sex Age raw_count clean_count percent %

GSM4952363 OS1 Male 16 8447 4763 56.39

GSM4952364 OS2 Female 19 8085 3905 48.30

GSM4952365 OS3 Female 45 9525 3550 37.27

GSM5155198 OS4 Male 19 4214 2696 63.98

GSM5155199 OS5 Male 14 10255 7701 75.10

GSM5155200 OS6 Male 13 9218 6353 68.92
fro
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cells. In addition, the majority of cells are in the G1 phase, and

the percentage of G2M phase cells is nearly equivalent to that of

S phase cells (Figure 1E).

After distinguishing tumor cells from OS tissues, ssGSEA

was applied to compute the enrichment scores of HALLMARK

and ICD-associated pathways in single cell. Our findings

revealed that ICD scores of tumor cells were considerably

lower than those of normal cells, suggesting that tumor might

protect themselves and survive through suppressing ICD-related

processes (Figures 2A, B). ICD-targeted intervention might

encourage tumor cell death and improve patients’ prognoses.

Likewise, most ICD-related genes, including IL-6, IL-10, NLRP3,

CD8A, CD8B, and TLR4, exhibited attenuated expression levels

in tumor cells compared to normal cells (Figures 2C, D). Finally,

we depicted the single-cell subpopulation distributions of ICD-

related genes (Figures S2 and S3)
Identification of ICD-based
molecular clusters in OS using
consensus clustering analysis

To discover ICD-based molecular clusters of OS, consensus

clustering analysis was performed using 17 ICD-related genes. In

consideration of cumulative distribution function (CDF) curves and
Frontiers in Immunology 05
Delta area, k = 2 was selected as the number of unique and

nonoverlapping subtypes (Figures 3A, B). Thus, two ICD-based

molecular clusters of OS were constructed, with cluster 1 including

100 cases and cluster 2 containing 112 cases. Two ICD-related

groups revealed statistically distinct survival curves (Figure 3C).

Patients with OS in cluster 1 had a survival advantage and higher

ICD scores than those in cluster 2, indicating the protective

significance of ICD in OS patients (Figure 3C, D). Significantly

different ICD-related gene expression levels were observed between

the C1 and C2 subtypes, with the majority of genes being

overexpressed in the C1 subtype (Figure 3E). The findings of the

pathway-based ssGSEA demonstrated that the C1 subtype activates

a greater number of tumor-related pathways, such as

PI3K_AKT_MTOR_SIGNALING, INTERFERON_ RESPONSE,

P53_PATHWAY, INFLAMMATORY_RESPONSE, KRAS_

SIGNALING, APOPTOSIS, HYPOXIA, TGF_BETA_

SIGNALING, and EPITHELIAL_MESENCHYMAL_

TRANSITION, suggesting the close association of ICD with

above typical tumor-associated pathways (Figure 3F).
Cluster-based analysis of drug sensitivity

Given that molecularly targeted medicines are currently

widely used to treat OS, the chemotherapeutic response of
B C

D E

A

FIGURE 1

Tumor and normal cells of OS. (A) A t-SNE map of the distribution of cells in each OS sample, and each color represents the cells in each
sample. (B) The t-SNE diagram shows the distribution traits of cells cycles marked with different colors. (C) The t-SNE diagrams of tumor and
normal cells in OS samples are represented by different colors. (D) The proportion of tumor and normal cells in each OS sample. (E) Proportion
of G1, G2/M and S phase cells in each OS sample.
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ICD-based clusters was systematically evaluated using the

“pRRophetic” package in R. Our data showed that

Avagacestat, Bosutinib, Crizotinib, MG132, PD184352,

Refametinib, Shikonin, Z-LLNle-CHO were expected to benefit

C1 subtype; however, C2 subtype was more benefical from

Axitinib, Doramapimod, EHT-1864, Elesclomol, GW-441756,

Linsitinib, Motesanib, Vorinostat (Figures 4A, B).
Cluster-based analysis of tumor immune
microenvironment

The “ESTIMATE” R package was utilized to assess the

discrepancy in the immune characteristics between C1 and C2

subtypes (predicated on the StromalScore, ImmuneScore,

ESTIMATEScore, and Tumorpurity) utilizing the transcriptome

data. Our results revealed that C1 subtype exhibited enhanced

levels of immuneScore, stromalScore, and estimateScore, but

showed attenuated levels of tumor purity (Figure 5A). These

results indicated that OS prognosis positively correlated to

Immune and Stromal components. To further explore the
Frontiers in Immunology 06
abundance of immunocyte-infi ltrating in the tumor

microenvironment, a variety of algorithms were applied to

estimate the percentage of the immune cell infiltrate in C1 and

C2 subtypes. As depicted in Figure 5B, C1 subtype showed an

enhanced proportion of B cells, CD4+ T cells, CD8+ T cells,

macrophages, neutrophils, NK cells and myeloid dendritic cells

based on TIMER, CIBERSORT-ABS, EPIC and MCPCOUNTER

algorithms. It has been well-established that B cells are usually

divided into four lineages-naive B cells, activated B cells, effector B

cells (i.e. plasma cells), and memory B cells. Among them, naive B

cells and plasma cells have a higher proportion in the C2 subtype

based on CIBERSORT algorithm. ICGs are determining factors

towards immune cells to perform immune function. Likewise, our

findings revealed that C2 subtype exhibited enhanced expression

of ICGs (Figure 5C).
Cluster-based analysis of DEGs

A total of 212 DEGs were obtained depending on the

thresholds in the methods section (Table S1). The DEGs-based
B

C D

A

FIGURE 2

The role of immunogenic cell death in tumor and normal cells of OS. (A) Difference in activation of biological pathways between tumor and
normal cells in OS. (B) Difference in expresion of ICD-related genes between tumor and normal cells in OS. (C) The enrichment scores of
different signal pathways in normal and malignant cells of each osteosarcoma sample. (D) The expresion of ICD-related genes in normal and
malignant cells of each osteosarcoma sample.
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GO enrichment analysis demonstrated that 699 biological

process (BP), 36 cellular component (CC), and 53 molecular

function (MF) terms had the significant differences between the

two subtypes (FDR < 0.05). The first 18 GO terms were depicted

in Figure S4A. The obviously enriched pathways were revealed

by the KEGG pathway analysis of DEGs (FDR < 0.05). Further

visualization of the top 18 enriched pathways demonstrated that

genes were considerably enriched in tumor-related pathways

such as the NF-kB signaling pathway, Toll-like receptor

signaling pathway, complement and coagulation cascades,

cytokine-cytokine receptor interaction (Figure S4B).
Frontiers in Immunology 07
Risk model development of OS based on ICD-
related genes

The DEGs-based univariate Cox analysis between the C1

and C2 subtypes identified 12 prognostic genes in the train

cohort (Table S2). Lasso regression analysis was performed to

further exclude the unnecessary prognostic genes. Figure S5A

showed the locus of each independent variable. The number of

independent variables tending to zero also enhanced accompany

with the increase of lambda (l) value (Figure S5B). The pattern
was constructed by performing a10-fold cross-validation, and

Figure S5C showed the confidence interval under each l.
B

C

D

E

F

A

FIGURE 3

Consensus clustering based on the 17 ICD-related genes. (A) Cumulative distribution function (CDF). (B) 212 OS samples from GEO and TARGET
platforms were divided into cluster1 (n=100) and cluster2 (n=112) by consensus clustering. (C) Kaplan-Meier analysis indicated cluster1 had more
favorable prognosis than cluster2. (D) ICD scores based on ssGSEA algorithm. (E) Cluster heatmap of 17 ICD-related genes. (F) HALLMARK
pathway activities based on ssGSEA algorithm *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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Subsequently, a total of six ICD-related genes (i.e., BAMBI,

TMCC2, NOX4, DKK1, POPDC3, and CBS) were preserved for

further multivariate Cox regression analysis. Ultimately, a novel

ICD-APP was constructed by integrating five-gene expressions

(i.e., BAMBI, TMCC2, NOX4, DKK1, and CBS). The DisNor

database was then utilized to identify the upstream and

downstream genes reacted with BAMBI, TMCC2, NOX4,

DKK1, and CBS (Figure S5D). FZD5 and DVL2 are

neighbouring downstream of BAMBI. E2F1 acts to promote

the formation of superoxide and reactive oxygen species

following activation of NOX4 (Figure S5D). KREMEN1 and

KREMEN2 are neighbouring downstream of DKK1. USF1,

NFYA, SP3, and SP1 are neighbouring upstream of CBS

(Figure S5D).

Afterwards, we used R’s “predict” function to get the median

risk score across all samples and then used it to categorise them

into high- and low-risk subgroups (Figure 6A). Figure 6B depicts

a higher mortality rate in the high-risk category of PAAD
Frontiers in Immunology 08
patients based on the distributions of risk scores and survival

status. The heatmap depicted the expressions of mRNA and

lncRNAs in the prognostic signature (Figure 6C). Consistently,

survival analyses with the Kaplan-Meier method showed that OS

patients had a worse clinical outcome in high-risk subgroup,

suggesting that the prognosis of OS patients with different risk

stratification could be accurately distinguished by our ICD-APP

(Figure 6D). We further verified the effectiveness and accuracy of

our ICD-APP. Receiver operating characteristic (ROC) analysis

was used to determine the diagnostic performance of the risk

score. The 1-year, 3-year, and 5-year area under the curve (AUC)

values of the risk score were 0.747, 0.849, and 0.840,

respectively (Figure 6E).

Internal and external verification of the ICD-
APP in OS

First, using the median risk score in the train cohort as the

standard, patients from tests 1, 2, and 3 were divided into high-
B

A

FIGURE 4

Targeted-drug sensitivity prediction. (A) The drugs favoring C1 subtype. (B) The drugs favoring C2 subtype.
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risk and low-risk subpopulations, respectively (Figures 7A-9A).

The distributions of survival status and risk scores were

comparable in the internal validation (test 1 and test 2

cohorts) and external validation (test 3 cohort) compared to

the training cohort (Figures 7B-9B). In both internal and

external verification cohorts, heatmaps obtained from three

test cohorts revealed the presence of genes with high

expression (BAMBI, TMCC2, NOX4, DKK1, and CBS) in the

high-risk group (Figures 7C-9C). Furthermore, patients with

high-risk scores had worse unfavorable overall survival rates in

the test1 test2 and test3 groups (Figures 7D-9D). As for the

diagnostic value of ICD-APP, the AUC values of the ROC curves

were 0.891, 0.744, and 0.722 in the test1 cohort, 0.820, 0.801, and

0.780 in the test2 cohort, and 0.765, 0.712, and 0.710 in the test3

cohort for 1-, 3-, and 5-year survival, respectively (Figures 7E-

9E). Overall, test1 and test2 findings were compatible with train
Frontiers in Immunology 09
cohort results, and test3 results were consistent with both

internal and external verifiers.
Discussion

With a high propensity for invasion and metastasis, OS is the

most prevalent malignant bone tumor in both adults and

children. At present, a large number of therapeutic projects

have been applied for OS patients, which includes surgery,

radiotherapy, chemotherapy, and neoadjuvant chemotherapy

(40). However, the overall survival of OS patients still has a

large gap to satisfaction, particularly for the advanced OS, due to

its high malignancy (41). The malignant progression of OS

commonly develops along with the expression changes of

multiple genes, which may influence the prognosis of patients
C

B

A

FIGURE 5

Cluster-based analysis of tumor immune microenvironment. (A) Comparison of tumor immune microenvironment components. (B) The
distribution traits of immunocyte infiltration in ICD-based clusters. (C) The discrepancy in expression levels of immune checkpoints. *p < 0.05,
**p < 0.01, ***p < 0.001, ns, not statistically significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.994034
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.994034
with OS (42). These genes were deemed as potential therapeutic

targets for personalized treatment in tumor patients. Recently,

along with the sequencing technology was rapidly developed,

high-throughput genomics has been used for the exploration of

tumor generation and progression-related genes (43, 44).

Moreover, the deep investigation of the molecular mechanisms

of tumorigenesis and development can be implemented by high-

throughput genomics.

In this study, combination analysis of scRNA-seq and bulk

RNA-seq data was performed to highlight the significant

contributions of ICD in OS. After quality control and

normalization of scRNA-seq data, all single cells were divided

into two subpopulations (aneuploid and diploid cells).

Significant down-regulation of ICD scores and ICD-related

gene expression was detected in aneuploid cells compared to

diploid cells. In addition to typical cell death (e.g. apoptosis and

pyroptosis), a variety of chemo- and radiotherapy-strategies

were recently reported to induce a new cell death process (i.e.

ICD) and then improve the prognosis. Similarly, our findings
Frontiers in Immunology 10
indicated that compared to diploid cells, aneuploid cells might

survive through inhibition of ICD activities. These results

showed that ICD played a protective role in OS, and tumor

cell might protect themselves through down-regulation of

ICD activities.

After illustrating the protective roles of ICD in OS, we

performed clustering analysis and risk stratification to

distinguish OS patients with distinct ICD activities. First, 212

OS samples were genotyped based on the expression profiles of

ICD-related genes, and two subtypes (C1 and C2) were obtained.

The C1 subtype with a higher ICD score and favorable prognosis

was more associated with many star pathways, such as PI3K/

Akt/mTOR pathway, P53 pathway, KRAS signaling,

inflammatory response, apoptosis, hypoxia, and TGF-b
signaling. Tang et al. (45) reported that CXCR3 had the

potential to modulate above signaling pathways of OS patients,

recruited more immune infiltration of CD8+T cells, M1

macrophages, plasma cells, and activated NK cells, and then

improved OS patients’ prognoses. These findings were in
B

C

D

E

A

FIGURE 6

Construction of ICD-APP in the training cohort. (A) Discriminate high- and low-subpopulations in the training cohort. (B) The relationship of survival
status and risk score in the training cohort. (C) The distribution traits of the expression of 5 genes used for model development in the training
cohort. Evaluate the prognostic performances of ICD-APP in the training cohort (D) KM survival curves; (E) time-dependent ROC curves.
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agreement that C1 subtype with a higher ICD score had a better

clinical outcome, which was also verified the protective role of

ICD in OS.

Considering the remarkable significance of targeted-drug

therapy in OS, we intensively explored the discrepancy in drug

sensitivity between C1 and C2. Notably, C1 subtype might be

beneficial from Avagacestat, Bosutinib, Crizotinib, MG132,

PD184352, Refametinib, Shikonin, and Z-LLNle-CHO,

whereas, C2 subtype was more benefical from Axitinib,

Doramapimod, EHT-1864, Elesclomol, GW-441756, Linsitinib,

Motesanib, and Vorinostat. Overall, these findings might

provide new insight for individual management of patients

with OS.

To explore the underlying prognostic mechanism of the

proposed ICD-based molecular subtype and investigate the

reason that leads to prognostic differences among the different

subtypes, we compared the tumor immune microenvironment
Frontiers in Immunology 11
among the different subtypes. Interestingly, C1 subtype with

higher ICD scores and favorable clinical outcomes had

significantly higher proportions of immunocyte infiltration

(e.g. B cells, CD4+ T cells, CD8+ T cells, macrophages,

neutrophils, NK cells and myeloid dendritic cells) and lower

expression levels of immune checkpoints. CD8+ T cells are the

essential effector cells against tumors, and the tumor-related

antigens of Major Histocompatibility Complex I (MHC I) are

recognized by activated CD8+ T cells, which then destroy tumor

cells by activating their T cell receptors (46). As the primary

effectors in humoral immunity, B cells can stimulate the T-cell

response via producing immunoglobulin and prevent the tumor

progressions by destroying tumor cells directly (47). Therefore,

the high infiltration of immune cells is closely correlated to a

favorable prognosis of OS.

A total of 212 DEGs between the C1 and C2 subtypes were

identified using the limma package. We constructed a 5-gene
B

C

D

E

A

FIGURE 7

Internal validation of ICD-APP in the test1 cohort. (A) Discriminate high- and low-subpopulations in the test1 cohort. (B) The relationship of
survival status and risk score in the test1 cohort. (C) The distribution traits of the expression of 5 genes used for model development in the test1
cohort. Evaluate the prognostic performances of ICD-APP in the test1 cohort (D) KM survival curves; (E) time-dependent ROC curves.
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signature based on the DKK1, TMCC2, NOX4, BAMBI, and

CBS genes rooting in the 212 identified DEGs. It has been

reported that DKK1 functioned as a prognostic or diagnostic

marker for OS assessment, and DKK1 immunodepletion may

also be used as an additional treatment for OS (48). TMCC2

acts as a member of transmembrane and coiled-coil domain

family, and its-encoding proteins might locate in endoplasmic

reticulum and invovled in amyloid precursor protein metabolic

process and bone marrow hematopoiesis (49, 50). In addition,

TMCC2 is identified as a potential biomarker of steroid-

induced osteonecrosis of the femoral head (51). NOX4 may

function as an oncogene in a variety of tumors, such as

pancreatic cancer, breast cancer, and lung cancer; however,

its potential role in OS has not been reported before (52–54).

The overexpression of BAMBI promotes the growth and

invasion of human osteosarcoma cells (55). CBS has a
Frontiers in Immunology 12
significant correlation to the OS prognosis and is evidenced

as an independent prognostic factor (56). The comprehensive

effect of ICD regulated by these genes in OS was reported for

the first time in this study.

The Kaplan–Meier survival analysis indicated that the risk

score could clearly distinguished OS patients with a favourable

or unfavourable prognosis, and the time-dependent ROC curves

demonstrated the risk score’s high accuracy in predicting the

clinical outcomes of OS in both internal validation and external

validation cohorts.

However, despite these advances, there remain certain

limitations. First, as a retrospective study of OS, our study

lacked of clinical prospective studies, which should be

performed for the verification of the prognostic characteristic

and the stability of the 5-gene prognostic model. Additionally,

the molecular mechanisms by which DKK1, TMCC2, NOX4,
B

C

D

E

A

FIGURE 8

Internal validation of ICD-APP in the test2 cohort. (A) Discriminate high- and low-subpopulations in the test2 cohort. (B) The relationship of
survival status and risk score in the test2 cohort. (C) The distribution traits of the expression of 5 genes used for model development in the test2
cohort. Evaluate the prognostic performances of ICD-APP in the test2 cohort (D) KM survival curves; (E) time-dependent ROC curves.
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BAMBI, and CBS promote the malignant progression of OS still

require a deeper investigation.
Conclusions

Taken together, the ICD-based molecular classifier of OS

was identified, and a 5- gene prognostic signature was developed

to predict prognostic risk in patients with OS.
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FIGURE 9

External validation of ICD-APP in the test3 cohort. (A) Discriminate high- and low-subpopulations in the test3 cohort. (B) The relationship of
survival status and risk score in the test3 cohort. (C) The distribution traits of the expression of 5 genes used for model development in the test3
cohort. Evaluate the prognostic performances of ICD-APP in the test3 cohort (D) KM survival curves; (E) time-dependent ROC curves.
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SUPPLEMENTARY FIGURE 1

scRNA-seq ana lys i s o f 6 os teosarcoma samples . (A ) The

correlation between mitochondrial gene and the number of UMI/
mRNA, and the relationship between the number of UMI and

mRNA. (B, C) Quality control, including the number of unique
genes and total molecules, the percentage of reads that map to

the mitochondrial genome. (D) The PCA based on scRNA-seq data

confirms top 50 PCs.

SUPPLEMENTARY FIGURE 2–3

Expression distributions of ICD-related genes in single-cell levels.

SUPPLEMENTARY FIGURE 4

Functional annotation of DEGs between C1 and C2 subtype. (A) GO

functional enrichment analysis of DEGs. (B) KEGG functional
enrichment analysis of DEGs.

SUPPLEMENTARY FIGURE 5

Variable selection and prediciton of upstream and downstream genes. (A-
C) Five genes selected by LASSO-Cox regression analysis. (D) The network

of BAMBI, TMCC2, NOX4, DKK1, and CBS in DisNor database.
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