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C O R O N A V I R U S

Lessons from applied large-scale pooling of  
133,816 SARS-CoV-2 RT-PCR tests
Netta Barak1, Roni Ben-Ami2,3, Tal Sido3,4, Amir Perri5, Aviad Shtoyer5, Mila Rivkin3,  
Tamar Licht6, Ayelet Peretz2, Judith Magenheim2, Irit Fogel3, Ayalah Livneh3, Yutti Daitch3, 
Esther Oiknine-Djian3, Gil Benedek3,7, Yuval Dor2*, Dana G. Wolf3,8*, Moran Yassour1,9*,  
The Hebrew University-Hadassah COVID-19 Diagnosis Team†

Pooling multiple swab samples before RNA extraction and real-time reverse transcription polymerase chain reac-
tion (RT-PCR) analysis has been proposed as a strategy to reduce costs and increase throughput of severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) tests. However, reports on practical large-scale group testing 
for SARS-CoV-2 have been scant. Key open questions concern reduced sensitivity due to sample dilution, the rate 
of false positives, the actual efficiency (number of tests saved by pooling), and the impact of infection rate in the 
population on assay performance. Here, we report an analysis of 133,816 samples collected between April and 
September 2020 and tested by Dorfman pooling for the presence of SARS-CoV-2. We spared 76% of RNA ex-
traction and RT-PCR tests, despite the frequently changing prevalence (0.5 to 6%). We observed pooling efficiency 
and sensitivity that exceeded theoretical predictions, which resulted from the nonrandom distribution of positive 
samples in pools. Overall, our findings support the use of pooling for efficient large-scale SARS-CoV-2 testing.

INTRODUCTION
The ongoing coronavirus disease 2019 (COVID-19) pandemic, 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has resulted in substantial clinical morbidities and mortal-
ity, urging comprehensive virological testing. Major diagnostic 
challenges have emerged, mainly, the need for high-throughput 
SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) 
tests, aimed to detect not only symptomatic but also asymptomatic 
infectious viral carriers and to screen special or at-risk populations 
(such as health care personnel or nursing home tenants), to contain 
viral spread and guide control measures.

These diagnostic challenges together with the consequent short-
age in laboratory equipment, reagents, and resources call for the 
development of a more efficient testing strategy. One promising 
solution is the application of sample pooling or group testing, a 
well-developed field in mathematics that allows the identification of 
carriers in a population of n using a number of tests that is smaller 
than n. Group testing can alleviate the supply chain blocks and cut 
costs while increasing testing throughput. Sample pooling tech-
niques differ in the number and size of pools into which each sam-
ple is assigned. In Dorfman pooling (1), which is the simplest 
pooling scheme, each sample is assigned to a single pool, the pools 

contain equal numbers of samples, and samples are retested indi-
vidually only if the pool’s test result is positive. In other pooling 
methods, samples are assigned to multiple overlapping pools to 
eliminate or at least reduce the number of retested samples (2–5).

The commonly used diagnostic test for SARS-CoV-2 is based on 
detection of viral RNA in nasopharyngeal samples by RT-PCR 
amplification after RNA extraction. Pooling of samples in this con-
text could potentially be used at any stage along the diagnostic 
workflow, from pooled sample collection to pooled RNA extraction 
and RT-PCR, or pooled final RT-PCR only (2, 6–14), with each ap-
proach having pros and cons with regard to test saving versus logis-
tics issues and delays associated with patient and sample retesting.

We and others have recently described the validation and early 
implementation of sample pooling for SARS-CoV-2 detection 
(2, 6–13, 15–17). In addition, starting July 2020 (18), the Food and 
Drug Administration issued several Emergency Use Authorizations for 
pooled testing of SARS-CoV-2 and for kits applicable for SARS-CoV-2 
pooled testing (18, 19). Most of these studies have used Dorfman 
pooling (with 4 to 32 samples per pool) and, although largely dif-
fering in protocols and stages of pooling used, have suggested 
sufficient diagnostic accuracy despite an expected loss of sensitivity.

When considering any of the SARS-CoV-2 pooling schemes, 
there are three crucial concerns: efficiency, or the number of tests 
spared in practice and how this saving relates to the prevalence rate; 
sensitivity, or the ability to detect samples with lower viral load of 
clinical significance despite sample dilution; and operational feasibility, 
or the technical and logistical implementation of a pooling scheme 
and its quick adaptation to changes in infection prevalence rates. 
These concerns cannot be addressed by currently reported studies, 
which were conducted as a proof of concept, consisting of only hundreds 
to a few thousands of tested samples examined over a short time peri-
od with a relatively constant positive sample rate (usually <1%).

Here, we describe lessons learned from a 5-month period in 
which we tested 133,816 samples using 17,945 pools. On the basis of 
early evidence, theoretical considerations, and practical limitations, 
we chose to implement adaptive Dorfman pooling with pool sizes of 

1School of Computer Science and Engineering, The Hebrew University of Jerusalem, 
Jerusalem 91904, Israel. 2Department of Developmental Biology and Cancer Research, 
IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, 
Israel. 3Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem 
91120, Israel. 4Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, 
Israel. 5Computing Department of Laboratories and Institutes, Hadassah Hebrew 
University Medical Center, Jerusalem 91120, Israel. 6Department of Medical Neuro-
biology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 
91121, Israel. 7Tissue Typing and Immunogenetics Unit, Hadassah Hebrew Univer-
sity Medical Center, Jerusalem 91121, Israel. 8The Lautenberg Centre for Immunology 
and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, 
Jerusalem 91121, Israel. 9Department of Microbiology and Molecular Genetics, IMRIC, 
Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel.
*Corresponding author. Email: danaw@ekmd.huji.ac.il (D.G.W.); yuvald@ekmd.huji.
ac.il (Y. Dor); moranya@mail.huji.ac.il (M.Y.)
†Members are listed at the end of the Acknowledgments.

Copyright © 2021 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works.Distributed 
under a Creative 
Commons Attribution 
License 4.0 (CC BY). 

mailto:danaw@ekmd.huji.ac.il
mailto:yuvald@ekmd.huji.ac.il
mailto:yuvald@ekmd.huji.ac.il
mailto:moranya@mail.huji.ac.il


Barak et al., Sci. Transl. Med. 13, eabf2823 (2021)     14 April 2021

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E P O R T

2 of 7

five and eight. We evaluated the theoretical and empirical efficiency and 
sensitivity of our pooling approach, as well as its adaptation to fluctuat-
ing rates of positive samples. Overall, we spared 76% of the PCR 
reactions compared with individual testing, with an acceptable reduction 
in sensitivity. To our knowledge, this most extensive analysis provides 
insights into key considerations of efficiency, sensitivity, and feasi-
bility in the actual setting of large-scale sample pooling for SARS-
CoV-2 detection.

RESULTS
Between March and mid-September of 2020, we tested 133,816 
samples in pools and 121,929 samples using individual tests (non-
pooled) at the Hadassah Medical Center in Jerusalem, Israel. One 
challenge to the pooling scheme stemmed from the fluctuating rates 
of infection during the pandemic. The infection prevalence rate of 
pooled samples changed considerably, ranging from a weekly aver-
age of 0 to 7.8% [despite the fact that the vast majority (>95%) was 
obtained from asymptomatic individuals; Fig. 1A], mandating a 
dynamic adaptation of the pooling scheme. In principle, at low 

prevalence, using fewer pools of larger pool sizes would lead to a 
gain in efficiency, as the majority of pools would test negative. 
However, as prevalence increases, using a larger number of smaller- 
size pools would be more efficient, as every positive individual 
would lead to retesting a smaller amount of samples (fig. S1A).

This adaptation of pool size (n) according to the prevalence rate 
(p) requires the ability to predict p for pooled samples. The preva-
lence rate in the coming week can be predicted, among other op-
tions, according to the prevalence rate in the previous week in 
pooled or nonpooled samples. The comparison of the weekly aver-
age of p for pooled and unpooled samples over time suggests that 
the past week prevalence rate of pooled samples is the better predictor 
(fig. S1C). Thus, when the prevalence rate in pooled samples in-
creased (from ~1 to ~6%), we switched from eight-sample pooling 
to five-sample pooling and used a dynamic approach thereafter 
(alternating the pool size between eight and five) to maintain opti-
mal pooling efficiency (fig. S1, A and B).

In total, we tested 14,697 eight- and 3248 five-sample pools, where 
9.3 and 22.1% of the pools tested positive, respectively (Fig. 1, B and C). 
As all samples in the positive pools were retested individually, we 
could evaluate the distribution of positive samples within positive 
pools. Whereas the majority (66 to 68%) of the positive pools con-
tained only one positive sample, 28 to 29% of the positive pools con-
tained two or more positive samples (Fig. 1, D and E). A small 
number of positive pools (3.9 to 5.3%) did not yield any positive 
samples when their samples were retested individually. The viral 
cycle threshold (Ct) values of these pools were usually higher, with 
a median Ct value of 36.8 and 34.2 for eight- and five-sample posi-
tive pools (respectively), whereas all other positive pools had median 
Ct values of 26.9 and 26.5, respectively. This low percentage of 
false-positive pools (3.9 to 5.3%) reflects our permissive threshold 
and the extra caution taken to maintain the sensitivity of pooled 
sample testing.

A dominant consideration in planning and evaluating the pooling 
approach is efficiency, defined as the expected number of samples 
tested using a single RT-PCR reaction. In theory, efficiency is mostly 
affected by the pool size and the prevalence rate (fig. S1A). We cal-
culated our empirical efficiency (defined as the total number of tested 
samples divided by the total number of actual RT-PCR reactions 
performed) as 4.587 and 2.377 for the eight- and five-sample pools, 
respectively. These values are better than the expected optimal effi-
ciency values for both the eight- and the five-sample pool sizes, under 
the observed prevalence rates of 1.7 and 5.7%, respectively (Table 1).

As the prevalence of infection changes, so does the pooling effi-
ciency. We observed fluctuations in efficiency values over time, 
when the empirical efficiency was higher or lower than the theoret-
ical efficiency (fig. S1B). Nevertheless, across time and pool sizes, 
we performed better than the theoretical efficiency estimations for 
Dorfman pooling. Overall, we tested 133,816 samples using 32,466 
RT-PCR tests with a global efficiency of 4.121, saving 101,350 (76%) 
RT-PCR reactions.

A major concern regarding sample pooling is the expected loss 
of sensitivity upon sample dilution. We evaluated the sensitivity in 
our large-scale eight-sample pooling approach, comparing the Ct 
value of each positive pool with the Ct value of the individually test-
ed positive samples within the pool. Theoretically, an eight-sample 
pool with a single positive sample should contain only one-eighth of 
the viral load, which requires three additional PCR cycles (log2 of 
the dilution factor) for detection. Because our PCR assay has a practical 
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Fig. 1. Overall statistics of pool sizes of eight and five. (A) Weekly average of 
eight-sample (blue) and five-sample (red) pools counts, together with the weekly 
average of the prevalence rate among pooled samples (black). (B and C) Pool re-
sults for eight-sample (B) and five-sample (C) pools, respectively. (D and E) Counts 
of positive pools aggregated by the number of positive samples identified within 
the pool, for eight-sample (D) and five-sample (E) pools.
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limit of sensitivity at 40 cycles, we expect pooling tests to be able to 
detect samples with viral Ct values up to 37. Individual samples 
with a Ct value of >37 are expected to be inherent false negatives of 
the method. To empirically examine the theoretical loss of three Cts 
in sensitivity, we compared the pool Ct with the individual-sample 
Ct for 902 pools that contained only a single amplified sample 
(Fig. 2A). A linear regression analysis of these data revealed a 2.9 Ct 
increase for the pool (R2 = 0.66, constraining slope = 1, P = 1.25 × 
10−144; Fig.  2A), in agreement with the theoretical estimation of 
three Ct elevations. The pooling approach did identify many indi-
vidual samples that had Ct values of >37 (Fig. 2C). A close examina-
tion revealed that these cases were typically found in pools that 
contained ≥2 samples where the viral gene was amplified and one of 
the amplified samples had a low Ct value (Fig. 2B). The Ct of a pool 
is mostly defined by the sample with the highest viral load (lowest 
Ct) in it; consequently, strongly positive samples lead to individual 
testing of all samples in the pool, revealing weakly positive “hitchhik-
ers.” The hitchhiker phenomenon explains the better-than-expected 
sensitivity of our pooling approach. As the average number of pos-
itive samples per pool increases, the sensitivity of pooled testing to 
detect samples with lower viral load (higher Ct) improves (Fig. 2C). 
This can be caused by either across the board increase in prevalence 
or by clusters of positive samples that are tested in the same pool.

We have developed a pipeline that consists of guidelines of 
which samples to pool, hardware to pool the samples (liquid han-
dlers), and software to pool and track the samples for the second 
stage of examining individual samples within a positive pool. All 
details regarding this process appear in Materials and Methods, and 
a video demonstrating the entire process can be found in movie S1.

DISCUSSION
We used and monitored a large-scale, adaptive eight- and five-sample 
pooling of nasopharyngeal sample lysates for detection of SARS-
CoV-2 over a 5-month period. Data analysis of nearly 135,000 pooled 
samples revealed high empirical efficiency of sample pooling, 

outweighting a minor, clinically insignificant loss of sensitivity. Our 
pooled testing strategy spared 76% of RNA extraction and RT-PCR 
tests, even in the setting of a changing prevalence rate (<1 to 6%).

Adaptive pooling approaches can maximize resource saving un-
der a fluctuating prevalence rate. The fraction of positive samples 
tested in pools (p) can vary over time due to multiple factors affect-
ing the epidemic kinetics, including changes in public health miti-
gation measures (for example, social distancing regulations, travel 
restriction, lockdown, and school closure) (20). As a result, the pool 
size (n) required to achieve optimal efficiency shifts. For example, 
the optimal pool size for p = 0.02 (2%) is n = 8, but as p rises to 0.05 
(5%), optimal pool size shrinks to 5 (1). Consequently, we tried pre-
dicting the positive rate for each week based on the positive rate 
observed in the previous week, in pooled samples and in nonpooled 
samples. We found the rate of positives in pooled samples from the 
previous week to be a better predictor of infection prevalence in 
pooled samples, probably due to differences between the popula-
tions sampled in the two testing methodologies. We therefore ad-
opted a strategy, alternating between pool sizes of eight and five, 
according to the predicted p and the epidemiological information 
about the source of samples (for example, switching to pools of five 
when receiving samples from a source highly suspected to have a 
higher probability of infection). We observed supraoptimal empiri-
cal efficiency of pooling, exceeding the predicted efficiency, which 
could not be explained only by the dynamic switching in pool sizes 
(see below).

Table 1. Statistics and efficiency of pool sizes of eight and five. NA, 
not applicable. 

Pools of eight Pools of five All together

Total number of pools 14,697 3248 17,945

Number of positive 
pools 1367 717 2084

Total number of 
samples 117,576 16,240 133,816

Number of positive 
samples 1993 936 2929

Total number of PCR 
reactions 25,633 6833 32,466

Prevalence rate 1.7% 5.8% 2.19%

Optimal (predicted) 
Dorfman efficiency 3.9553 2.1891 NA

Our empirical 
efficiency 4.587 2.377 4.122

P value of empirical 
Dorfman efficiency <10−5 0.00584 NA
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When considering the clinical implementation of group testing, 
loss of sensitivity is a major concern. The dilution of samples due to 
pooling may lead to lack of detection in samples with low viral presence 
(manifested by high Ct values in individual testing). We were not able 
to estimate the false-negative rate of pooled testing, due to the fact 
that not all samples included in our analysis were tested individually. 
However, to estimate the negative predictive value (NPV) of pooled 
testing, we selected 139 negative pools and retested 1109 samples 
individually. Only a single sample was found to be positive (Ct = 36.3), 
suggesting an NPV of 1108/1109 = 99.91%. Our empirical results 
show a loss of sensitivity as expected based on sample dilution. Given 
the high sensitivity of current SARS-CoV-2 RT-PCR assays and 
evidence suggesting lower risk of infectiousness (as measured by 
cell culture) associated with low presence of viral RNA (high Ct) (21–23), 
we believe that the loss of three Cts is a clinically acceptable trade-off 
when considering the substantial increase in the number of samples 
tested, as recently suggested (24). Our pooling scheme did uncover 
many samples with high Ct values (>37) that would be expected to 
be missed in pools, presenting real-life performance that exceeds 
theoretical expectations, similarly to the observed efficiency trend.

We propose that the better-than-expected performance of pool-
ing in both efficiency and sensitivity aspects is rooted in a single 
factor: the nonrandom distribution of positive samples in pools. In 
theory, increased prevalence rates result in decreased efficiency as a 
common assumption in most models is that samples arrive at ran-
dom to the diagnostic laboratory. In reality, samples arrive in batches: 
from colleges, nursing homes, or health care personnel. We sorted 
samples into pools as they arrived at the laboratory, such that family 
members and roommates were often pooled together, thereby in-
creasing the number of positive samples within the pool. The pres-
ence of multiple positive samples in a single pool can explain both 
improved efficiency and improved sensitivity. The efficiency im-
provement is straightforward: A decision to open a positive pool for 
individual retesting results in the discovery of multiple positive 
samples with the same number of PCR reactions. The sensitivity 
improvement is less obvious and stems from the relationship be-
tween the sample viral Ct and the pool viral Ct. A single strongly 
positive sample is sufficient to make the viral load in the pool de-
tected. If the same pool contains additional low viral load samples 
that would have been otherwise missed upon dilution, these would 
now “benefit” from the higher viral load samples coexisting in the 
pool and would be detected when the pool was opened for individual 
testing. Thus, a nonrandom pool assignment and an increased preva-
lence rate (which by itself increases the likelihood of having pools 
with multipositive samples) both contribute to the increased sensitivity. 
A nonrandom pool assignment together with an adaptive pool size 
approach further explains our better-than-expected efficiency.

The limitations of this study mostly stem from the retrospective 
nature of this analysis. These data were not collected for us to study 
but rather to inform individuals of their infection status. Prospective 
design that collects information about individuals’ symptoms, de-
mographics and exposure will enable better assignment of samples 
into pools, achieving higher efficiency. We note that the study re-
ported here was not designed to validate the pooling scheme [which 
we and others have previously validated (2, 6 to 13, and 15 to 17)] 
but rather was intended to extract insights from ongoing clinical work, 
when pooling was used at an unprecedented scale.

One practical implication of our findings is the importance of 
using preexisting knowledge about incoming samples. Using such 

information for coassignment of samples suspected to be positive or 
negative can enable exceeding the theoretical performance of pooling 
typically calculated under the assumption of random assignment. We 
encountered considerable logistic hurdles in obtaining a pretest proba-
bility for each swab sample but argue that success in such efforts could 
make pooling work efficient even in settings of very high prevalence.

Last, a common concern with regard to pooling refers to the ease 
and simplicity of implementation. Although using various pool sizes 
and performing frequent alternations between them, as well as the 
use of combinatorial pooling methods in settings of low prevalence 
rate (2, 4, and 5), may be theoretically more efficient, pooling must 
be manageable at large scale in a diagnostic laboratory. Combinato-
rial pooling can be set up efficiently in the laboratory, with pre-
defined pooling schemes that still require a second stage to validate 
the positive samples (25), but not all diagnostic laboratories can 
handle these complex schemes. We found Dorfman pooling with 
pool sizes of five or eight both simple and efficient. In addition, we 
would like to highlight that automation of both sample handling, 
processing, and result reporting by use of automated liquid handlers 
and software is crucial for delivering test results quickly and mini-
mizing laboratory errors. We provide a pipeline that consists of 
guidelines of which samples to pool, hardware to pool the samples 
(liquid handlers), and software to pool and track the samples for the 
second stage of examining individual samples within a positive pool.

The long-term containment of COVID-19 will likely involve early 
identification of outbreaks on the background of low prevalence in the 
population. Our empirical evidence from testing over 130,000 samples 
in pools strongly projects on the feasibility and benefits of carefully con-
ducted pooling for surveillance, control, and community reopenings.

MATERIALS AND METHODS
Study design
This work is a retrospective analysis of SARS-CoV-2 tests performed 
by The Hebrew University-Hadassah COVID-19 diagnosis team. 
From March 2020 to the arbitrary chosen date of 17th of September, 
121,929 samples were tested individually, and 139,098 samples were 
tested using Dorfman pooling. We based the analysis of pooled 
samples only on pools that showed amplification of the human 
gene, used as an internal control. In addition, we excluded pools of 
size different from five or eight and pools missing Ct values due to 
technical faults. In total, 5282 samples were excluded, and the anal-
ysis was performed on 133,816 pooled samples. The study was ap-
proved by the Hadassah Medical Center Institutional Review Board 
with a waiver from the need for informed consent.

Sample collection
Nasopharyngeal swab samples were collected as they arrived at the 
Hadassah Medical Center in Jerusalem. The samples were taken at 
multiple locations in and near Jerusalem and were transferred to the 
Hadassah Medical Center for evaluation.

Institutional Review Board
Nasopharyngeal swab samples were collected in 2 ml of viral trans-
port medium (VTM) or directly in the lysis buffer. To inactivate the 
virus, 220 l of sample VTM was added to 280 l of 2× Zymo lysis 
buffer, followed by 20-min incubation. For the 1:8 pool design, we 
pooled equal volumes of eight sample lysates to a final volume 
of 400 l.
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RNA extraction
RNA was extracted using the QIAsymphony DSP Virus/Pathogen 
Mini Kit (QIAGEN) on QIAsymphony platform and eluted in 60 l.

Reverse transcription polymerase chain reaction
SARS-CoV-2 RNA was detected using multiplex real-time RT-PCR 
for the simultaneous detection of the SARS-CoV-2–specific E gene 
and a human ERV3 gene as an internal control (26, 27). Primers and 
probes were purchased from Integrated DNA Technologies, and 
the sequences are given in table S1. Real-time RT-PCR was per-
formed using the TaqPath qPCR Master Mix on the QuantStudio 5 
Real-Time PCR Instrument (Applied Biosystems Inc.).

The RT-PCR assay, which uses the World Health Organization–
approved primers and probes (26), was validated on 150 positive 
and 200 negative nasopharyngeal swab specimens and found to 
have 100% accuracy with a lower limit of detection of 0.25 copies/l 
(corresponding to ~50 copies/ml of clinical sample, with a corre-
sponding detected Ct value of 39). The assay has also been periodically 
evaluated on external quality assessment/proficiency testing panels 
[Quality Control for Molecular Diagnostics (QCMD), College of 
American Pathologists (CAP), Labquality] demonstrating 100% ac-
curacy. All steps that could affect repeatability, reproducibility, sensi-
tivity, specificity, and trueness were evaluated on a regular basis. 
Further to the initial validation of the pooling method as previously 
reported (15), ongoing evaluation of the pooling across a range of 
viral loads has been performed by diluting positive nasopharyngeal 
samples with decreasing viral loads (2000, 1000, 500, 200, 100, and 
50 viral copies/ml, corresponding to detected Ct range of 33 to 39) into 
seven negative samples.

System support for the pooling process
Unlike individual testing working schemes, pooling requires the 
ability to efficiently trace all the individual samples associated with 
a pool. We used a hash file, created automatically by the liquid 
handling (LiHa) robot. As a batch of 64 individual samples is pooled 
into eight pools, this file links the eight barcoded individual sam-
ples to the corresponding pool barcode. In addition, the date, elu-
tion plate barcode, and batch number were automatically added to 
the file, allowing to quickly locate the individual samples from  
storage.

To follow a sample from the time it arrives at the laboratory and 
until a test result is reported, Hadassah Medical Center IT team 
adapted the Laboratory Information System (LIS) to support pool-
ing and allow dynamic pool size selection. The hash file and the re-
sults of the PCR test are integrated into the LIS, automatically 
reporting negative results for all the samples in a negative pool and 
assigning all the samples in a positive pool to be retested individually. 
In addition, laboratory technicians have a wide set of tools enabling 
efficient and rapid turnaround such as alerts, data analysis tools for 
the different stages of pooling, and the ability to compare pooling 
efficiency for different sample sources.

Pooling pipeline protocol
Our standard operating procedure steps are stated below, illustrated 
in fig. S2, and a video demonstrating the complete pooling proce-
dure can be found in movie S1.

1) Prepare n individual samples barcoded tubes containing 
500 l of mixture of an individual subject VTM  +  lysis buffer in 
each tube.

2) Prepare n/8 empty tubes with a different set of barcodes. 
These will later contain the pooled samples.

3) Open and load the individual samples and the empty tubes to 
the LiHa robot (we used Tecan Freedom Evo 100). In executing 
pool protocol, first eight individual samples will be pooled to the 
first pooled sample, and the next eight individual samples will be 
pooled to the second pooled samples, etc. (50 l from each, to a total of 
400 l). Alternative faster protocols are available, depending on spec-
ifications of the LiHa robot and number of individual samples.

4) Unload the individual samples (now containing 450 l each), 
close them with new screw caps, and place them in a tube rack, 
while maintaining their original order on the LiHa robot’s rack. 
Store them in a safe and marked box (room temperature/4°C) until 
pooled samples PCR results are reported.

5) Check that the hash file was created properly and verify that 
each pooled sample is associated with the correct eight individual 
samples barcodes.

6) Unload the pooled samples (now containing 400 l each), 
close with new screw caps, and transfer to RNA extraction.

7) Perform RNA extraction and RT-PCR on the pooled samples.
8) If the viral gene in the pooled sample is amplified properly 

(the pooled sample has viral Ct), then locate the relevant individual 
samples and validate their barcodes using the hash file.

9) Perform RNA extraction and RT-PCR on the suspected indi-
vidual sample tubes.

Definition of positive pools
A pool was considered positive if the viral gene was amplified, and 
individual samples within the pool were retested individually.

Selection of samples for pooling
By and large, samples from symptomatic and hospitalized patients 
were tested individually, while samples from screened asymptomatic 
individuals, such as routinely tested hospital personnel and nursing 
homes residents and caregivers, were pooled.

Pooling efficiency
When considering Dorfman pooling, for any given assignment of p 
(prevalence rate) and n (pool size), the expected Dorfman optimal 
efficiency is calculated as    (  1 +   1 _ n  −  (1 − p)   n  )     −1  , assuming that samples 
are independent and identically distributed across pools (1).

Pool Ct versus sample Ct calculation
PCR reaction roughly multiplies the amount of the targeted DNA in 
each cycle of operation. Because of this exponential growth, a pool 
of size n with a single positive sample should have a Ct that is log2(n) 
cycles greater than the positive sample’s Ct. For example, when the 
pool size is 8, this will result in a three-cycle addition.

Statistical analysis
Calculation of P values for empirical efficiency was performed by 
comparing the empirical efficiency measured to the results of effi-
ciency in 100,000 simulations. For each pool size, five and eight, we 
used the number of samples and prevalence rate measured for this 
pool size (Table 1) and simulated (according to the prevalence rate) 
a positive/negative result for each sample independently. Then, we 
randomly assigned each sample into a pool and considered a pool to 
be positive if it included one or more positive samples (assuming no 
false-negative pools). To conclude the simulation, we calculated the 
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empirical efficiency by dividing the number of samples tested by the num-
ber of reactions needed to perform pooled testing. When comparing 
the pool Ct and the individual sample Ct (Fig. 2A), statistics were cal-
culated using linear regression, forcing a predetermined slope of 1.

SUPPLEMENTARY MATERIALS
stm.sciencemag.org/cgi/content/full/13/589/eabf2823/DC1
Fig. S1. Dorfman efficiency and infection prevalence over time.
Fig. S2. Weekly average of percentage of positive samples observed over time, for pooled and 
unpooled samples.
Table S1. Primers and probes used in multiplex RT-PCR.
Movie S1. Pooling pipeline protocol.
Data file S1. Raw data of all viral and human Ct values in the studied samples and pools.

View/request a protocol for this paper from Bio-protocol.
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