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ABSTRACT Cesarean section scar diverticulum (CSD) has become a formidable obstacle
preventing women receiving CS from reproducing. However, the pathogenesis of CSD
remains unexplored. In this study, we characterized the cervical microbiota, metabolome,
and endometrial transcriptome of women with CSD. Based on the 16s rRNA results of cervi-
cal microbes, the microbial diversity in the CSD group was higher than that in the control
group. Lactobacillus were significantly decreased in the CSD group and were mutually
exclusive with potentially harmful species (Sphingomonas, Sediminbacterium, and Ralstonia)
abnormally elevated in CSD. The microbiota in the CSD group exhibited low activity in
carbohydrate metabolism and high activity in fatty acid metabolism, as confirmed by
the metabolomic data. The metabolomic characterization identified 6,130 metabolites,
of which 34 were significantly different between the two groups. In the CSD group, N-
(3-hydroxy-eicosanoid)-homoserine lactone and Ternatin were significantly increased,
in addition to the marked decrease in fatty acids due to high consumption. N-(3-hydroxy-
eicosanoyl)-homoserine lactone is a regulator that promotes abnormal apoptosis in a variety
of cells, including epithelial cells and vascular endothelial cells. This abnormal apoptosis of
endometrial epithelial cells and neovascularization was also reflected in the transcriptome
of the endometrium surrounding the CSD. In the endometrial transcriptome data, the upreg-
ulated genes in the CSD group were active in negatively regulating the proliferation of blood
vessel endothelial cells, endothelial cells, and epithelial cells. This alteration in the host’s
endometrium is most likely influenced by the abnormal microbiota, which appears to
be confirmed in the results by integrating host transcriptome and microbiome data. For
the first time, this study described the abnormal activity characteristics of microbiota and
the mechanism of host-microbiota interaction in CSD.

IMPORTANCE Cesarean section scar diverticulum (CSD) has become a formidable obstacle
preventing women receiving CS from reproducing. In this study, we revealed that poten-
tially harmful microbes do have adverse effects on the host endometrium. The mechanism
of these adverse effects includes the inhibition of the activity of beneficial bacteria such
as lactobacilli, consumption of protective metabolites of the endometrium, and also the
production of harmful metabolites. In the present study, we elucidated the mechanism
from the perspectives of microbial, metabolic, and host responses, providing an important
rationale to design preventive and therapeutic strategies for CSD.

KEYWORDS cesarean section scar diverticulum, gene regulation, host-microbiota
interaction, microbiome

Over recent decades, the cesarean section (CS) rate in China rose from 3% in 1988 to
34.9% in 2014, and then to 36.7% in 2018, ranking first among Asian countries (1, 2).

Around 19.4% to 88% of women receiving CS will suffer from cesarean section scar diver-
ticulum (CSD) (3). CSD is a result of poor healing of the local uterine incision, forming a
depression or cavity that connects with the uterine cavity, which can result in a variety of
near- and long-term complications, such as scar dehiscence, ectopic scar pregnancy, uterine
rupture, prolonged menstrual bleeding, chronic pelvic pain, and secondary infertility (4, 5).
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CSD has become a formidable obstacle preventing those women from reproducing. The
spontaneous pregnancy rate in CS women has decreased by 15%, and even with assisted
reproductive technology, the embryo implantation and live birth rates are significantly
lower (6). Our previous research revealed that persistent effusion is the major factor affecting
fecundity in CSD women (7).

The female reproductive tract has a unique microbiome that has a critical role in the main-
tenance of homeostasis and/or development of certain diseases (8–10). When dysbiosis
occurs, altered immune and metabolic signaling can produce commensurate responses,
including chronic inflammation, epithelial barrier disruption, angiogenesis, and metabolic
dysregulation (11–13). Our previous research revealed that persistent effusion in CSD were
caused by localized inflammatory and immune imbalance, and local microbial disturban-
ces play a core role in this process (14). However, the characteristics of local microbiota
activities and the mechanism of microbial-host interaction are still unknown.

In this study, we combined nontargeted metabolomics and human host transcriptome
to analyze the activity characteristics of CSD microbes and the mechanism of microbe-host
interaction.

RESULTS
Diversity and compositional characteristics of cervical microbiota. A total of 52

subjects were included in the study, including 28 in the CSD group and 24 in the CON group.
The clinical data features of subjects are shown in Table 1. After filtering and quality control,
an average of 60833.136 7511.79 reads were obtained from each sample. The rarefaction
curve indicated that the sequencing depth of the samples in this study was sufficient
(Fig. S1A).

The a-diversity of the microbiota calculated by Shannon-Wiener index at the phylum
(Fig. 1A) and genus levels (Fig. 1B) in the CSD group was significantly higher than that in the
CON group, indicating that the microbial composition of the CSD group was more abun-
dant. Bray-Curtis-based PCoA plot and ANOSIM analysis showed that the distance between
samples in the CSD group was significantly greater than in the CON group (Fig. 1C).

The absolute abundances of phylum (Fig. S1B) and genus (Fig. S1C) in the CSD group
were higher than in the CON group. Classification at the phylum level showed a different
pattern between the two groups, with Firmicutes being the overwhelming majority in the
CON group, reaching 92% (Fig. 1D). In the CSD group, the proportion of Firmicutes decreased
to 62%, and the proportion of Proteobacteria and Actinobacteriota increased to 20% and 10%,
respectively (Fig. 1E). The composition of the two groups at the genus level also showed sig-
nificant differences.

The present study dissected the genus composition of Firmicutes and Proteobacteria
between the two groups. Under the Firmicutes genus, the proportion of Lactobacillus in the
CSD group (Fig. 1F) decreased compared with that in the CON group (Fig. 1H) (84.91% ver-
sus 98.81%), while the proportions of Streptococcus and Enterococcus increased (7.62% and
3.33%, respectively). The proportions of Proteobacteria genera, including Escherichia Shigella,
Sphingomonas, Ralstonia and Burkholderia Caballeronia Paraburkholderia, showed various
degrees of differences between the CSD group (Fig. 1G) and the CON group (Fig. 1I). These
results indicated that the diversity and composition of microbiota in the CSD group were

TABLE 1 The clinical data features of 52 subjects

n
CON CSD

P SMD24 28
Age (mean [SD]) 29.62 (3.57) 33.25 (3.17) ,0.001 1.073
BMI (mean [SD]) S21.04 (2.25) 22.23 (2.62) 0.088 0.488
AMH (ng/mL; mean [SD]) 3.69 (2.09) 3.42 (3.76) 0.761 0.087
Basal_FSH (IU; mean [SD]) 6.99 (1.42) 7.62 (1.91) 0.192 0.372
Basal_LH (IU; mean [SD]) 5.51 (2.97) 5.59 (3.38) 0.929 0.025
Basal_E2 (pg; mean [SD]) 47.42 (68.52) 42.89 (28.19) 0.75 0.086
Infertile_year 3.54 (2.19) 4.64 (2.91) 0.134 0.428
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significantly different from those in the CON group, and the proportion of Lactobacilli signifi-
cantly decreased in the CSD group.

Screening of differential microbiota and construction of cooccurrence network.
Based on linear discriminant analysis (LDA), differential genus between the two groups were
screened. Lactobacillus significantly decreased in the CSD group, while Gardnerella, Prevotella,
and other harmful genus increased significantly (LDA$ 2) (Fig. 2A, Table S1).

The genus cooccurrence network (Fig. 2B) constructed based on Spearman correlation
analysis (R . 0.8, P , 0.05) showed interesting information. The cooccurrence network
composed of Ralstonia, Sphingomonas, and Sediminbacterium was significantly negatively cor-
related with Lactobacillus. The abundance of these four genera was opposite between the
two groups (Fig. 2C–F). This result suggested that the decrease in Lactobacillus abundance
might be caused by the disturbance and mutual exclusion of the microbial community.

Functional enrichment analysis of microbiota. The results of PICRUSt 2 characterized
the activity of microbiotas in two groups. We analyzed level 2 and level 3 of the KEGG

FIG 1 Microbial community characteristics. The a-diversity of the microbiota calculated by Shannon-Wiener index at the phylum (A) and genus levels (B)
(Wilcoxon rank sum test); (C) Bray-Curtis-based PCoA plot and Anosim analysis between CSD group and CON group; Pie chart of phylum composition of CSD
group (D) and CON group (E); Pie chart of genus composition of Firmicutes (F) and Proteobacteria (G) in CSD group; Pie chart of genus composition of Firmicutes (H)
and Proteobacteria (I) in CSD group.
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pathway, respectively. The CSD group showed significant activity in multiple metabolic proc-
esses, except for carbohydrate metabolism, an important pathway for lactate production
(Fig. 3A). In a more refined pathway (level 3, Fig. 3B), the CSD group showed high activity in
the fatty acid metabolism pathway and the biosynthesis of secondary metabolites, whereas
the active carbohydrate metabolism pathway in the CON group was refined to glucose me-
tabolism. Phosphotransferase system (PTS) and Fructose & mannose metabolism in the CON
group were also more active than in the CSD group (Fig. 3B). The P-values were corrected
using the BH (Benjamini and Hochberg) method.

Nontargetedmetabolomics in the cervical environment.We performed simultaneous
nontargeted metabolomic assays on samples from 60 subjects. After quality control (Fig. S2),
46 microbiome-matched samples were included in the subsequent analysis, including 20
samples from the CON group and 26 samples from the CSD group. After noise removal,
10,119 anion peaks and 8,308 cation peaks were obtained. The ion peaks with all missing
values in the group (0 value). 50% were deleted, and we replaced the 0 value with half
of the minimum value and deleted the qualitative result score less than 36 points. As a
result, we obtained 6,130 metabolites.

OPLS-DA was used to discriminate overall differences in metabolic profiles and further
identify differential metabolites between groups. The results indicated that the samples

FIG 2 Compositional differences and cooccurrence relationships of microbiota. (A) Differential genera between CSD group and CON group; (B) Cooccurrence
networks of microbial communities (Spearman correlation analysis). The blue line indicates a negative correlation, and the red line indicates a positive correlation.
The data on the line is the correlation coefficient. The size of the dots indicates the abundance of the genus; The abundance of Lactobacillus (C), Sphingomonas
(D), Sediminbacterium (E), and Ralstonia (F) in CSD group and CON group (Wilcoxon rank sum test).
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within the CSD group were clustered together and differed from the overall profile of the
CON group (Fig. 4A, B). Thirty-four metabolites that differed significantly between the two
groups were identified (Fig. 4C, Table S2). Two metabolites were significantly upregulated
in the CSD group; namely, N-(3-hydroxy-eicosanoyl)-homoserine lactone and Ternatin. 32
metabolites were significantly downregulated, and the two most significantly downregulated
metabolites were Gingerol and PC(O-10:0/O-8:0)[U].

Correlation between cervical microbiota and metabolome. To further explore the
pathogenic mechanisms of cervical microbes in CSD, we performed an integrative analysis
of the cervical microbiome and metabolome (Fig. 5). The results showed a trend consistent
with the cooccurrence network (Fig. 2B). We found that many metabolites that were posi-
tively correlated with Lactobacillus were negatively correlated with Prevotella, Sphingomonas,
Ralstonia, etc. Two metabolites were significantly positively associated with Lactobacillus,
including Antanapeptin C (R = 0.39) and 3-Epipapyriteric acid (R = 0.39). However, N-
Acetyl-a-neuraminic acid, N-Acetyl-b-neuraminic acid, N-(3-hydroxy-eicosanoyl)-homoserine
lactone, and Ternatin were negatively correlated with various genus mutually exclusive with
Lactobacillus.

Human host endometrial response. To further understand the human host response
to a disturbed microbial community, we performed transcriptome sequencing of endo-
metrium surrounding the cesarean section scar diverticulum. We performed transcriptome
analysis of 33 samples paired with the microbiome and metabolome, including 18 samples
from the CSD group and 15 samples from the CON group. A total of 982 differentially
expressed genes were identified between the two groups (Fig. 6A), including 176 genes
that were upregulated in CSD, and 806 that were downregulated (Fig. 6B, Table S3). We
noted that upregulated genes in the CSD group negatively regulated the proliferation of
blood vessel endothelial cells, endothelial cells, and epithelial cells (Fig. 6C). At the same
time, these genes were also active in the endothelial cell apoptotic process. This suggest
that local angiogenesis was hindered in the CSD group. Downregulated genes were mainly
concentrated in immune system-related processes (Fig. 6D).

The integration of microbes and transcriptomes was achieved by constructing the
O2PLS model. After 10-fold cross-validation, the model building parameters were finally set as
n = 5, nx = 3, ny = 1, and the R2X was 0.91 and R2Y was 0.90 (Fig. 7A). These two parameters
indicate that the model is reliable. Fig. 7B shows the top 15 loading features of the two
omics.

FIG 3 Functional characterization of cervical microbes. Difference between CSD group and CON group in KEGG level 2 (A) and level 3 (B) (Welch’s t test).
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We performed Spearman correlation analysis on the characteristics of top 30 loading in
the two groups, trying to find out the relationship between specific genus and genes. We
found several specific genes, including DKK1, CXCL14, SCARA5, APOD, S100A4, CFD, GPX3,
and HBB. These genes were significantly positively correlated with genus mutually exclusive
with Lactobacillus (Fig. 2B) but negatively correlated with Lactobacillus (Fig. 7C). The results
of functional enrichment analysis of these genes showed that they were mainly active in the
negative regulation of cell junction assembly and the process of epithelial to mesenchymal
transition (Fig. 7D). Cell junction assembly was an essential process of angiogenesis. This
result indicated that angiogenesis disorders and intimal hyperplasia disorders during the for-
mation of CSD were closely related to microbial disorders.

DISCUSSION

Cesarean section scar diverticulum (CSD) is a huge obstacle for those women who
wish to have more children. This study attempted to explain the impact of cervical
microbiota and metabolites on women with CSD from multiple perspectives, including
the microbial perspective and the human host response perspective.

This study observed that the structure of cervical microbiota in the CSD group was
different from that in the control group. Lactobacillus significantly decreased in CSD group,

FIG 4 Nontargeted metabolomics in the cervical environment. (A) PCA plots of the two groups of metabolites; (B) OPLS-DA score map. The abscissa represents the
score value of the principal component, and the ordinate represents the score value of the orthogonal component; (C) Heatmap of differential metabolites between
two groups; (D) KEGG enrichment analysis of differential metabolites.
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while the proportion and abundance of potentially harmful species increased. The predomi-
nance of Lactobacillus was associated with vaginal health and the depletion of this genus
can lead to many adverse conditions, such as an increased risk of acquired sexually trans-
mitted infections (STIs), preterm birth, spontaneous abortion, or pelvic inflammatory disease
(15). Lactobacillus maintains a healthy reproductive tract environment by producing lactic
acid through its metabolic activity (16). In the cooccurrence network, we found a mutually
exclusive relationship between Lactobacillus and three potential pathogenic bacteria (17,
18), including Ralstonia, Sphingomonas, and Sediminbacterium (here, referred to as the hos-
tile genus of Lactobacillus). This was an interesting finding, and it was clearly very likely an
important mechanism for the reduction of Lactobacillus in the CSD group.

In addition, we also observed that the CSD group significantly decreased the activity of
the secondary pathway of carbohydrate metabolism and the tertiary pathway of galactose
metabolism. The galactose metabolic pathway is an important pathway for Lactobacillus to
produce lactic acid (19), and this result also confirmed that the activity of Lactobacillus was
inhibited in the CSD group. Another active feature of the CSD group microbiota was the
active metabolism of fatty acids. This result implied that fatty acids were largely consumed
in the CSD group. Fatty acids played important roles in protection of the endometrium and
multiple reproductive-related events, including gametogenesis, decidua, implantation, and
placenta formation (20, 21). This finding was also confirmed in the metabolomic data of
this study. Therefore, the inhibition of Lactobacillus metabolic activity and the active fatty
acid metabolism of potentially pathogenic bacteria were important features of the CSD
group, which might be important causes of adverse reproduction capacity.

To validate sequence-based characterization of microbial activity and to assess differences
in cervical metabolites between the CSD and control groups, we identified 34 differential
metabolites in the two groups. As mentioned above, the results of the metabolome were
consistent with the sequence-based characterization of microbial activity inferred by the
microbiome. In the CSD group, N-(3-hydroxy-eicosanoyl)-homoserine lactone and Ternatin
were significantly increased, while various fatty acids were significantly decreased. Several
of these fatty acids, which were decreased in the CSD group, were previously shown to

FIG 5 Heatmap for the association analysis between differential metabolites and differential genus (Spearman correlation analysis).
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have protective effects on the endometrium, including 12-Oxo-2,3-dinor-10,15-phy-
todienoic acid, and 3-Methylsuberic acid (22). N-(3-hydroxy-eicosanoyl)-homoserine
lactone has been shown to promote apoptosis of various cells in vivo, including
macrophages (23), vascular endothelial cells (24), and fibroblasts (25), through mito-
chondrial damage received by reactive oxygen species. Interestingly, 12-Oxo-2,3-
dinor-10,15-phytodienoic acid and N-(3-hydroxy-eicosanoyl)-homoserine lactone
had the opposite relationship with the potentially harmful genus and Lactobacillus.
The metabolomic results reconfirmed the mutually exclusive relationships in the
cooccurrence network we found based on the microbiome data, namely, that the
abundance and activity of Lactobacillus were significantly suppressed, and multiple
beneficial fatty acids were largely consumed.

Although we had thoroughly explored the mechanisms and possible effects of microbial
community disturbance in the CSD group, such as the discovery of potential pathogenic
bacteria through the inhibition of Lactobacillus and the production of deleterious metab-
olism such as N-(3-hydroxy-eicosanoyl)-homoserine lactone, it is still unclear whether the
human host was affected by these effects. Therefore, we performed transcriptome sequenc-
ing of the endometrium surrounding the CSD.

Surprisingly, we found changes in the transcriptome in the endometrium corresponding

FIG 6 Endometrial transcriptome expression characteristics. (A) Volcano plot for differential gene expression analysis; (B) Statistical chart of
differentially expressed genes between CSD group and CON group; GO enrichment analysis of biological processes of upregulated (C) and
downregulated (D) genes.
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to the above findings. GO enrichment analysis of the significantly upregulated genes in the
CSD group showed that these genes were concentrated in the biological processes of neg-
atively regulating the proliferation of blood vessel endothelial cells, endothelial cells, and
epithelial cells. After integrating the microbiome and transcriptome data, we found that the
genes regulating these functions were potentially pathogenic bacteria identified in the

FIG 7 Host-microbiota interaction analysis. (A) Loading scatterplot of the O2PLS model. The farther from the origin, the correlation of features is about
stronger; (B) Bar graph of top 15 loading features in the microbiome and transcriptome. The characteristic trends in the same direction are consistent; (C)
Heatmap of correlation analysis of top 30 loading features in both groups; (D) Functional enrichment analysis of Sphingomonas, Sediminbacterium, and
Ralstonia-related genes.
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previous data, including Ralstonia, Sphingomonas, and Sediminbacterium. Lactobacillus was
negatively correlated with these adverse biological activities.

So far, we had revealed that potentially harmful microbes do have adverse effects on the
host endometrium. The mechanism of these adverse effects includes the inhibition of the
activity of beneficial bacteria such as Lactobacilli, consumption of protective metabolites of
the endometrium, and also the production of harmful metabolites. However, the 16s rRNA
sequencing method applied in this study has its limitations, such as short read lengths
obtained and low species resolution (26, 27). In addition, the host's response requires more
dimensions of experiments to aid validation. To our knowledge, this is the first study to
detail the pathogenic mechanism of microbial community disturbance in CSD. Using the
composition and activity characteristics of microbiota, ideas have been developed for the de-
velopment of new and more effective probiotic formulations. At present, it has been reported
that the Lactobacillus rhamnosus BPL005 strain can improve the health of the female reproduc-
tive tract (28). In addition, another study showed that among non-Lactobacillus-dominant
patients treated with lactoferrin for 3 months after antibiotic treatment, 67% (6/9) of the
patients had a return of the endometrial microbiota to a Lactobacillus-dominant environ-
ment (12, 29). These studies suggest that a combination of probiotics combined with
prebiotics, such as lactoferrin, may have potential therapeutic benefits. An interventional
study of Lactobacillus preparations is also under way, and we will announce the results
of the study shortly. In the present study, we elucidated the mechanism from the per-
spectives of microbial, metabolic, and host responses, providing an important rationale
to design preventive and therapeutic strategies for CSD.

Conclusion. Cervical microbiota in women with CSD had higher microbial diversity
and lower Lactobacillus abundance. The cooccurrence network composed of Ralstonia,
Sphingomonas and Sediminbacterium was mutually exclusive with Lactobacillus and
inhibited local neovascularization and promoted apoptosis of vascular endothelial cells
and endometrial epithelial cells by depleting protective fatty acids and producing N-
(3-hydroxy-eicosanoyl)-homoserine lactone.

MATERIALS ANDMETHODS
Collection of research subjects and ethical approval. Parous women underwent hysteroscopy at

the Sixth Affiliated Hospital of Sun Yat-sen University in 2021 were enrolled in this case-control study.
The inclusion criteria were (i) 20 to 40 years old; (ii) secondary infertility; (iii) normal karyotype; (iv)
informed consent. The exclusion criteria included (i) acute pelvic inflammation, cervicitis, or vaginitis; (ii)
endometriosis or adenomyosis; (iii) history of tuberculosis infection; (iv) antibiotics, glucocorticoids, or
immunosuppressants received within a month before hysteroscopy; (v) sexual activity, vaginal irrigation,
or drug application within 48 h before sampling. Parous women with post-cesarean section scar divertic-
ulum (4, 5) were separated into the CSD group, and those who had vaginal deliveries were separated
into the control group (CON group).

All study procedures were reviewed and approved by the ethics review board of the Sixth Affiliated
Hospital of Sun Yat-Sen University (IRB no. 2019ZSLYEC-005S).

Sample collection procession. Cervix specimens were collected by using a sterile single-tipped
CultureSwab. The swab was inserted into the cervix before hysteroscopy, rotated 360°, held for 10 s,
removed and placed into the sterile collection tube, then stored at 280°C, avoiding vaginal walls con-
tact. Uterine endometrium was taken from lower segment during hysteroscopy and immersed in 1 mL
of RNAsafer reagent (R4811-02, Magen, China). Endometrial specimens were stored at 4°C overnight
before transfer to 280°C.

16S rRNA extraction and sequencing. The universal primers 341F (59-CCTACGGGNGGCWGCAG-39)
and 805R (59-GACTACHVGGGTATCTAATCC-39) were used for 16s rRNA genes sequencing (30). DNA extraction
and library construction were as described in our previous study (7). In short, according to the manufacturer's
instructions, we used Magpure Soil DNA LQ kit (MAGEN, D6356-02) to conduct a total DNA extraction. PCR
amplification was performed by Tks Gflex DNA polymerase (TaKaRa, R060B). After purification and quality con-
trol, NovaSeq 6000 (PE250) was used for high-throughput sequencing.

Cervical microbiota analysis. Raw data in the FASTQ format after Cutadapt software (31) was ana-
lyzed by QIIME2 (32). According to the default parameters of QIIME2, DADA2 (33) was used to perform
quality filtering, noise reduction, splicing, and defitting and, finally, to obtain representative sequences
and ASV abundance forms. Based on the Silva (Version138) (34) database, we used a q2-feature-classifier
(35) to make a species comparison annotation. Features (ASVs) that count less than 1 in 10% of the sam-
ple were excluded.

The microbial diversity of cervical samples was estimated using Alpha diversity metrics inferred
by the Shannon index (36). At the same time, the Wilcoxon rank-sum test was used to compare the
diversity of the two groups. The Bray Curtis distance matrix was used in Bray Curtis principal
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coordinates analysis (PCOA). Analysis of group Similarities (ANOSIM) was used to calculate statistical
significance.

LEfSe (linear discriminant analysis effect size) (37) was used for differential analysis of cervical micro-
biota abundance.

We used Spearman correlation analysis to construct the correlation network between genus in Microbiome
Analyst with R. 0.8 and P, 0.05 as cutoff values (38, 39).

PICRUSt2 (phylogenetic investigation of communities by reconstruction of unobserved states) (40)
was used for predictive analysis of microbial function. Functional differences between groups were cal-
culated by STAMP V2.1.3 (statistical analysis of taxonomic and functional profiles) (41).

Nontargeted metabolomics.We extracted metabolites from cervical swabs by adding 20mL of sep-
aration buffer (methanol/acetonitrile/water [2:2:1]) to 1 mg of cervical secretions. A 10 mL isolate mix from
all samples was set up as a quality control (QC) sample and used to assess stability during the experiment
(42). 2 mL of isolate per sample was used to detect the signal of metabolites in all samples by liquid chro-
matography (LC) and mass spectrometry (MS) (ACQUITY UPLC I-Class plus, Waters). Raw data were qualita-
tively analyzed by metabolomics processing software Progenesis QI v2.3 with parameters of 5 ppm precur-
sor tolerance, 10 ppm product tolerance, and 5% product ion threshold (Nonlinear Dynamics, Newcastle,
UK). The internal standard normalization method was used for normalization of all output data, and the
results were expressed as peak values (test sample peak area/internal standard sample peak area). Based
on accurate mass-to-charge ratio (M/z), secondary fragmentation, and isotopic distributions, we used the
Human Metabolome Database (HMDB), Lipidmaps (V2.3), Metlin, EMDB, PMDB, and self-built databases for
compound identification.

The differential metabolites between the two groups were selected by the OPLS-DA (orthogonal par-
tial least-squares discriminant analysis) method with VIP value of the first principal component .1, and
the P-value value of the T-test,0.05 as cutoff. MetPA was used for differential metabolic pathway analy-
sis (43).

In addition, Spearman correlation analysis was used to assess the correlation of microbiota with
metabolites.

Host RNA extraction and sequencing. RNA extraction was performed using the RNeasy minikit
(number 74104; Qiagen). Sequencing libraries were then generated using the NEBNext Ultra RNA Library
Prep kit according to the manufacturer's instructions. Library preparations were sequenced on the
NovaSeq 6000 (Illumina, Inc.) to generate 150 bp paired-end reads.

Host RNA-seq analysis. Trim Galore software was used for raw data quality control and junction
trimming. We aligned the filtered raw data to the GRCh38 human genome using HISAT2 (44) software.
The feature counts function (45) of the subread software (46) was used for gene quantification. The
obtained count gene expression matrix was normalized to TPM (transcripts per kilobase of exon model
per million mapped reads). The differentially expressed genes (DEGs) between the CSD group and CON
group were selected by DEseq2 R package (P value , 0.05 and log fold change .1) (47). Clusterprofiler
R package (48) was used for functional enrichment analysis of DEGs.

Host-microbiota interaction analysis. In order to clarify the response mechanism of the human
host's endometrium to microbial disturbances, the two-way orthogonal PLS (O2PLS) model was
constructed for the integrated analysis of DEGs and genus using OmicsPLS R package (49).
Spearman correlation analysis was used to determine the relationship between top30 loading DEGs
and genus.

Data availability. The 16s rRNA gene sequencing have been deposited with China National Center
for Bioinformation (https://ngdc.cncb.ac.cn/) under reference number PRJCA009374. The transcriptome
sequencing for endometrium samples have been deposited with China National Center for Bioinformation
under reference number PRJCA009373. Raw metabolome data are placed in Metabolights (http://www.ebi
.ac.uk/metabolights/) under reference number MTBLS4967.
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