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Abstract: The wave is an important hydrological element in marine research. Accurately describing
the characteristics of waves is therefore significant to the study of marine power. The contents of this
article are as follows: (1) a wave height measurement system using binocular cameras is proposed,
and the small tank experiments are conducted to prove the efficacy of the proposed system; (2) based
on the scale invariant feature transition (SIFT) algorithm, sub-pixel Harris corners are calculated in
the difference-of-Gaussian (DOG) space to locate key points more accurately; and (3) a bi-directional
epipolar constraint is employed to decrease the mismatch rate and computation time.
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1. Introduction

The waves contain abundant information. The extraction of useful wave information and its
application to numerous fields has attracted increasing interest in marine research, including military
research [1], industrial research [2], and meteorological research [3]. The wave detection parameters
include the height, direction and waveform. Based on differences among the measurement methods,
wave detection techniques can be classified into various types, such as aerometry, photogrammetric
techniques [4], radar measurements [5], electronic measurements [6], optical measurements [7],
and acoustic measurements [8]. The photogrammetric method is a non-contact measurement technique;
this means that no sensors are launched onto the water surface, and the propagation of waves is not
impacted. However, while photogrammetry is more convincing than radar detection and has a higher
accuracy, it is still challenging to employ due to multiple complicated interfering factors, such as heavy
illumination, optical rejection and refraction, and unobvious textural features on the water surface.
Moreover, most existing photogrammetric approaches focus on monocular camera detection. It is
hard to measure the real scales of the object from only one image. Either fractional laser or reference
cameras are used when drawing the three-dimensional surface figure and contour map of the wave
height [9,10]. The scale invariant feature transition (SIFT) algorithm is the best method for matching the
image and reference image [11]. Accordingly, in this paper, we propose a binocular camera detection
system to avoid the limitations of monocular detection. The proposed detection system synchronously
captures left and right images and uses a stereo matching algorithm to extract key points that represent
the textural characteristics of the wave and then reconstructs the wave surface and draws a wave
contour map by using the rotation and translation matrices of binocular cameras. Specifically, we
design a customized pattern and project it onto the water surface to enforce the textural features of
the wave. In the stereo matching algorithm, we calculate sub-pixel Harris corners instead of extreme
points in the difference-of-Gaussian (DOG) space of the SIFT vector to control the quantity of features
by choosing different Harris corner response thresholds. In the matching process, we define the correct
matching pairs that must be satisfied with bi-directional epipolar constraints.
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2. Related Work

Based on the photogrammetric technique, wave measurements can be divided into three classes:
(1) Using a stereoscopic system and image correlation: Tsubaki [12] dyed water to make it a white

colour and projected a random pattern on the surface; they also used particles as surface markers to
reconstruct the water surface. In the same year, Douxchamps [13] used floating particles to strengthen
the features of the water surface to measure the surface flow field. Felice [14] proposed an algorithm
based on the particle image velocity (PIV) to measure tiny flows around a ship. In addition, Turney [15]
developed a stereo system based on three-dimensional PIV (3D-PIV) measurements and measured the
wave tunnel shape and velocity at the air–water interface. Fedele [16] introduced an epipolar constraint
to decrease the search range and matching time by investigating the stereo matching component of the
photogrammetric measurement technique. Viriyakija [17] proved that binocular stereo measurements
work well at acquiring wave height measurements; the stereo photogrammetric measurement method
agreed well with the traditional wave height metre in a tank. Chatellier [18] used image processing for
the first time by using an edge detection algorithm to reconstruct the free surface shape and an image
correlation algorithm to calculate the wave velocity; however, this method was highly dependent
on the definitions of the camera parameters. Gomit [19,20] used two stereo systems to separately
record an image correlation; one system used floating particles, whereas the other used moderate PIV
particles, both of which can reconstruct small-scale ship models and perform reconstruction analyses
of free surfaces accurately.

(2) Based on the properties of light penetration into a fluid: Suzuki [21] described the relation
between light refraction at the bottom of a tank and near the surface of water; the light distribution was
represented by a two-order differential equation that was calculated using the fast Fourier transform.
In 2006, based on diffuse reflection at the surface, Sanada [22,23] proposed a refracted light distribution
based on an image measurement technique. In 2010, Ng [24] measured the free surface and velocity
vector fields by combining the visual reflection and PIV techniques. The PIV was used to explore
the random pattern generated by the particles, and a reference pattern was placed beneath the water
surface; therefore, the gradient profile can be estimated by comparing the reflection and reference
patterns. However, such large-scale instruments require a faster algorithm.

(3) Based on the projection of a regular pattern: in 2008, Cochard [25] proposed an algorithm
based on a stipple projection and applied it to acquire free wave measurements of overflow due to
the breakage of a dam. Their method projects a deformed stipple onto the surface to reconstruct the
free surface. To accurately record the change in the waveform, their paper explored a new system
including a digital camera and synchronous projector that could measure an area of 1.8 × 1.1 m2.
However, when the area of free surface is bigger, the edge of the projection pattern became obscure.
The paper designs an irregular pattern to resolve this problem. In 2009, Cobelli [26] proposed an
optical profile measurement technique that could measure the free surface deformation at each instant.
The system consisted of a high-resolution video projection and a digital camera. The phase diagram
was generated by calculating the difference between the deformed stripe pattern and the reference
pattern. Compared with other methods, the advantage of the system was that it offered contactless
measurements over large-scale areas; moreover, the measurement and analysis system could measure
the free surface deformation with 6 × 106 sample points over a sampling area of 450 × 300 mm2 with
a vertical resolution of 0.2 mm.
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3. The Proposed Stereo Match Algorithm

We use binocular cameras to measure the wave height and reconstruct the 3D free surface.
To enrich the wave texture, the designed pattern is projected on the water surface. Finally, experiments
prove that the proposed measurement approach is effective. The proposed measurement system
consists of the following parts: the binocular camera measurement system works externally and is
triggered by a signal generator to synchronously capture left and right images. Then, the proposed
stereo matching algorithm extracts and matches the features of the left and right images. When drawing
the contour map, the camera calibration results, including the fundamental, translation and rotation
matrices, are used to calculate the wave height, shown in Figure 1.

Figure 1. The main steps used by the proposed detection system.

3.1. Corner Detection

Numerous corner detection algorithms, such as the Harris, Moravec, and Shi–Toamsi corner
detection techniques as well as the SIFT algorithm, have been developed for feature extraction.
The proposed method is based on the SIFT algorithm in combination with the sub-pixel Harris
corner detection algorithm. The SIFT descriptors exhibit good scale-invariant characteristics because
of the DOG space; however, the descriptors are at the pixel level, and the numbers of key points
are not easy to control. The wave images are sensitive to light, and, thus, it is important that the
descriptors can represent the wave textures under different lighting conditions; in addition, it would
be convenient if the number of descriptors can be adjusted according to different lighting conditions.
Therefore, this paper extracts sub-pixel Harris corners in the DOG space and sets a Harris corner
response threshold not only to locate the scale-invariant descriptors more precisely but also to control
the number of descriptors that represent the wave texture. Suppose that R(x, y) is the corner response
value of corner (x, y), which is the centre of the nearest nine neighbour pixels and can be described by
the following second-order polynomial equation:

axi
2 + byi

2 + cxiyi + dxi + eyi + f = R(xi, yi), (1)

where (xi, yi) is the position of the neighbour of (x, y), i ∈ (1, 2, 3, ....9). These nine equations include
six unknowns, namely, a, b, c, d, e and f . The sub-pixel position (x′, y′) is the correct corner position.
Hence, substituting the correct position into Equation (1), differentiating and setting the resulting
expression equal to zero gives the sub-pixel position (x′, y′):{

x′ = 2bd−ce
c2−4ab

y′ = 2ae−cd
c2−4ab .

(2)

Figure 2a shows the pseudo-code of the improved key-point extraction, and Figure 2b shows
a comparison between the sub-pixel Harris and Harris corners. Generally, the corners are defined
as the intersections of the white and black blocks. In the Harris corner detection panel to the left of
the dotted line, two green circles are drawn at each intersection. In contrast, in the sub-Harris corner
detection panel to the right of the dotted line, only one green circle is drawn at each intersection, and
thus the sub-Harris corners are more accurate than the Harris corner. Along the borders, because the
intersections are not obvious, neither algorithm works well.
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(a)

(b)

Figure 2. The flowchart and the simulation result. (a) the pseudo-code of improved SIFT features
extraction; (b) to the left of the dotted line is an example of Harris corner detection, whereas an example
of sub-pixel Harris corner detection is shown to the right.

3.2. Stereo Matching Algorithm

In this section, a bi-directional matching algorithm is introduced into the SIFT algorithm to
decrease the mismatch rate and computation time. In the matching component of the original SIFT
algorithm, the Euclidean distance between each corner in the left image and each corner in the right
image is calculated, thereby representing a type of two-dimensional searching. However, the binocular
camera method can change this process to a one-dimensional search using epipolar constraints (14),
shown in Figure 3. In this paper, we propose a bi-directional epipolar constraint. Suppose P is a point
in space; this point is imaged by the left camera as Ple f t and by the right camera as Prig. Therefore, Ple f t
and Prig are a pair of correctly matched corners. Ile f t and Irig denote the image planes of the left and
right cameras, respectively. The epipolar line is defined as follows:

Lrig = F · Ple f t, (3)

Lle f t = FT · Prig, (4)

where F is the fundamental matrix. From the definition of the epipolar line constraint, when calculating
the candidate matching point of corner Ple f t , the epipolar constraint calculates all of the corners along
the epipolar line lrig in the right image using the Euclidean distance to judge whether the corner is
located on the epipolar line. Let A, B, and C be the coefficients of the epipolar line equation, which can
then be written into an algebraic expression:

Ax + By + C = 0. (5)

Therefore, a key point in left image calculates the right epipolar line equation by Equation (3).
On the right image, all of the key points construct the candidate matching set. In the set, if the distance
between the key point to the right epipolar line is less than the threshold d, then the key point is the
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matching point. Suppose that (x′, y′) is the matching corner in the set, and the distance between (x′, y′)
and the epipolar line must be less than a threshold d:

Ax′ + By′ + C√
A2 + B2

≤ d, (6)

where (x′, y′) is the matching point. Generally, in the candidate set, more than one key point is always
satisfied with Equation (6). Then, each of these key points calculates an epipolar line on the left image
using Equation (4). Equation (6) calculates the distances between the Ple f t and these epipolar lines.
It must be only in the epiploar line of Prig. The other pairs are deleted. The pseudo-code of bi-direction
epipolar line is shown in Figure 4.

Figure 3. Epipolar constraint.

Figure 4. Bi-direction epipolar constraint.
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Figure 5 presents an example of the proposed matching algorithm. Figure 5a shows an arbitrary
corner in the left image. There are 14 candidate corners in Figure 5b after applying the epipolar
constraint due to the one-to-many matching phenomenon. When the bi-directional epipolar constraint
is used, a one-to-one match between the left image and right image can be achieved, as shown in
Figure 5c. To describe the matched result clearly, the left image and right image are combined and
shown in Figure 5c. The horizontal and vertical axis represents the pixel number, and the captured
image size is 1628 × 1236. The bi-directional epipolar constraint finds 12 one-to-one match pairs
in total.

(a) (b)

(c)

Figure 5. Suppose a corner exists in the left image. When the epipolar constraint is used,
the one-to-many phenomenon is generated insomuch that the one corner in the left image matches with
14 corners in the right image. Then, the bi-directional epipolar constraint calculates all of the epipolar
constraints of these candidate corners. The correctly matched pair must include the same corner in the
left image, that is, the correct pair is defined by the bi-directional epipolar constraint. (a) suppose a key
point in the left image; (b) epipolar constaint in the right image; (c) the bi-direction epipolar constraint.

4. Experimental Results

4.1. Experimental Equipment

The experimental equipment includes a binocular camera system, a projector, a signal generator,
a set of binocular cameras, a calibration board, a high-speed router, and a main control computer.
The connections are shown in Figure 6. MV-VE200SC digital cameras with a gigabit ethernet (GigE)
interface are utilized as the binocular cameras. The lenses are Computar M0814-MP2 lenses, and the
resolution is 1628 × 1236 at a focal length of 8 mm. The binocular cameras are fixed, and the distance
between them is 30 cm. The standard calibration plate is used. Zhang’s calibration algorithm [25]
is used to determine the intrinsic and extrinsic parameters of the binocular cameras. It also can
calculate the rotation matrix, translation matrix and the fundamental matrix. The binocular cameras
are connected to a ThinkPad T440 laptop by a high-speed router. The man–machine interface is written
in Visual C++ 6.0 to calibrate and capture the images. A customized characteristic pattern consisting
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of a black and white hexagonal grid is projected onto the water surface to enhance the water ripple
characteristics, shown in Figure 7 . To collect pictures synchronously from the binocular cameras and
save them automatically, the binocular camera measurement system works in an external trigger mode,
where a high-level signal triggers the acquisition of images. The signal generator is connected to the
camera by a coaxial cable and generates an external trigger pulse signal with a period of 60 ms, a peak
value of 10 V, and a bias of 5 V.

Figure 6. Connections between the individual devices.

Figure 7. The designed projection pattern.

4.2. Experiment in a Circular Storage Tank

The water in a 500-mm-wide circular storage tank is dyed to a milky white colour to decrease
the penetration of light. The projector projects the black and white hexagonal grid pattern onto the
water surface. A cylindrical object with a diameter of 30 mm and a mass of 2 g is allowed to fall freely
into the water from above the container to generate micro-scale ripples. A pulse signal generator
controls the acquisition of the camera to collect images automatically while the laptop records the
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wave images during the generation, attenuation and disappearance of ripples in the water storage
container. Images of the original calm water are shown in Figure 8.

(a) (b)

Figure 8. The calm water images. (a) the left image; (b) the right image.

The correctly matched pairs are used to fit the wave height contour map and draw a
three-dimensional mesh figure by employing the least squares (LS) interpolation algorithm. In the
calm water experiment, the result of Zhang’s calibration is shown as follows:

Al =

1957.5 −10.583 845.88
0 1953.9 603.66
0 0 1

 , (7)

Ar =

1898.4 −0.8175 803.89
0 1897.5 589.58
0 0 1

 , (8)

T =
[
1898.4 14.58 −0.8686

]
, (9)

R =

 1898.4 14.58 −0.8686
0.0046 1 −0.0032
−0.3074 0.0045 0.9516

 , (10)

F =

−2.486672e− 08 2.809117e− 07 2.586073e− 5
1.669562e− 06 −1.4285e− 07 −0.01388912
−0.00109649 0.01260283 1

 , (11)

Hc =

 0.8433 0.4749 0.2865 92.9763
0.5484 −0.8366 −0.1158 280.9596
−0.2035 0.2385 0.9577 783.857

 , (12)

where Al , Ar are the intrinsic parameters of the left and right cameras. R is the rotation matrix. T is the
transfer matrix. F is the fundamental matrix. Hc is the transfer matrix between the binocular cameras
coordinate system and the reference coordinate system.

The three-dimensional calm water surface is shown in Figure 9a. The x-axis represents the
horizontal distance to the left camera, and the y-axis represents the vertical distance, while the z-axis
shows the wave height. The statistics histogram of 400 measurements is shown in Figure 9b, therefore
the mean height of calm water is 50 mm. Figure 10a shows the original wave images captured by the
binocular cameras. The micro-scale waves generated by the free-falling object are easily read from the
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images. On the images, we can easily discern a two-level wave; in addition to the centre layer, there is
another ripple outside it. In this small container, the wave metre does not work well because of reflected
waves. The three-dimensional wave height surface is shown in Figure 10b, which clearly represents
the actual wave; even the reflected wave near the edge is also described in detail. The experiments
with a calm water surface and micro-scale wave height measurement prove that the binocular camera
measurement system can accurately measure the wave height with an absolute error of approximately
2 mm. When measuring the wave height, some influencing factors must be considered. First, in the
experiment, because of transformation errors among the different coordinates, the results represent
an incline in the detected height of the calm water wave, which is processed as a fixed system error.
In sequencing wave height detection, calm water is used as the standard reference plane to increase
the detection accuracy. Second, the intensity of the illumination is closely related to the accuracy of the
wave height measurement. When the intensity value is excessively high, the wave height cannot be
measured where a bright spot is generated. If the intensity value is too low, the entire image will be
dark, and the wave height cannot be measured.

(a) (b)

Figure 9. The 3D reconstruction of the calm water surface. (a) the measured three dimensional wave;
(b) the statistics histogram of calm water wave height.

(a) (b)

Figure 10. The measured wave height result. (a) the original image of the micro-scale wave;
(b) the measured three-dimensional wave height.

4.3. Experiment in a Tank

Figure 11 illustrates the experimental environment of the tank. The clamp above the circulating
water tank fixes the airfoil shape. When the water tank is operating, a wave is generated around the
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airfoil-shaped model, which is the object being measured. Because the binocular cameras system is not
fixed, the calibration is done again. The tank experiment calibration parameters are shown as follows.

Figure 11. Experimental environment. 1. Airfoil shape; 2. binocular cameras; 3. signal generator;
4. projector; 5. laptop; 6. gigabit Ethernet switch.

Al =

1921.954 −0.21298 813.4364
0 1919.928 554.1574
0 0 1a

 , (13)

Ar =

1805.06 0.2540567 799.8363
0 1904.539 580.826
0 0 1

 , (14)

T =
[
199.6503 0.8470257 30.097

]
, (15)

R =

 0.9510744 0.001605515 0.3089486
0.003430925 1 0.005365272
−0.3089337 0.006162768 0.9510636

 , (16)

F =

8.911515e− 09 7.777782e− 07 −4.896202e− 5
9.306116e− 06 −2.794987e− 07 −0.01093195
−4.859329 0.009531131 1

 , (17)

Hc =

 0.7885 0.4152 0.4584 −276.167
−0.981 0.6622 0.4487 −173.113
0.1252 0.6324 0.7659 354.75

 . (18)

Figure 12 shows the original images of the waves in the tank, and a pattern is clearly observed.
Around the airfoil shape, some micro-scale ripples can be seen. The height ruler is fixed to the side of
the airfoil shape, thereby forming a stable standard measurement plane together with the upper surface
of the airfoil. The contour map and three-dimensional wave height figure are shown in Figure 13.
In Figure 13a, the upper part is the airfoil shape, while the groove in the middle denotes the position
of the airfoil support. The bottom part represents the micro-scale wave; in the image, we can read the
peaks and troughs, which are not easily recognized in the original wave images. Figure 14a presents
the contour map, on which the numbers show the wave height of the discrete scatters. The upper
surface height (from the upper surface of airfoil shape to the bottom of the tank is 60 cm) is set as 0;
therefore, the wave height value is represented as a negative value. The tank is so small that the wave
meter cannot stabilize at a certain value because of the occurrence of strong reflected waves. Although
no wave height meter can sufficiently measure the dynamic wave height, this study uses the method
used in a PhD thesis [26], in which a Vernier caliper was introduced as the standard measurement,
for the sake of comparison with the proposed algorithm, which is shown in Figure 14b. The statistics
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histogram of 400 measurements of the point A is 77 cm, shown in Figure 15. Because the upper surface
height is 60 cm, the wave height of point A is 12 cm, which is in accordance with Figure 13b.

Figure 12. The original image of waves in the tank.

(a) (b)

Figure 13. The three-dimensional reconstruction of wave image. (a) the wave height contour map;
(b) the three-dimensional wave height surface figure.

(a) (b)

Figure 14. The comparison of the wave height measurement. (a) the wave height contour map; (b) the
Vernier calliper reading.
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These results prove that the proposed algorithm can measure the dynamic wave height.
The contour map displays the wave height over the entire area over time. Some challenges are
still encountered in the tank experiment, such as the existence of high-order clutter when the wave is
transmitted in the tank. The superposition of clutter introduces some difficulties into the wave height
measurement, decreasing the overall accuracy.

Figure 15. The statistics histogram of calm water wave height.

5. Conclusions

The wave height is an important parameter in coastal ocean dynamics. A binocular camera
measurement system can help acquire true contactless measurements. In this study, a binocular
camera wave height measurement system is proposed. Based on the SIFT algorithm, sub-pixel Harris
corners are detected in the DOG space to locate the key points more accurately. A bi-direction
epipolar constraint algorithm is proposed to decrease the mismatch rate and computation time.
The experimental results demonstrate that the proposed wave measurement system is suitable for
processing water wave images and provides a good foundation for the successive three-dimensional
reconstruction of wave contour maps.

Author Contributions: Conceptualization, Y.C.; methodology, Y.C.; software, Y.C.; validation,Y.C.; formal analysis,
H.H.; writing–original draft preparation, H.H.; writing–review and editing, Y.Q.; funding acquisition, Y.Q.

Funding: This research was funded by National Natural Science Foundation of China (Grant No. 61371175).

Acknowledgments: This study was supported by the National Nature Science Foundation of China (Grant No.
61371175). The tank experiment was performed in the Ship Model Towing Basin Lab of Harbin Engineering
University. The authors would like to thank both groups.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2019, 19, 1338 13 of 14

References

1. Zhou, L.; Hu, Y.; Zong, Z.; Yu, Z.; Pei, Y. Generation and propagation of internal wave and its interaction
with ocean structures. Sci. Found. China 2017, 3, 72–80.

2. Cuypers, Y.; Vaillant, X.L.; Bouruet-Aubertot, P.; Vialard, J.; Mcphaden, M.J. Tropical storm-induced
near-inertial internal waves during the Cirene experiment: Energy fluxes and impact on vertical mixing.
J. Geophys. Res. Oceans 2013, 118, 358–380. [CrossRef]

3. Wang, Y.; Mao, X.; Zhang, J.; Ji, Y. Detection of Vessel Targets in Sea Clutter Using In Situ Sea State
Measurements With HFSWR. IEEE Geosci. Remote Sens. Lett. 2018, 15, 302–306. [CrossRef]

4. Amstutz, E.D. Stereophotogrammetric Reconnaissance of Ocean Wave/Sea Ice Interaction [Microform].
Dissertation Abstracts Int. 1977, 38, 120.

5. Chen, Z.; He, Y.; Zhang, B. An Automatic Algorithm to Retrieve Wave Height from X-Band Marine Radar
Image Sequence. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5084–5092. [CrossRef]

6. Broeders, J.; Pascal, R.W.; Cresens, C.; Waugh, E.W.; Cardwell, C.L.; Yelland, M.J. Smart electronics for high
accuracy wave height measurements in the open ocean. In Proceedings of the OCEANS 2016 MTS/IEEE
Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–5.

7. Salin, B.M.; Salin, M.B. Combined Method for Measuring 3D Wave Spectra. I. Algorithms to Transform the
Optical-Brightness Field into the Wave-Height Distribution. Radiophys. Quantum Electron. 2015, 58, 114–123.
[CrossRef]

8. Lataitis, R.J.; Crawford, G.B.; Clifford, S.F. A new acoustic technique for remote measurement of the temporal
ocean wave spectrum. IEEE Oceans 1988, 2, 315–317.

9. Kim, W.J.; Van, S.H.; Kim, D.H. Measurement of flows around modern commercial ship models. Exp. Fluids
2001, 31, 567–578. [CrossRef]

10. Moisy, F.; Rabaud, M.; Salsac, K. A synthetic Schlieren method for the measurement of the topography of a
liquid interface. Exp. Fluids 2009, 46, 1021–1036. [CrossRef]

11. Lowe, D.G.; Lowe, D.G. Distinctive Image Features from Scale-Invariant Key-points. Int. J. Comput. Vis.
2004, 60, 91–110. [CrossRef]

12. Tsubaki, R.; Fujita, I. Stereoscopic measurement of a fluctuating free surface with discontinuities.
Meas. Sci. Technol. 2005, 16, 1894–1902. [CrossRef]

13. Douxchamps, D.; Devriendt, D.; Capart, H.; Craeye, C.; Macq, B.; Zech, Y. Stereoscopic and velocimetric
reconstructions of the free surface topography of antidune flows. Exp. Fluids 2005, 39, 535–553. [CrossRef]

14. Felice, F.D.; Pereira, F. Developments and Applications of PIVin Naval Hydrodynamics. In Particle Image
Velocimetry; Springer: Berlin/Heidelberg, Germany, 2008; pp. 475–503.

15. Turney, D.E. Improved Understanding of air–water Transfer of Volatile Chemicals. Master’s Thesis,
University of California, Berkeley, CA, USA, 2009.

16. Fedele, F.; Benetazzo, A.; Gallego, G.; Shih, P.C.; Yezzi, A.; Barbariol, F.; Ardhuin, F. Space-time measurements
of oceanic sea states. Ocean Model. 2013, 70, 103–115. [CrossRef]

17. Viriyakijja, K.; Chinnarasri, C. Wave Flume Measurement Using Image Analysis. Aquat. Procedia 2015,
4, 522–531. [CrossRef]

18. Chatellier, L.; Jarny, S.; Gibouin, F.; David, L. A parametric PIV/DIC method for the measurement of free
surface flows. Exp. Fluids 2013, 54, 1488. [CrossRef]

19. Gomit, G.; Chatellier, L.; Calluaud, D.; David, L. Free surface measurement by stereo-refraction. Exp. Fluids
2013, 54, 1540. [CrossRef]

20. Gomit, G.; Chatellier, L.; Calluaud, D.; David, L.; Fréchou, D.; Boucheron, R.; Hubert, C. Large-scale free
surface measurement for the analysis of ship waves in a towing tank. Exp. Fluids 2015, 56, 1–13. [CrossRef]

21. Suzuki, T.; Sumino, K. A Technique to Measure Wave Height Using Projected Light Distribution on the
Screen Near the Water Surface. J. Kansai Soc. Naval Archit. Jpn. 1993, 13 (Suppl. 1), 241–244.

22. Sanada, Y.; Hamachi, S.; Toda Y. 2006A-G3-9 Development of a New Technique to Measure Wave Height
Distribution Using Reflected Light Image. In Proceedings of the The Japan Society of Naval Architects and
Ocean Engineers. Available online: https://ci.nii.ac.jp/naid/110007185859/en (accessed on 17 March 2019).

23. Sanada, Y.; Toda, Y.; Hamachi, S. The development of the new technique which measures the unsteady
density field: The examination on density field reconstruction method. J. Jpn. Soc. Naval Archit. Ocean Eng.
2005, 2, 57–63. [CrossRef]

http://dx.doi.org/10.1029/2012JC007881
http://dx.doi.org/10.1109/LGRS.2017.2786725
http://dx.doi.org/10.1109/TGRS.2017.2702192
http://dx.doi.org/10.1007/s11141-015-9586-1
http://dx.doi.org/10.1007/s003480100332
http://dx.doi.org/10.1007/s00348-008-0608-z
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1088/0957-0233/16/10/003
http://dx.doi.org/10.1007/s00348-005-0983-7
http://dx.doi.org/10.1016/j.ocemod.2013.01.001
http://dx.doi.org/10.1016/j.aqpro.2015.02.068
http://dx.doi.org/10.1007/s00348-013-1488-4
http://dx.doi.org/10.1007/s00348-013-1540-4
http://dx.doi.org/10.1007/s00348-015-2054-z
https://ci.nii.ac.jp/naid/110007185859/en
http://dx.doi.org/10.2534/jjasnaoe.2.57


Sensors 2019, 19, 1338 14 of 14

24. Ng, I.; Kumar, V.; Sheard, G.J.; Hourigan, K.; Fouras, A. Experimental study of simultaneous measurement
of velocity and surface topography: In the wake of a circular cylinder at low Reynolds number. Exp. Fluids
2011, 50, 587–595. [CrossRef]

25. Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000,
22, 1330–1334. [CrossRef]

26. Wu, F. Research on Digital Method of Measuring the Height of Ocean Wave. Ph.D. Thesis, Tianjin University,
Tianjin, China, June 2010.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00348-010-0960-7
http://dx.doi.org/10.1109/34.888718
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Proposed Stereo Match Algorithm
	Corner Detection
	Stereo Matching Algorithm

	Experimental Results
	Experimental Equipment
	Experiment in a Circular Storage Tank
	Experiment in a Tank

	Conclusions
	References

