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Abstract

Motivation: Sketching is now widely used in bioinformatics to reduce data size and increase data processing speed.
Sketching approaches entice with improved scalability but also carry the danger of decreased accuracy and added
bias. In this article, we investigate the minimizer sketch and its use to estimate the Jaccard similarity between two
sequences.

Results: We show that the minimizer Jaccard estimator is biased and inconsistent, which means that the expected
difference (i.e. the bias) between the estimator and the true value is not zero, even in the limit as the lengths of the
sequences grow. We derive an analytical formula for the bias as a function of how the shared k-mers are laid out
along the sequences. We show both theoretically and empirically that there are families of sequences where the
bias can be substantial (e.g. the true Jaccard can be more than double the estimate). Finally, we demonstrate that
this bias affects the accuracy of the widely used mashmap read mapping tool.

Availability and implementation: Scripts to reproduce our experiments are available at https://github.com/medve
devgroup/minimizer-jaccard-estimator/tree/main/reproduce.

Contact: pzm11@psu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sketching is a powerful technique to drastically reduce data size and
increase data processing speed. Sketching techniques create a smaller
representation of the full dataset, called a sketch, in a way that makes
algorithms more efficient, ideally without much loss of accuracy. This
property has led to sketching methods being increasingly used to meet
the scalability challenges of modern bioinformatics datasets, though
sometimes without understanding the detrimental effects on accuracy.

A thorough treatment of sketching in bioinformatics can be found
in the excellent surveys of Rowe (2019) and Marçais et al. (2019a),
but we mention a few notable examples next. The seminal Mash
paper (Ondov et al., 2016) showed how estimating the Jaccard simi-
larity of two sequences from their minhash sketches (Broder, 1997)
enables clustering of sequence databases at unprecedented scale.
The hyperloglog sketch (Flajolet et al., 2007) is used to compute gen-
omic distances (Baker and Langmead, 2019); the modulo sketch
(Schleimer et al., 2003) is used to search sequence databases (Pierce
et al., 2019); strobemers (Sahlin, 2021) and minhash with optimal
densification (Shrivastava, 2017; Zhao, 2019) are used for sequence
comparison; order minhash is used to estimate edit distance (Marçais
et al., 2019b); and count minsketch (Cormode and Muthukrishnan,
2004) is used for k-mer counting (Crusoe et al., 2015).

One of the most widely used sketches, which forms the basis of
our work, is the minimizer sketch (Roberts et al., 2004; Schleimer
et al., 2003), which selects, for each window of w consecutive
k-mers, the k-mer with the smallest hash value. Minimizer sketches
are used for transcriptome clustering (Sahlin and Medvedev, 2020)
and error correction (Sahlin and Medvedev, 2021), as well as for
seed generation by the Peregrine genome assembler (Chin and
Khalak, 2019) and the widely used minimap (Li, 2016, 2018) and
mashmap (Jain et al., 2017, 2018a) aligners.

Just as with other sketching techniques, in order for the minimizer
sketch to be useful, it must come with theoretical (or at least empirical)
bounds on the loss of accuracy that results from its use. For instance,
the minhash Jaccard estimator used by Mash has the property of being
unbiased (Broder, 1997), i.e. its expected value is equal to the true
Jaccard. Such a theoretical guarantee, however, cannot be assumed for
other sketches. Here, we will consider the example of the minimizer
Jaccard estimate (Jain et al., 2017, 2018a,b), which computes the
Jaccard similarity using minimizer sketches and forms the basis of the
widely used mashmap (Jain et al., 2017, 2018a) aligner. This estimator
is useful for sequence alignment because the minimizer sketch has the
nice property that, roughly speaking, the sketch of a long string con-
tains the sketches of all its substrings. However, its theoretical accur-
acy has not been studied and empirical evaluations have been limited.
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In this article, we study the accuracy of the minimizer Jaccard esti-
mator Ĵ, both theoretically and empirically. We prove that Ĵ is in fact
biased and inconsistent (i.e. the bias is not zero, and it remains so even
as the sequences lengths grow). We derive an approximate formula for
the bias that is accurate up to a vanishingly small additive error term,
and give families of sequence pairs for which Ĵ is expected to be only
between 40% and 63% of the true Jaccard. We then empirically evalu-
ate the extent of the bias and find that in some cases, when the true
Jaccard similarity is 0.90, the estimator is only 0.44. We also study
both theoretically and empirically the bias of Ĵ for pairs of sequences
generated by a simple mutation process and find that, while not as
drastic, the bias remains substantial. Finally, we show that the bias
affects the mashmap aligner by causing it to output incorrect sequence
divergence estimates, with up to a 14% error. Our results serve as a
cautionary tale on the necessity of understanding the theoretical and
empirical properties of sketching techniques.

2 The minimizer sketch and minimizer Jaccard
estimator

In this section, we will define the minimizer sketch (Roberts et al.,
2004; Schleimer et al., 2003) and the Jaccard estimator derived from
it (Jain et al., 2017). Let k>2 and w>2 be two integers. This article
will assume that we are given two duplicate-free sequences A and B
of L k-mers, with L � 7ðwþ 1Þ. A sequence is duplicate-free if it
has no duplicate k-mers, but A and B are allowed to share k-mers.
These requirements on the sequences do not limit the general scope
of our results. In particular, since we will show the existence of bias
for these constrained cases, it immediately implies the existence of
bias within broader families of sequences.

Let Ai denote the k-mer starting at position i of A, with A0 and
AL�1 being the first and last k-mers, respectively. Let SpkðAÞ be the
set of all k-mers in A. We define I(A, B) to be the number of k-mers
shared between A and B, and U(A, B) to be the number of k-mers
appearing in either A or B. Formally,

IðA;BÞ¢jSpkðAÞ
T

SpkðBÞj
UðA;BÞ¢jSpkðAÞ

S
SpkðBÞj

The Jaccard similarity between the sequences A and B is defined
as

JðA;BÞ¢ IðA;BÞ
UðA;BÞ :

Suppose we have a hash function h that takes an element from
the set of all k-mers and maps it to a real number drawn uniformly
at random from the unit interval ½0;1�. Under this hash function, the
probability of a collision is 0. We denote by ai the hash value
assigned to k-mer Ai and for integer w � 2 define the minimizer
sketch of A as

MSðA; wÞ¢
[L�w

i¼0
Ap : p ¼ arg min

j2½i;iþw�1�
aj

� �
:

An element in MSðA; wÞ is called a minimizer of A. The minimizer
intersection and the minimizer union of A and B are defined, respect-
ively, as

ÎðA;B; wÞ¢jMSðA; wÞ
T

MSðB; wÞj
ÛðA;B; wÞ¢jMSðA; wÞ

S
MSðB; wÞj:

The minimizer Jaccard estimator between A and B is defined as

ĴðA;B; wÞ¢JðMSðA; wÞ;MSðB; wÞÞ

¼ ÎðA;B; wÞ
ÛðA;B; wÞ

:

3 Main theoretical results

In this section, we state our main theoretical results and give some
intuition behind them. We can think of the relationship between the
shared k-mers of A and B as the subset of ðA0; . . . ;AL�1Þ �
ðB0; . . . ;BL�1Þ that corresponds to pairs of equal elements; i.e. to
pairs (Ai, Bj) with Ai ¼ Bj. Because A and B are duplicate-free, this
relationship is a matching. We call this the k-mer-matching between
A and B. Our main result is stated in terms of a term denoted by
BðA;B; wÞ, which is a deterministic function of the window size w
and of the k-mer-matching between A and B. We postpone the exact
definition of BðA;B; wÞ until Supplementary Appendix A.1, since it
requires the introduction of cumbersome notation. The main tech-
nical result of this article is:

THEOREM 1. Let w � 2; k � 2, and L � 7ðwþ 1Þ be integers. Let A and

B be two duplicate-free sequences, each consisting of L k-mers. Then

there exists e 2 ½0; 15w2ffiffiffi
L3
p � such that

BðA;B;wÞ � e � E½ĴðA;B; wÞ� � JðA;BÞ � BðA;B;wÞ þ e:

In other words, the difference between the expected value of the
minimizer Jaccard estimator and the true Jaccard is BðA;B; wÞ, up
to a vanishingly small additive error. We now investigate the value
of the term B, which approximates the bias. First, we can show that
for padded sequences, BðA;B; wÞ < 0, except that BðA;B; wÞ ¼ 0
when JðA;BÞ ¼ 0. We say two sequences are padded if they do not
share any minimizers in the first or last w k-mers. (We note that the
effect of padding becomes negligible for longer sequences.)

THEOREM 2. Let w � 2; k � 2, and L � 7ðwþ 1Þ be integers. Let A and

B be two duplicate-free padded sequences, each consisting of L k-mers.

Then BðA;B; wÞ < 0 unless JðA;BÞ ¼ 0; when JðA;BÞ ¼ 0, we have

BðA;B; wÞ ¼ 0.

Moving forward, we may omit A, B, and w from our notation
when they are obvious from the context. Theorems 1 and 2 state
that Ĵ is biased for padded sequences as long as e is sufficiently
small (e.g. L is sufficiently large or w is sufficiently small). Here,
we use ‘biased’ in the statistical sense that E½Ĵ � 6¼ J. Intuitively, Ĵ is
biased because it depends on the layout of the shared k-mers along
the sequences (i.e. on the k-mer-matching), while J only depends
on the number of shared k-mers but not on their layout. Note that
our results hold for any duplicate-free choice of A and B and do
not assume any background distribution, e.g. that A is generated
uniformly at random.

We illustrate the point with Examples 2a and 2b in Figure 1. In
both examples, the expected size of Î is the probability that x is a
minimizer in A and in B plus the probability that y is a minimizer in
A and in B. These two probabilities are equal to each other in these
examples and E½Î � ¼ 2s, for some s. When w¼2, in Example 2a, s
is the probability that a1 is (i) not larger than both a0 and a2, and (ii)
not larger than b0 and b2. Since this statement is about the ordering
of five independently chosen hash values, a straight-forward enu-
meration gives that s ¼ 64=120. In Example 2b, however, b2 ¼ a2,
and s is the probability that a1 is (i) not larger than both a0 and a2

and (ii) not larger than both b0 and a2. This statement is now about
the order of four (not five) independently chosen hash values, and
an enumeration gives s ¼ 14=24. Hence, the values of s are different
in the two examples, and therefore E½Î � is also different.

The discrepancy on E½Î � turns out to be crucial since it induces a
bias. Specifically, as part of the proof of Theorem 1, we will show

that E½Ĵ � � E½Î �
4L

wþ1�E½Î �
, and, since the difference between the expected

sizes of the minimizer intersections varies for the two examples, we

have that E½Ĵ � is also different; in particular, E½Ĵ � is affected by the
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layout of the k-mer-matching. Note, however, that the Jaccard simi-
larity in both examples is the same, with J¼0.2, leading to the intu-

ition that Ĵ is biased when w¼2. Theorems 1 and 2 show that this
bias extends beyond this contrived example and holds for most
sequences of interest.

Next, we consider the value of BðA;B; wÞ for some more con-
crete families of sequence pairs. First, consider the case where any
pair of k-mers that are shared between A and B are separated by at
least w positions. This may approximately happen in practice when
A and B are biologically unrelated and the k-mer matches are spuri-
ous. Formally, we say two padded sequences A and B are sparsely-
matched if for all p and q such that Ap ¼ Bq, fAp�w; . . . ;
Ap�1;Apþ1; . . . ;Apþwg 62 SpkðBÞ, and fBq�w; . . . ;Bq�1;Bqþ1; . . . ;
Bqþwg 62 SpkðAÞ. In such a case, one could imagine that since the
shared k-mers do not interfere with each other’s windows, the esti-
mator might be unbiased. It turns out this is not the case.

THEOREM 3. Let w � 2; k � 2, and L � 7ðwþ 1Þ be integers. Let A and

B be two duplicate-free, padded, sparsely-matched sequences, each con-

sisting of L k-mers. Then BðA;B; wÞ � �JðA;BÞ3w2�3w
8w2�2

.

A direct consequence of combining this with Theorem 1 is that
for sparsely-matched sequences with JðA;BÞ > 0,

E½ĴðA;B; wÞ�
JðA;BÞ � 5w2 � 3w� 2

8w2 � 2
þ e

JðA;BÞ :

For example, for w¼20 and sufficiently long sequence pairs
with a fixed (i.e. independent of L or w) Jaccard similarity, Ĵ is at
most 61% of the true Jaccard. The bias cannot be fixed by changing
w, since at w¼2, Ĵ is at most 40% of J, and, as w grows, Ĵ is at
most 63% of the true Jaccard. This example also shows that Ĵ is not
only biased but also inconsistent, i.e. E½Ĵ � does not converge to J
even as the sequences grow long.

Let us now consider the opposite side of the spectrum, where instead
of being sparsely-matched, A and B are related by the simple mutation
model (i.e. every position is mutated with some constant probability
(Blanca et al., 2021)). Deriving the bias for this case proved challenging,
since the mutation process adds another layer of randomness. Instead,
we derive the bias in a simpler deterministic version of this process,
where there is a mutation every g positions, for some g > wþ 2k.

THEOREM 4. Let 2 � w < k; g > wþ 2k, and L ¼ ‘gþ k for some inte-

ger ‘ � 1. Let A and B be two duplicate-free sequences with L k-mers

such that A and B are identical except that the nucleotides at positions

k� 1þ ig, for i ¼ 0; . . . ; ‘, are mutated. Then,

BðA;B; wÞ ¼ 2‘ð‘gþ kÞhðwÞ
ð‘ðgþ kÞ þ 2k� ‘hðwÞÞð‘ðgþ kÞ þ 2kÞ ;

where hðwÞ ¼ ðwþ1Þð1�2ðH2w�HwÞÞ
2 and Hn ¼

Pn
j¼1

1
j denotes the n-th

Harmonic number.

We can use this theorem in combination with Theorem 1 to obtain a
precise approximation of the bias of Ĵ for this family of sequences. For
instance, taking k¼15, w¼10, L¼9992, and g¼43 yields that Ĵ is
�10% smaller than the true Jaccard. As g increases, the bias decreases,
e.g. for g¼100 and L¼10, 016, Ĵ is 4% smaller than the true Jaccard.

4 Overview of Theorem 1 proof

Due to space constraints, we will focus only on the main theorem
(Theorem 1) in the main text, providing the intuition and giving an
overview of the technical highlights. The proofs of all the theorems,
as well as all the building blocks, are deferred to the Supplementary
Appendix. Our main technical novelty is the derivation of a math-
ematical expression, CðA;B; wÞ, that approximates the expected
value of the size of the minimizer intersection ÎðA;B; wÞ between
two sequences A and B.

LEMMA 1. CðA;B; wÞ � E½ÎðA;B; wÞ� � CðA;B; wÞ þ 2.

CðA;B; wÞ is function of w, L, and of the k-mer-matching be-
tween A and B. In particular, when these parameters are known,
then CðA;B; wÞ can be easily computed. We define CðA;B; wÞ for-
mally in Supplementary Appendix A.1, since it requires the intro-
duction of additional notation. In Supplementary Appendix 4.1, we
give a high level proof of overview of Lemma 1 that does not require
the definition of C.

To prove Theorem 1, we first use Lemma 1 to approximate the
value of E½ĴðA;B; wÞ�.

LEMMA 2. Let w � 2; k � 2, and L � 7ðwþ 1Þ be integers. Let A and B

be two duplicate-free sequences, each consisting of L k-mers. Then there

exists e 2 ½0; 15w2ffiffiffi
L3
p � such that

CðA;B; wÞ
dL� CðA;B; wÞ � e � E½ĴðA;B; wÞ� � CðA;B;wÞ

dL� CðA;B; wÞ þ e;

where d ¼ 4=wþ 1.

Section 4.2 provides a sketch of the proof. Finally, to prove
Theorem 1, we show that

BðA;B;wÞ � CðA;B;wÞ
dL� CðA;B; wÞ � JðA;BÞ;

up an additive error that vanishes as the number of k-mers growths;
when combined with Lemma 2 this approximation yields Theorem
1 immediately. In the following subsection, we will use Î as short-
hand for ÎðA;B; wÞ; we will similarly use Û; Ĵ ; C.

4.1 Lemma 1
In this section, we give an intuition for the proof of Lemma 1 and
for where CðA;B; wÞ comes from. Let MA

p be the indicator random

Fig. 1 Examples of the Jaccard and the minimizer Jaccard estimator. Each example shows the k-mers of a sequence A on top, the k-mers of a sequence B on the bottom and

lines connecting k-mers show the k-mer-matching between A and B. Each k-mer is labeled by its hash value. In Example 1, JðA;BÞ ¼ 1=3. The minimizers for w¼ 3 are circled

in bold red. Here, ÎðA;B; 3Þ ¼ 1; ÛðA;B; 3Þ ¼ 4, and ĴðA;B; 3Þ ¼ 1=4. Examples 2a and 2b give intuition for why the minimizer Jaccard estimator is biased. Here, ai refers to

the hash value assigned to position i and x and y are k-mers shared between A and B. The expected minimizer Jaccard for w¼ 2 is different in the two examples but the

Jaccard is not (J¼ 0.2); hence the expected minimizer Jaccard cannot be equal to the true Jaccard. (A color version of this figure appears in the online version of this article.)
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variable for the event that Ap is a minimizer in A. The expected size
of the minimizer intersection can then be written in terms of MA

p as
follows:

ÎðA;B; wÞ ¼
XL�1

p¼0

XL�1

q¼0

MA
p MB

q 1ðAp ¼ BqÞ (1)

Here, we use 1 in as an indicator function, i.e. 1ðAp ¼ BqÞ is 1 if
Ap ¼ Bq and 0 otherwise. Next, we use the notion of a charged win-
dow from (Marçais et al., 2017; Schleimer et al., 2003). Given a pos-
ition p 2 ½0;L� 1� we say that p charges an index i if
i 2 ½maxf�1; p�wg; p� 1�; ap ¼ minfaiþ1; . . . ; aminðL�w�1;iþwÞg and
either i ¼ maxf�1; p�wg or ai < ap. Figure 2 illustrates the defin-

ition. For p 2 ½0;L� 1� and i 2 ½�1;L�w� 1� we define XA
i;p as an

indicator random variable for the event that index i is charged by pos-
ition p.

The following fact was already shown in Schleimer et al. (2003)
and states that a minimizer charges exactly one window; Figure 2
shows the intuition behind it.

FACT 1. Let p 2 ½0;L� 1�. Position p is a minimizer in A iff there
exists a unique i 2 ½�1;L�w� 1� such that p charges index i. In
other words, MA

p ¼
PL�w�1

i¼�1 XA
i;p.

Let us assume for the sake of simplicity and for this section only
that A and B are padded. This allows us to combine Equation (1)
with Fact 1 while avoiding edge cases and get:

Î ¼
XL�w�1

i¼0

XL�w�1

j¼0

Xiþw

p¼iþ1

Xjþw

q¼jþ1

XA
i;pXB

j;q1ðAp ¼ BqÞ

Applying linearity of expectation, the law of total probability,
and the uniformity of the hash value distribution, we can show that

E½Î � ¼
XL�w�1

i¼0

XL�w�1

j¼0

Xiþw

p¼iþ1

Xjþw

q¼jþ1

ð1

0

Fdx; (2)

where

F ¼ Pr½XA
i;p ¼ 1;XB

j;q ¼ 1jap ¼ bq ¼ x�1ðAp ¼ BqÞ:

To derive the value of the probability term F, let us fix p and q
such that Ap ¼ Bq and fix ap and bq to be some value x. Observe
that in order for XA

i;p and XB
j;q to both be one, there are certain

positions that need to have a hash value less than x (which hap-
pens with probability x for each position) and certain positions
that need to have a hash value more than x (which happens with
probability 1� x for each position). The hash values are pairwise
independent, unless the two positions are in the k-mer-matching;
in that case, the hash values are forced to be identical. If
XA

i;pXB
j;q ¼ 1 imply contradictory values for at least one position,

then F is zero. Otherwise, let a be the number of hash values that
need to be less than x, but counting matched pairs only once.
Similarly, let b denote the number hash values that need to be
more than x, counting the matched pairs only once. Then,

Pr½XA
i;pXB

j;q ¼ 1jap ¼ bq ¼ x� ¼ xað1� xÞb;

Figure 3 gives some examples.
Observe that 0 � a � 2 and 0 � b � 2ðw� 1Þ. Therefore, the

number of distinct terms in the summation of Eq. 2 is at most
6ðw� 1Þ. The number of times each term is included in the summa-
tion is the number of i; j;p; q that induce the corresponding values of
a and b. In Supplementary Appendix A.1, we formalize this notion
using configuration counts; but, for the purposes of intuition, it suf-
fices to observe that Equation (2) reduces to a function of the k-mer-
matching, w, and L. We call this function CðA;B; wÞ and then obtain
Lemma 1.

4.2 Lemma 2
In this section, we will prove Lemma 2, though we defer the proofs
of the building blocks to the Supplementary Appendix. Lemma 1
gives a tight approximation of E½Î � in terms of C. Now, we need to
do the same for E½Û �.

LEMMA 3.

4L

wþ 1
� CðA;B; wÞ � 10 � E½ÛðA;B; wÞ� � 4L

wþ 1
� CðA;B; wÞ:

Now, with Lemmas 1 and 3, we can approximate E½Î �
E½Û �. The next

step is to show that this ratio of expectations is a good approxima-
tion for the expectation of the ratio Î

Û
, since Ĵ ¼ Î

Û
. For this, we re-

quire asymptotically tight bounds on the variances of the random
variables Î and Û.

Fig. 2 Illustration of charging. Each row shows a possible way that position p can

charge an index, with w¼ 4. A minus sign indicates the value is less than ap, a plus

sign indicates the value is larger than ap and no sign indicates that it does not matter.

The circle at the index that is charged is shown in bold red. Note that no two rows

are compatible with each other, i.e. every row pair contains a column with both a

plus and a minus. As a result, the index that gets charged is unique. (A color version

of this figure appears in the online version of this article.)

Fig. 3 Some examples of Pr½XA
i;pXB

j;q ¼ 1jap ¼ bq ¼ x�, with w¼4. The two horizon-

tal lines correspond to sequences A and B, and a circle corresponds to a k-mer

whose value is relevant to the probability. The lines between A and B show the

k-mer-matching, i.e. they indicate that the corresponding k-mers are the same. A

plus or minus sign at a position reflects that the hash value must be greater or less

than x, respectively.
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LEMMA 4.

i. VarðÎðA;B; wÞÞ � 8w2IðA;BÞ;
ii. VarðÛðA;B; wÞÞ � 32w2L.

By isolating the central part of the distributions and bounding
the effect of the tails using Chebyshev’s inequality (Mitzenmacher
and Upfal, 2017), we then obtain the following approximation for
E

Î
Û

h i
.

LEMMA 5.
���E Î

Û

h i
� E½Î �

E½Û �

��� � 11w2ffiffiffi
L3
p :

We now have the components to prove Lemma 2.
Proof (Lemma 2). For the lower bound, we note that

E½Ĵ � ¼ E
Î
Û

h i
� E½Î �

E½Û � �
11w2ffiffiffi

L3
p (Lemma 5)

� C
4L

wþ1�C
� 11w2ffiffiffi

L3
p (Lemmas 1 and 3)

as claimed. For the upper bound, from Lemma 5, we know that

E½Ĵ � ¼ E
Î

Û

" #
� E½Î �

E½Û �
þ 11w2ffiffiffiffi

L3
p

:

The bounds from Lemmas 1 and 3 imply

E½Ĵ � � C þ 2
4L

wþ1� C � 10
þ 11w2ffiffiffiffi

L3
p

:

To complete the proof, we require two additional (and straight-
forward) bounds.

FACT 2. CðA;B; wÞ � 2L
wþ1.

FACT 3. For all y>20 and 0 < x � y=2, xþ2
y�x�10� x

y�x � 12
y�5.

Letting x ¼ C and y ¼ 4L
wþ1, we have 0 < x � y=2 and y>20

(since L � 7ðwþ 1Þ) and so

E½Ĵ � � C
4L

wþ 1
� C
þ 12

4L

wþ 1
� 5

þ 11w2ffiffiffiffi
L3
p

¼ C
4L

wþ 1
� C
þ 3ðwþ 1Þ

L� 5ðwþ 1Þ
4

þ 11w2ffiffiffiffi
L3
p

:

Plugging in wþ 1 � L=7 and then using the fact that w � 2, we
get

E½Ĵ � � JðA;BÞ � C
4L

wþ 1
� C
þ 84ðwþ 1Þ

23L
þ 11w2ffiffiffiffi

L3
p

� C
4L

wþ 1
� C
þ 15w2ffiffiffiffi

L3
p

:
h

5 Empirical results

5.1 Experimental setup
We use two different models to generate sequence pairs. In the un-
related pair model, we take a desired Jaccard value j, set L ¼ 2j4k

jþ1,
and independently and randomly generate two duplicate-free
strings A and B with L k-mers. We chose L in this way so that
under the assumption that A and B are uniformly chosen, j is the
expected value of J(A, B), over the randomness of the generative
process. While such string pairs are unlikely to occur in practice for
higher values of j, they allow us to observe the bias of unrelated

pairs for whole range of Jaccard similarities. In the related pair
model, A is a randomly selected substring of Escherichia coli EColi
download link (2021) with L k-mers. String B is created by sweep-
ing along A, at each position deciding with probability r1 whether
to mutate and then choosing a new nucleotide from those that
would not create a duplicate k-mer. More details about the han-
dling of special cases are in Supplementary Appendix A.6. Note
that in both models, the generated sequences are not necessarily
padded.

For each model, we generated 50 hash replicates hash function
(unless otherwise noted) where each replicate uses a different seed
for the hash function. We then report J, which is the average of Ĵ
over the hash replicates and is the empirical equivalent of E½Ĵ �. We
used the hash function that is part of minimap2 (Li, 2016), since the
idealized hash function we assumed for the convenience of our the-
oretical proofs is not practical in software. For the mutation model,
we also generated some number of mutation replicates, where each
replicate is the result of re-running the random mutation process. In
any experiment, the same set of hash seeds were used for every mu-
tation replicate. Scripts to reproduce our experiments are available
on our GitHub Paper Repo.

Fig. 4 Empirical bias for unrelated and related sequence pairs. For the unrelated

pairs, we used w¼20 and k¼8 for J � :4 and k¼7 for J � :3. For related pairs,

we set k¼16, w 2 f20; 200g, L¼ 10 000, and r1 2 f:001; :005; :01; :05; :1g, with

one mutation replicate. The colored bands show the 2.5th and the 97.5th percen-

tiles. The dashed line shows the expected behavior of an unbiased estimator, with

J ¼ J.

Fig. 5 The effect of w on the empirical bias for a pair of related sequences as a function

of the window size. Here, r1 ¼ 0:1, L¼ 10 000, k¼16, w 2 f20; 100; 200; . . . ; 1000g,
and there are 50 mutation replicates.
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5.2 The extent of the empirical bias on real sequences
Figure 4 shows that there is considerable bias across a wide range of
Jaccard values, for both related and unrelated sequence pairs. There
are pairs of sequences with a dramatic bias, e.g. for unrelated pair
with a Jaccard of 90%, the estimator gives only 44%. In more prac-
tically relevant cases, the bias can remain substantial; e.g. when the
true Jaccard of related pairs is 76%, the estimator gives only 65%
(when w¼200). The extent to which this bias is detrimental to the
biological interpretation of the result depends on the downstream
application. For example, using Ĵ to estimate the average nucleotide
identity in order to build phylogenies, in the style of Mash (Ondov
et al., 2016), may be inadvisable.

Figures 4 and 5 show the extent to which the empirical bias
depends on the window size w. Figure 4 shows that the bias for
related pairs can be twice as large for w¼200 compared to w¼20.
Figure 5 gives a more fine-grained picture and shows how the abso-
lute bias for a related sequence pair increases with w. We note that
it plateaus for larger values of w.

We also wanted to understand the extent of the bias in a scenario
where the sequences are being compared as part of a read mapping
process. To that end, we mimicked the behavior of the mashmap
mapper (Jain et al., 2017, 2018a) by taking one arbitrary substring
A from hg38 chromosome 20, with L¼1000, and comparing it
against all substrings B with L¼1000. Figure 6 show that during
the alignment process, we encounter the whole range of true Jaccard
values, and, for each one, there is a substantial but not drastic bias
in Ĵ. Unlike the prediction of Theorem 2, the bias is sometimes posi-
tive; after further investigation, this happens because the A and B in
this experiment are not always padded, which is a condition of
Theorem 2.

5.3 Effect of bias on mashmap sequence identity

estimates
Mashmap is a read mapper that, for each mapped location, uses the
Mash formula (Ondov et al., 2016) to estimate the divergence (i.e.
one minus the sequence identity) from Ĵ. It was previously reported
that the Mash formula’s use of a Poisson approximation makes it in-
accurate for higher divergence (Ondov et al., 2019; Sarmashghi
et al., 2019), so before proceeding further, we modified mashmap to
replace this approximation with the exact Binomial-based derivation
(we derive the correction formula in Supplementary Appendix A.6).
We then simulated reads from E.coli with substitution errors to

achieve a controlled divergence and mapped them back to the E.coli
reference with mashmap (see Supplementary Appendix A.6 for more
details). We used k¼16 and mashmap automatically chose w¼200
as the window size.

Table 1 shows that even after our correction, the mashmap diver-
gence had an error, e.g. for a true divergence of 5.00%, mashmap
reported an average divergence of 5.71%—an error of 14%. To con-
firm that this remaining error was due to the minimizer sketch, we
replaced the Ĵ estimator in mashmap with the true Jaccard. Table 1
shows that after this replacement, the remaining error was reduced by
an order of magnitude, e.g. mashmap now reported an average diver-
gence of 4.99%. We therefore conclude that the bias we observe in
mashmap after the Binomial correction is dominated by the bias of Ĵ.
In absolute terms, the Ĵ bias (about half a percentage point of diver-
gence) may be acceptable for applications such as read alignment.
However, for other applications (e.g. a fine grained analysis of se-
quence divergence), this bias may lead to downstream problems.

5.4 Empirical accuracy of our B formula (Equation (3))
Theorem 1 predicts that our formula for B (Equation (3)) approxi-
mates the empirical bias. To empirically evaluate the quality of this
approximation, we measured the empirical error of Equation (3),
which we define to be the absolute difference between the empirically
observed bias (J � J) and B. For the sequence pairs used in Figure 4,
the empirical error is never more than 0.007 and roughly one to two
orders of magnitude smaller than the bias itself (Tables 2 and 3). This
held across three hash function families we tested: the one used by
minimap2 (Li, 2016), Murmurhash3 Murmurhash, and SplitMix64
(Steele et al., 2014). Note that this robustness to different hash func-
tions is not predicted by Theorem 1, which assumes an idealized ver-
sion of a hash function which is collision free and maps uniformly to
the real unit interval (in this case, none of the three functions map to
the unit interval and Murmurhash3 is not collision free).

We measured the effect of increasing w and decreasing L on the
empirical error for a related pair (Fig. 7). The empirical error
increases with w but remains almost two orders of magnitude
smaller than the true Jaccard. For L � 1000, the empirical error is
less than half a percent of the true Jaccard. Even for the smallest
value of L (i.e. 100), the empirical error is only 2.6% of the true
Jaccard. We conclude that Equation (3) is a high quality approxima-
tion for the empirically observed bias.

Fig. 6 The empirical bias that occurs during a mapping process. Each point repre-

sents a comparison of a read A against a putative mapping location B. Note that the

points visually blur into lines. We used k¼16 and window size w¼ 200 to match

the default of mashmap. One hash replicate was used.

Table 1. The median sequence divergence reported by mashmap,

over 100 trials, for unmodified mashmap (first row), mashmap

after Binomial-correction (second row) and, in addition, the re-

moval of the Ĵ bias

Mashmap estimator True divergence

10.00 5.00 1.00

Unmodified 11.07 5.88 1.42

Corrected 10.48 5.71 1.41

Corrected þ unbiased 10.05 4.99 1.00

Table 2. The empirical error of our theoretically predicted bias

(Equation (3)) on the related pair sequences of Figure 4

r1 0.001 0.005 0.010 0.050 0.100

J 0.10 0.27 0.74 0.90 0.99

B �0.02 �0.05 �0.04 �0.02 �0.00

Error of B (mm2) 0.001 0.000 0.000 0.000 0.001

Error of B (mmh3) 0.001 0.000 0.001 0.001 0.000

Error of B (sm64) 0.000 0.000 0.002 0.000 0.000

Note: The error is measured with respect to three different hash function

families: the minimap2 hash function (mm2), the Murmurhash3 hash func-

tion (mmh3) and the SplitMix64 hash function (sm64).
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5.5 Accuracy of the e bound to the approximation to

Equation (3)
Theorem 1 states that the expected error of Equation (3) is at most
e ¼ 100w2ffiffiffi

L3
p . Since this is only an upper bound, we wanted to check the

tightness with respect to w and to L. For w¼20 and non-
astronomical values of L, e > 1 and thus Theorem 1 gives no guar-
antee on the accuracy of the B term. Empirically, however, the error
is small (Fig. 7A), indicating that, at least for related pairs, e is likely
not a tight bound. To understand if the dependence on L is accurate,
we found the best fit of a function of the form aLb to the observed
error curve in Figure 7A. The best fit was 0:44L�0:74, which indi-
cates that our dependence on L in e is not tight. One possible way to
achieve this may be to use tighter concentration bounds than
Chebyshev’s inequality inside the proof of Lemma 5 (leveraging the
limited dependency between the events of k-mers being minimizers).
Furthermore, Figure 7B suggests that the true error may be sub-
linear in w, while e has a w2 dependence. Thus our empirical results
indicate that e could potentially be improved for related sequences,
though it may still be tight in the worst-case.

6 Discussion

In this article, we showed that the minimizer Jaccard estimator suf-
fers from bias and inconsistency, using both theoretical and empiric-
al approaches. The bias can be drastic in some fairly artificial cases
(i.e. unrelated sequences with high Jaccard) but remains substantial
even on more realistically related pairs of sequences. Our theoretical
results indicate that the bias cannot be removed by decreasing the
window size (except for the pathological case when w¼1, where ef-
fectively there is no sketching done). We showed how the bias mani-
fests in the mashmap read mapper as error in the reported sequence
divergence. A future direction would be to derive the expected value
of the bias B in the simple mutation model of Blanca et al. (2021); if
B reduces to a function of w without depending on the k-mer layout,
then it could potentially be used to correct the bias in mashmap.
Even if that were not possible, one could still use the estimator pro-
vided that an experimental evaluation determines that the observed
bias is tolerable for the downstream application. On the other hand,

the bias problems can be sidestepped altogether by using a similar
but unbiased sketch, e.g. the modulo sketch (Schleimer et al., 2003).
Finally, we note that while we focus on bias in this paper, it is not
the only theoretical property of importance for sketching; for ex-
ample, there has been much exploration of different hash functions
(DeBlasio et al., 2019; Edgar, 2021; Frith et al., 2020; Jain et al.,
2020; Marçais et al., 2017, 2018; Sahlin, 2021; Zheng et al., 2020)
to reduce the density and/or to select k-mers that have desirable
properties such as conservation or spread (Shaw and Yu, 2021).

Our results also relate to the minhash minimizer Jaccard estima-
tor (Ĵminhash) described by Jain et al. (2017). In this variant, the set of
k-mers in a minimizer sketch is further reduced by taking the s
smallest values (i.e. their minhash sketch); the Jaccard estimator is
then computed between these reduced sets. If the minhash sketch is
taken using a different hash function than was used for computing
minimizers, then the classical result of Broder (1997) implies that
E½Ĵminhash� ¼ E½Ĵ �. This estimator would therefore suffer from the

same bias that we have shown in this paper. If, on the other hand,
the same hash values are reused, then the result of Broder (1997) is
not applicable, because it assumes that the hash values being
selected are uniformly random; in our case, the hash values being
selected in the minhash step have already ‘won the competition’ of
being smallest in their window. Though we did not explore the bias
of this variant of Ĵminhash, it would seem surprising if the minhash
step somehow magically unbiased Ĵ.
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