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Symmetry-protected metallic 
and topological phases in penta-
materials
Sergio Bravo1, Julián Correa2, Leonor Chico3 & Mónica Pacheco1

We analyze the symmetry and topological features of a family of materials closely related to penta-
graphene, derived from it by adsorption or substitution of different atoms. Our description is based on a 
novel approach, called topological quantum chemistry, that allows to characterize the topology of the 
electronic bands, based on the mapping between real and reciprocal space. In particular, by adsorption 
of alkaline (Li or Na) atoms we obtain a nodal line metal at room temperature, with a continuum of Dirac 
points around the perimeter of the Brillouin zone. This behavior is also observed in some substitutional 
derivatives of penta-graphene, such as penta-PC2. Breaking of time-reversal symmetry can be achieved 
by the use of magnetic atoms; we study penta-MnC2, which also presents spin-orbit coupling and 
reveals a Chern insulator phase. We find that for this family of materials, symmetry is the source of 
protection for metallic and nontrivial topological phases that can be associated to the presence of 
fractional band filling, spin-orbit coupling and time-reversal symmetry breaking.

Topological phases of materials due to spatial and non spatial symmetries are the subject of enormous attention, 
both from the fundamental and the applied viewpoint. Firstly, this is because of the promising features related 
to the presence of robust states at boundaries, such as protected surface states, and also due to the appearance of 
novel quantum phenomena, showing unique signatures in the electronic transport, optical response and other 
experimentally relevant magnitudes for applications1–4.

The search for materials with such desirable properties requires the concurrence of symmetry reasoning along 
with ab initio calculations. On one side, symmetry constrains in a clear and unambiguously way what kind of 
physical magnitudes are good quantum numbers to classify the states in the system, both in direct and momen-
tum space. On the other side, first-principles approaches allow for the quantitative characterization of the elec-
tronic structure of the material. Combining these two basic ingredients, we can tailor properties of materials by 
design, in order to engineer topological nontrivial phases5–7.

Different approaches have been proposed to classify topological phases of matter, based on symmetry and 
combinatorial methods8–10. One of the most general and promising theoretical frameworks available for the study 
of novel materials is the so-called topological quantum chemistry (TQC)11–13. This theory combines the non-local 
description of reciprocal space, in terms of bands, with the local, real space characterization employing atomic 
orbitals. It allows to classify the universal properties of all possible band structures of weakly correlated materials, 
making possible the identification of the topological nature of their bands.

In this work, we apply this novel approach to a family of two-dimensional (2D) materials related to 
penta-graphene (PG). This theoretically predicted carbon allotrope consists of a pentagonal, two-dimensional 
buckled lattice structure composed only of carbon atoms, first proposed by Tang et al.14 and later by Zhang et al.15. 
A variety of penta-materials have been theoretically put forward16–19, but experimental realizations are certainly 
scarce for the time being20,21.

Lately, PG has received considerable attention from different perspectives; it is a quasi-direct gap semiconduc-
tor that can be optimally combined with graphene and other 2D materials. Its potential applications have been 
recently explored22–28, as well as the possibility of functionalization, adsorption and atomic substitution with the 
aim of modifying its properties29–35. Some of these modifications may change the semiconducting character of 
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PG, resulting in the appearance of metallic behavior. This feature has been presented in previous works32,35; but 
most importantly, a general symmetry and topological study of these materials is still lacking.

In what follows, we present a complete TQC analysis and ab initio calculations that explore the topological 
nature of these penta-materials, analyzing them from the unifying perspective of group theory.

We study their different phases upon inclusion of spin-orbit interaction and breaking of time-reversal sym-
metry. We find an evolution of the electronic band structure from a general nodal line located at the boundary of 
Brillouin zone (BZ), through a point-like Dirac node near the Fermi level at the corner of the BZ, to topologically 
nontrivial phases in presence of spin-orbit coupling (SOC) plus time-reversal symmetry (TRS) breaking. These 
different phases are realized separately for specific penta-materials by means of first-principles calculations.

This work is organized as follows. We first perform an analysis for the space group of symmetry transforma-
tions present in this family of materials. Next, a topological study is developed using the TQC approach. Certain 
characteristics of the materials, independent of their specific details, are derived from symmetry and topological 
analysis. Subsequently, we corroborate our study by means of density-functional theory calculations for several 
proposed penta-materials, in order to illustrate the realization of the predicted phases. Finally, global conclusions 
pertaining this family of materials are drawn.

Theoretical Background
We briefly summarize here the main concepts employed in the TQC approach in order to develop a topologi-
cal classification of the electronic bands in penta-materials. First, a direct space characterization of the states is 
needed. This is done in terms of real space locations given by Wyckoff positions (WPs) and atomic or Wannier 
orbitals. Each WP has associated a site-symmetry group (SSG), composed by the set of symmetry operations that 
leaves the WP invariant. The SSG is a subgroup of the complete space group of the material12. Assuming that there 
are nW orbitals at each WP, one has to identify the real-space irreducible representation with which these orbitals 
transform under the corresponding site-symmetry group. This gives a complete characterization of the states in 
real space. Next, the connection to reciprocal space is achieved via a Frobenius procedure12, which induces the 
so-called band representation36, thus giving the relationship between real and momentum description. If the WP 
under consideration is a maximal WP11, it has a maximal site symmetry group associated. In this case the induced 
representation in reciprocal space is called an elementary band representation (EBR). The EBRs are the building 
blocks to describe all the groups of bands for a particular space group12. In order to identify the topological char-
acter of the bands, it is necessary to analyze their global connectivity in reciprocal space. By means of graph the-
ory, all the possible connections among high-symmetry points compatible with the crystal symmetry constraints 
can be obtained13,37. This allows to classify the EBRs as connected or disconnected. Disconnected EBRs, which 
can be decomposed, present topological nontrivial behavior. The information about EBRs and compatibility rela-
tions for all space groups is available at the Bilbao Crystallographic server38.

Symmetry Analysis
Following the guidelines of the TQC approach, the fundamental starting point for the analysis of penta-materials 
is the knowledge of their symmetry group. The only formal requisite we impose to this class of materials is that 
their space group remains unaltered. Specifically, the space group of the penta-material lattice (see Fig. 1) is given 
by the P mm421  or no. 113 group39. Importantly, it is a nonsymmorphic group; it includes a glide plane with a 
fractional translation vector given by t = (a/2, a/2, 0), where a is the lattice constant of the material. The nonsym-
morphic character has direct consequences on the energy bandstructure in momentum space, as we will see 
below.

The topological nontrivial character of a material is directly related to the behavior of high-symmetry points 
(HSP) and high-symmetry lines (HSL). If a reciprocal wavevector k is a HSP or belongs to a HSL, there are certain 
operations of the space symmetry group G (modulo a reciprocal wavevector) that leaves it invariant. This set of 
operations form the so-called little group of k, Gk, which is a subgroup of G39. The two-dimensional BZ belonging 
to the space group no. 113 is presented in Fig. 2. The most relevant set of k points in this group for the subsequent 
analysis are Γ, X, M, and the Y-line.

Let us begin with Γ. All the transformations of the space group leave this point invariant, so its little group is 
isomorphic to the space group of the system. With respect to X, the symmetry transformations that leave the 
point invariant are I, 2001, |( )2 0100

1
2

1
2

. Therefore, there are three equivalence classes for GX, and in principle the 
same number of irreps. However, using the ∑ =h nl

2  constraint40, where hl is the dimension of the l-th irrep and 
n = 4 is the order of the group, we obtain that only a two-dimensional irrep can exist. This irrep is labeled as X1. 
For the M point, the invariant operations are I, 2001, +4001, 

−4001, |( )2 0100
1
2

1
2

, |( )2 0010
1
2

1
2

, |( )m 0110
1
2

1
2

 and |( )m 0110
1
2

1
2

. 
Thus M is invariant under the complete space group G, so GM ≅ G. However, as k ≠ 0, we have a phase of ⋅eik tM  that 
is present in the wavefunction at momentum space. As ∑ =h 8l

2  it follows that h1 = h2 = h3 = h4 = 1 and h5 = 2. The 
character table for this little group is given in Table 1, that includes some complex characters due to the nonsym-
morphic nature of the group. Finally, the symmetry transformations for the Y line are I and |( )2 0010

1
2

1
2

. Since we 
have two classes with only one element each, there are two irreps. The corresponding character table is shown in 
Table 2, which also contains some complex characters.

The former data for the little groups allows for the description of the degeneracies at these HSPs and HSLs. 
An important remark is pertinent in this place. Namely, if the system possesses time reversal symmetry, we 
have to resort to use only conjugate pairs of complex-valued irreps, known as physically irreducible representa-
tions11. With this in mind we analyze all points listed above. The Γ point has one- and two-dimensional real 
representations, thus no TRS constraint is necessary. At X there is only one irrep with dimension two; there-
fore, this point always has a two-fold degeneracy for a spinless system. The M point has four complex-valued 
representations and one real-valued representation. TRS forces us to combine these four irreps in two pairs of 
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Figure 1.  (a) Top and (b) side views of the PG lattice, after Fig. 1 of Ref.28. The unit cell comprising 6 atoms is 
enclosed in a black square.

Figure 2.  (a) Two-dimensional projection of the Wyckoff positions for the space group of penta-materials.  
(b) Two-dimensional Brillouin zone for penta-materials, indicating the high-symmetry points and special lines.

M-point I 2001
+4001

|( )2 0010
1
2

1
2 |( )m 0110

1
2

1
2

M1 1 1 1 i −i

M2 1 −1 −1 −i −i

M3 1 −1 1 i −i

M4 1 1 −1 −i i

M5 2 0 0 0 0

Table 1.  Character table for GM.

Y-line I |( )2 0001
1
2

1
2

Y1 1 ω

Y2 1 ω*

Table 2.  Character table for GY. ω = ⋅eik tY .
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conjugate physical irreps. This process yields the pairs M1 + M4, M2 + M3 and the real M5. All three physical irreps 
are two-dimensional. Thus, as long as TRS holds and the space group is nonsymmorphic, the energy bands at this 
point will be two-fold degenerate. Finally, imposing TRS at the Y line we are left with only one possible physical 
irrep, Y1 + Y2, which is also two-dimensional. Therefore, every point located at Y has a two-fold degeneracy. It 
is worth to notice that the Y line, along with the X and M points, comprise all the inequivalent points at the BZ 
boundary. As there is a two-fold degeneracy in each case, it occurs a two-fold band touching over the entire BZ 
perimeter. This phenomenon is known as a nodal-line degeneracy41.

If the spin degree of freedom is taken into account, the first trivial consequence is the doubling of the spinless 
original degeneracy. In this case, the trivial addition of spin yields a four-fold degeneracy along the nodal line. A 
more interesting scenario arises when SOC is included. Symmetry considerations must be extended to include 
double groups40. Consequently, the analysis for the little groups should be performed again, and the bands should 
be relabeled according to the new spinorial irreps.

Let us proceed with the analysis. The little group of the Γ point, GΓ, is enlarged to embrace two new spinorial 
irreps labeled by Γ6 and Γ7; see Supplementary Material (SM) for the character table of this particular group and 
all the double groups used in this work. These two irreps are two-dimensional, which implies that the maximal 
degeneracy at this point is two. As commented above, the X point is described by a unique two-dimensional irrep 
without spin; the inclusion of SOC enlarges the character table. This can be easily seen using the basic relation 
∑ =h 6l

2 , where the solution is given by h1 = 2 and h2 = h3 = h4 = h5 = 1. Thus, four new one-dimensional com-
plex representations are added with respect to the spinless case. If TRS holds, these irreps are joined in conjugate 
pairs, giving two possible physical irreps, namely, +X X2 4 and +X X3 5, both two-dimensional. This last result 
implies that degeneracy is lifted, as in the Γ point, splitting the group of four bands into two pairs of bands.

The double group for the Y line has two more, complex and one-dimensional irreps: Y3 and Y4 (see SM). Like 
in the previous cases, TRS implies the pairing of both irreps in the physical irrep +Y Y3 4, forming a 
two-dimensional irrep. Therefore, as in Γ and X, the possible four-fold degeneracy is lifted, yielding two 
stick-together, two-fold degenerate bands, along the whole line. Finally for the M point, the double group includes 
now two new spinorial irreps M6 and M7, both two-dimensional and complex-valued irreps (see SM). Under TRS 
these two irreps have to be paired in a single physical irrep, denoted as +M M6 7. This irrep is four-dimensional; 
being the only option for the spinful case, we conclude that the M point is unaffected by the inclusion of SOC, 
maintaining the four-fold degeneracy for the energy bands. In summary, we have shown, based only on symmetry 
grounds, that the boundary nodal line disappears under SOC, leaving only a point-like degeneracy at M.

We finish the exploration of symmetries in penta-materials by relaxing time-reversal invariance. If TRS is bro-
ken, single complex irreps can be physical representations without the need of coupling them in conjugate pairs. 
This has straightforward implications in the degeneracy landscape of the energy bands, with or without SOC. 
If TRS is absent and no SOC is considered, the following consequences can be deduced: (i) The Γ point is still 
four-fold degenerated; (ii) The X point becomes non-degenerate; (iii) The M point changes its degeneracy from 
four-fold to two-fold; and finally, (iv) at the Y line we find non-degenerate bands, implying the disappearance of 
the nodal line for this case.

Additionally, in the SOC plus TRS breaking case we can deduce the following: (i) at Γ nothing happens, since 
all irreps are already real; however, (ii) the conjugate pairs formed at X under TRS break apart in the single com-
plex one-dimensional irreps X2, X4, X3, X5. Therefore, all bands are non-degenerate at this point. The M point, 
which had a protected four-fold degeneracy, due to time-reversal and nonsymmorphic symmetries, ends up with 
a pair of two-fold degenerated bands. Finally, the degeneracy of the Y line is lifted, leaving four non-degenerate 
bands for each group of the eight bands occurring in the spinful model.

Topological Analysis
In order to apply the topological analysis based on the symmetry description given in the previous section, 
we need to establish a model for the relevant energy range, namely, the vicinity of the Fermi level. All the 
penta-materials presented here have the pentagonal lattice of PG as a basic structure (Fig. 1), which has six atoms 
in its unit cell, four of them with coordination 3 and the other two with coordination 4. In terms of Wyckoff posi-
tions (WPs), the atoms with coordination 3 are located at a non-maximal 4e WP, and those with coordination 4 
are allocated at a maximal 2a WP. Figure 2 presents a graphical description of WPs for this particular space group.

With the WPs of the atoms identified, the real space description is completed enumerating the orbital compo-
nents for each atomic site. The most important contribution for the considered penta-materials comes from the 
pz orbitals, and in particular from atoms at the 4e WP. We present a minimal model for the topological analysis 
based on the four pz orbitals at the 4e WP. Extensions to this model including additional atoms, either adsorbed 
or as substitutions, can be also important and may involve other combinations of atomic orbitals. However, in 
terms of the essential topological behavior the main results are not modified, so we rely on this minimal model 
and discuss the necessary additions when appropriate.

Once the real space model is complete, it has to be translated to momentum space, with the aim to compute 
its induced band representation and the subsequent topological characteristics. To calculate the corresponding 
band representation, the site-symmetry group (SSG) related to the 4e WP12 should be identified. This group is 
composed of two operations, I, and 2001. Its character table is given in Table 3 (we are only considering the first 
two columns and rows in this table for the single-valued SSG). In a first stage we ignore spin-orbit coupling and 
assume that TRS holds, which implies the use of physical irreducible representations11. The pz orbitals transform 
as the A′ irrep of this SSG. This information allows to define an induced band representation which gives as a 
result the symmetry (irrep labels) of the four bands throughout the entire BZ, as shown in Table 4. Here we only 
show explicitly the TR-symmetric points Γ, X and M.
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A straightforward observation is that this band representation is composite11. This is to be expected, since our 
model is based on pz orbitals located at non-maximal WP. Nevertheless, we can express this band representation 
as a sum of EBRs coming from maximal WP: A′ ↑ G = (2a) ↑ G ⊕ (2c) ↑ G (see38 for the complete list of EBRs for 
the group). The most important conclusion for this model is that all sets of bands are two-connected, and there-
fore all bands are topologically trivial. Particular examples of this phase show some variations of the electronic 
character of the material, depending on the specific band filling. The inclusion of SOC can lead to the appearance 
of additional phases in these materials. This implies the use of a double group (double SSG) description, as men-
tioned before. The character table for the corresponding double group is given in Table 3. Due to TRS, we have to 
apply the conjugate pair procedure and join the E1 and E2 irreps in a single +E E1 2 physical irrep for the spinful 
orbitals. This two-dimensional irrep induces a band representation in reciprocal space shown in Table 5.

The above band representation takes into account eight bands arising from the spin degree of freedom. 
Additionally, by exploring the character of all the EBRs with TRS for this double group, it can be verified that all 
sets of bands are connected, with a maximum of 4-connected bands (see38). Thus, all bands are trivial in this case. 
Still, we have some SOC-induced transitions at the HSPs and HSLs that modify the degeneracy order as men-
tioned in the symmetry analysis, this has consequences on the electronic properties of particular penta-materials 
(see next Section).

Finally, we consider TRS breaking such that complex-valued irreps are allowed. With the same induction 
procedure employed above, we found the band representation shown in Table 6.

This is a composite band representation formed by two groups of four bands. We study only one group, since 
the other one has exactly the same structure.

As it is well-known, degeneracy is lowered by TRS breaking and, this is reflected in the band representation 
which becomes decomposable, a signal for the presence of a topological set of bands11–13. If an EBR is decom-
posable, then different connectivity paths can appear among the high symmetry points and lines through the 
BZ, which implies different topological phases in the material. The different topological realizations of the band 
representation correspond to all possible solutions of the compatibility relations between HSPs and HSLs over 
the BZ. We have carried this process for a two-dimensional BZ of the space group of penta-materials, finding the 
connectivity solutions presented in Table 7 below.

These sets of bands have to be compared with the EBRs that the space group induces in momentum space. As 
a general rule, if a band representation can be expressed as the combination of some EBRs, then the set of bands 

4e I 2001 Id 2d
001

A′ 1 1 1 1

A′ 1 −1 1 −1

E1 1 −i −1 i

E2 1 i −1 −i

Table 3.  Character table for the double site-symmetry group at 4e Wyckoff position.

B Zpoint A′ ↑ G

Γ Γ1(1) ⊕ Γ3(1) ⊕ Γ5(2)

X 2X1(2)

M M1(1)M3(1)⊕M5(2)

Table 4.  Band representation for 4e WP with TRS and no SOC.

B Zpoint + ↑E E G1 2

Γ Γ ⊕ Γ2 (2) 2 (2)6 7

X ⊕X X X X2 (2) 2 (2)2 5 3 4

M M M2 (4)6 7

Table 5.  Band representation for 4e WP, with SOC and TRS.

B Zpoint ↑E G2 1

Γ Γ ⊕ Γ2 (2) 2 (2)6 7

X ⊕ ⊕ ⊕X X X X2 (1) 2 (1) 2 (1) 2 (1)2 5 3 4

M ⊕M M2 (2) 2 (2)6 7

Table 6.  Band representation for 4e WP with SOC and no TR.
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is trivial12. Comparing the results for the band representations above with all possible EBRs, it can be seen that 
some sets cannot be expressed in terms of EBRs; in conclusion, such bands are topological. The labeling presented 
in the Table 7 depicts this situation.

There are four different possible connectivities that depend on the particular characteristics and band filling 
of the material. We can build a toy model to grasp the general behavior of these phases by fixing the energy 
ordering of bands (irreps) to some particular sequence at HSPs and HSLs. The possible outcomes are depicted 
graphically in Fig. 3. There are three phases presenting nodal degeneracy and one phase with gapped character. 
The knowledge of the specific band filling is necessary in order to classify this topological behavior as metallic or 
insulating. This is strongly material-dependent, making it necessary to analyze specific cases. In particular, for 
penta-materials studied in this work, there is an interplay of metallic phases with or without nodes, along with 
electron or hole pockets near the Fermi energy, an scenario that has been found before42. In summary, if TRS is 
preserved and no SOC is included, penta-materials possess a general band structure with trivial bands in all its 
energy range, displaying a perimeter nodal line. The inclusion of SOC while maintaining TRS yields also trivial 
bands, but some degeneracies are lifted in the BZ, changing the character of the electronic properties. Breaking 
TRS with SOC produces a decomposable band representation that gives rise to four different topological phases, 
according to the distinct possibilities for the band connectivity.

This exhausts our study of the electronic band structure for penta-materials within a general group theory 
framework. Naturally, other perturbations could be included in order to modify the symmetry character of the 
underlying lattice with the possible induction of more topological phases.

In the following section we apply this general group-theoretical description to some specific penta-materials. 
This is done with the aid of first-principles calculations and effective models.

Examples of Penta-Materials
The first instance of this family of materials is penta-graphene. It has an all-carbon lattice structure and an insulat-
ing character. Two conduction bands and two valence bands are the main contributors to the low-energy range15. 
Applying the TQC analysis it can be concluded that, since carbon has a weak SOC and TRS holds, PG is a trivial 
(band) insulator. In this context, PG presents little interest due to its sizeable optical gap. However, as men-
tioned before, we can explore additional configurations by functionalization, adsorption or atom substitution 
of penta-graphene without altering its original symmetry. This can be reinforced by an electron filling analysis 
as presented in43. For the PG space group (No. 113) the band insulator filling is dictated by a 4n relation, where 
n is a positive integer. For PG this yields a band filling of 36, which results in a band insulator state. If we substi-
tute some carbon atoms we deviate from the 4n-band filling, accomplishing a condition for the filling-enforced 

HSP path Character

Γ6 → X2 ⊕ X4 → M6 trivial

Γ7 → X3 ⊕ X5 → M7 topological

Γ6 → X3 ⊕ X5 → M6 topological

Γ7 → X2 ⊕ X4 → M7 trivial

Γ7 → X2 ⊕ X4 → M6 topological

Γ6 → X3 ⊕ X5 → M7 trivial

Γ7 → X3 ⊕ X5 → M6 trivial

Γ6 → X2 ⊕ X4 → M7 topological

Table 7.  Compatibility relations along different high-symmetry-point paths of these family of penta-materials, 
allowing for the determination of their topological and trivial phases.
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Figure 3.  Scheme of the possible energy orderings of bands (irreps) at the high-symmetry points and high-
symmetry lines.

https://doi.org/10.1038/s41598-019-49187-w


7Scientific Reports |         (2019) 9:12754  | https://doi.org/10.1038/s41598-019-49187-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

formation of a nodal (semi)metal. This has to be additionally cross-checked with a chemical stability study of the 
material44.

We present first-principles calculations for several penta-materials based on PG, with an emphasis in both, 
global and local features of their energy bands. We explain the modifications performed in PG to achieve the spe-
cific penta-material and the particular phase realizations with respect to our previous symmetry and topological 
analysis.

Our calculations were carried out in the density functional theory (DFT) framework using SIESTA45 and 
Quantum ESPRESSO46,47 ab initio packages. The energy cutoff for the basis set was 80 Ry for Quantum ESPRESSO 
and for SIESTA calculations we employed localized atomic orbitals as a basis set (double-ζ, single polarized). In 
both codes were employed norm-conserving pseudopotentials and the structures were relaxed until the forces 
on the atoms were less than 0.04 eV/Å. Exchange-correlation was considered within the generalized gradient 
approximation (GGA), as proposed by Perdew, Burke, and Ernzerhof48. The convergence of the total energy 
is ensured with a Monkhorst-Pack k-grid of 15 × 15 × 1 in both cases. All the geometrical parameters for the 
penta-materials presented below were obtained from SIESTA code and are summarized in Table 8. Calculations 
of materials without spin-orbit coupling were carried out with SIESTA and Quantum ESPRESSO giving similar 
results. Calculations including spin-orbit coupling were performed exclusively with Quantum ESPRESSO.

Symmetry-Protected Metallic Phases
In order to access the metallic phases, i.e., to shift the conduction or valence bands, other elements rather than 
carbon should be added to PG. We first functionalize PG with adsorption of metallic atoms at 4e WP. This case 
has been previously explored for various elements, showing metallization of PG32,33. An example of a relaxed 
lattice structure with adsorbed Li is presented in Fig. 4. Also, electronic band structure calculations are shown 
for this case of Li-adsorbed PG (Li-PG) as well as Na-adsorbed PG (Na-PG) in Fig. 5. Another possibility is to 
explore substitutional derivatives of PG, respecting the original symmetry. Particularly interesting for this work is 
the 2a WP, which corresponds to coordination-4 atoms, forming a penta-XC2 configuration31,34,35, where X = {B, 
N, P, Si, Ge}. The lattice structure of these materials is exactly the same as PG, with modifications in the relative 
bond magnitudes and lattice constant. We show the band structures for X = B, N, P in Fig. 6.

Since these theoretical materials preserve the PG space group P mm421 , they show a similar trend in the elec-
tronic band structure. However, now there is a fractional filling of the conduction (valence) band, which can be 
described in this trivial phase (no SOC + TRS) by a single EBR. As stated by Bradlyn et al.11, if the Fermi level sits 
on a single EBR with fractional filling, the corresponding material is necessarily a protected (semi)metal. Thus, all 
these metal-PG and penta-XC2 materials are symmetry-protected metals. We have some remarks about this 
result. The above-mentioned symmetry protection is of crystalline character; since the space group is nonsym-
morphic and TRS symmetry is preserved, it implies the well-known “stick-together” phenomenon for energy 
bands40 along the Y line. This effect can be seen in the band structures of all penta-materials in this regime. It is 
remarkable that the sticky bands occur along all the BZ boundary. Consequently, there is a trivial crystalline 
nodal line for these penta-materials. The nodal line presents a certain dispersion, i.e., it is not at constant energy 
in momentum space. Such dispersion can be due to several causes; for example, breaking particle-hole, chiral 
and/or crystalline symmetries. The lack of inversion symmetry has been invoked in previous works as the reason 
for the dispersion of these lines41,42. However, planar pentagonal materials, for which inversion symmetry holds49, 
also have a certain dispersion in the Y line; therefore, particle-hole and chiral symmetry breaking play an impor-
tant role in this effect50.

For PG-adsorbed or substituted materials, although the nodal line is energy-dependent, it crosses the Fermi 
energy, producing a single nodal point plus pockets of electrons or holes. This can be clearly seen in the band 
structures shown in Figs 5 and 6. Looking closer to the local low-energy behavior of the nodal line at the vicin-
ity of the Y line, we observe that bands have a linear dependence on kx along constant ky lines, so these carriers 
behave as massless fermions. This can be observed in a momentum space cut presented in Fig. 7. We can see 
that the node line is composed by a succession of Dirac nodes, with the Dirac point sitting at the Y line. The 
massless fermion low-energy dispersion becomes more relevant if the Fermi level actually sits on a state of the 
nodal line. This crucially depends on the band filling fraction, being realizable in some of the materials studied. 
Notice that, although we have a trivial phase in these materials, we still can have protected edge states. This can 
be explained in terms of the ten-fold way classification of the Fermi surface51. As the considered materials belong 
to the AIII (chiral unitary) class, for spatial dimension d = 2 a trivial phase arises, as expected. But due to an 

System a(Å) cc(Å) cx(Å) d(Å)

PG 3.650 1.554

NC2 3.417 1.403 1.516

PC2 4.178 1.418 1.815

BC2 4.017 1.388 1.647

MnC2 4.630 1.262 2.183

Li-PG 3.695 1.576 2.188

Na-PG 3.790 1.602 2.564

Table 8.  Lattice constants and relevant atomic distances of the penta-materials studied in this work. Here a is 
the lattice constant, cc the carbon-carbon distance, cx the distance between a carbon atom and the other element 
X and d is the distance between the carbon atom and the absorbed Li or Na.

https://doi.org/10.1038/s41598-019-49187-w


8Scientific Reports |         (2019) 9:12754  | https://doi.org/10.1038/s41598-019-49187-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

inherited non-triviality from another related AI (orthogonal) class, robust edge states that present linear or dis-
persionless characteristics might appear9. Next, SOC effects are explored by means of first-principles calculations. 
To this end, we use as an example penta-PC2. Its band structure is presented in Fig. 8. As we are dealing with light 
elements the effect of SOC is rather weak; therefore, all these materials will behave as nodal line semimetals at 
room temperature, showing a continuum of Dirac nodes along the Brillouin zone boundary. Furthermore, these 
Dirac points are accessible under variations of the Fermi level position, making these massless fermions available 
under different perturbations, such as doping or electrostatic gating.

Notwithstanding, the results derived by the symmetry analysis are confirmed. Namely, degeneracies at Γ 
and X points and along the Y line are lifted. Likewise, the robustness of the M point four-fold degeneracy is 
confirmed by these calculations, which allows us to identify this as a novel metallic phase similar to that stud-
ied by Topp et al.52. The symmetry that protects the “stick-together” effect along the Y line is broken, and the 

Figure 4.  Relaxed lattice of penta-graphene (green) with adsorbed Li atoms (cyan).
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symmetry lines.
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degeneracy of the above-mentioned high-symmetry points is also modified, implying the disappearance of the 
nodal line. Therefore, for these penta-materials, SOC plus TRS enforces a transition from a nodal line metal state 
to a spin-orbit Dirac-node metal with nodal points located at M53,54, both phases being topologically trivial.
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Topological phase: Breaking TRS
In what follows we show an example of a penta-material for the TRS-breaking phase with SOC: PG with substi-
tution of Mn atoms at the 4e WP (or penta-MnC2). In this case, magnetic Mn atoms break TRS and induce an 
intrinsic spin-orbit interaction, which results in a nontrivial phase. The corresponding band structure calcula-
tions are presented in Fig. 9. In this example the four-fold to two-fold change of degeneracy at the M point due 
to TRS breaking can be corroborated. We observe that along this high-symmetry path no band crossing among 
the four-band subgroups occurs. Further, the Y line is completely non-degenerate, as expected. Thus, we have a 
situation similar to the &quot;a&quot; phase presented in the model introduced in the Section “Topological anal-
ysis”. We also find that the structure is magnetic and choose a ferromagnetic configuration, which is energetically 
more favorable. We ignore further magnetic group information for the subsequent analysis and restrict only to 
double space group data.

In the case of nontrivial phases it is also necessary to establish a topological classification based on the calcu-
lation of topological invariants. In this case, we will use a numerical technique known as Wannier Charge Center 
(WCC) evolution55,56. In order to implement this procedure, an effective model defined in terms of Wannier 
functions must be supplied. We construct this model for the low-energy regime of penta-MnC2 using the code 
Wannier9057,58. This code uses a DFT band structure calculation as the input and wannierize the system by pro-
jecting the eigenfunction space to an initial set of orbitals. We chose sp3 orbitals for C atoms plus s and d orbitals 
for Mn atoms. This is an extension of the basic model with only s and p orbitals; in this case the d orbitals trans-
form as the p orbitals for the SSG of the 4e WP. We set a tolerance of 10−10 for the wannierization (minimization) 
procedure and define a frozen energy window of 3 eV around the Fermi level taking into account 20 bands. With 
this model at hand, the band structure of penta-MnC2 can be computed; it is shown in Fig. 10. It shows a very 
good agreement with that obtained from first-principles methods, being a good starting model for the calculation 
of topological invariants.
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Figure 9.  DFT penta-MnC2 band structures (a) without SOC; black and red denote spin-up and spin-down 
bands, respectively. (b) Bands including SOC.
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The WCC evolution is related to several topological invariants such as 2 and Chern numbers. In the particu-
lar case we are studying, since TRS is broken5 we compute the so-called individual Chern numbers59. They can be 
used to classify crystalline symmetries, as mirror or spatial inversion. In the case of TRS systems, these numbers 
give rise to a  classification of phases, and can be added to obtain the net Chern number. For 2D magnetic mate-
rials, with broken TRS, each individual Chern number has to be taken separately, providing a  ×  classification 
with (Cx, Cy) topological numbers. The individual Chern numbers are obtained by taking the sum of the WCCs at 
each k point and then counting the times this function winds across the vertical axis over the entire k-path55. This 
procedure has the advantage that only bulk properties are needed to compute the topological invariants of a mate-
rial, without resorting to more expensive surface or edge state calculations. To this purpose, we have used two 
codes: Z2pack60 and WannierTools61. Only the Z2pack results are presented here, since WannierTools gives a 
similar outcome. Z2pack uses the Hamiltonian in terms of Wannier functions as an input. Additionally, we set a 
position tolerance of 0.001, a gap tolerance equal to 0.1 eV and a number of lines of 200. The WCC calculation can 
be carried for each one of the spatial directions of the system. For penta-materials, being 2D systems, there are 
two directions, x and y. We present the WCC evolution and WCC sum for both directions in Figs 11 and 12, 
respectively.

It can be observed that the individual Chern numbers are non-zero for both directions. In particular, a Chern 
number of Cx = 1 was obtained for the x-direction and Cy = −1 for the y-direction, related to the winding of the 
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Figure 11.  Top: WCC evolution for x axis. Bottom: Sum of WCC for the x axis.
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sum of the WCC across the respective k directions. This implies a charge pumping effect along each k-space 
direction56 and hints for a nontrivial topological phase at the bulk gap. The former discussion gives a total chern 
number of C = 1, as C = Cx = −Cy = 1  60 and therefore, we conclude that penta-MnC2 is a material realization for 
a chern insulator phase.

Conclusions
We have studied a set of materials sharing a space group structure that we dub penta-materials. A detailed anal-
ysis for many physical possibilities, including TRS and TRS breaking as well as SOC, shows that these materials 
can host different phases. We have found nodal line fermions if SOC is weak and TRS is present; in metallic 
penta-materials this implies that a continuum of Dirac points is accessible around the Fermi energy. Also, 
symmetry-protected Dirac points arise if SOC is strong enough. Finally, if TRS is broken and SOC is sufficiently 
strong, we encounter a nontrivial topological phase characterized by non-zero individual Chern numbers for 
the two primitive directions in k-space. A wider class of penta-materials, from other substitutions or function-
alization, awaits for the full characterization of their topological phases and the obtention of additional physical 
properties.

Data Availability
All data generated or analyzed during this study are included in this published article.
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